Vectorize the midpoint rule for integration - python

I need some help with this problem.
The midpoint rule for approximating an integral can be expressed as:
h * summation of f(a -(0.5 * h) + i*h)
where h = (b - a)/2
Write a function midpointint(f,a,b,n) to compute the midpoint rule using the numpy sum function.
Make sure your range is from 1 to n inclusive. You could use a range and convert it to an array.
for midpoint(np.sin,0,np.pi,10) the function should return 2.0082
Here is what I have so far
import numpy as np
def midpointint(f,a,b,n):
h = (b - a) / (float(n))
for i in np.array(range(1,n+1)):
value = h * np.sum((f(a - (0.5*h) + (i*h))))
return value
print(midpointint(np.sin,0,np.pi,10))
My code is not printing out the correct output.

Issue with the posted code was that we needed accumulation into output : value += .. after initializing it as zero at the start.
You can vectorize by using a range array for the iterator, like so -
I = np.arange(1,n+1)
out = (h*np.sin(a - (0.5*h) + (I*h))).sum()
Sample run -
In [78]: I = np.arange(1,n+1)
In [79]: (h*np.sin(a - (0.5*h) + (I*h))).sum()
Out[79]: 2.0082484079079745

Related

How can I simplify this more?

I am trying to apply numpy to this code I wrote for trapezium rule integration:
def integral(a,b,n):
delta = (b-a)/float(n)
s = 0.0
s+= np.sin(a)/(a*2)
for i in range(1,n):
s +=np.sin(a + i*delta)/(a + i*delta)
s += np.sin(b)/(b*2.0)
return s * delta
I am trying to get the return value from the new function something like this:
return delta *((2 *np.sin(x[1:-1])) +np.sin(x[0])+np.sin(x[-1]) )/2*x
I am trying for a long time now to make any breakthrough but all my attempts failed.
One of the things I attempted and I do not get is why the following code gives too many indices for array error?
def integral(a,b,n):
d = (b-a)/float(n)
x = np.arange(a,b,d)
J = np.where(x[:,1] < np.sin(x[:,0])/x[:,0])[0]
Every hint/advice is very much appreciated.
You forgot to sum over sin(x):
>>> def integral(a, b, n):
... x, delta = np.linspace(a, b, n+1, retstep=True)
... y = np.sin(x)
... y[0] /= 2
... y[-1] /= 2
... return delta * y.sum()
...
>>> integral(0, np.pi / 2, 10000)
0.9999999979438324
>>> integral(0, 2 * np.pi, 10000)
0.0
>>> from scipy.integrate import quad
>>> quad(np.sin, 0, np.pi / 2)
(0.9999999999999999, 1.1102230246251564e-14)
>>> quad(np.sin, 0, 2 * np.pi)
(2.221501482512777e-16, 4.3998892617845996e-14)
I tried this meanwhile, too.
import numpy as np
def T_n(a, b, n, fun):
delta = (b - a)/float(n) # delta formula
x_i = lambda a,i,delta: a + i * delta # calculate x_i
return 0.5 * delta * \
(2 * sum(fun(x_i(a, np.arange(0, n + 1), delta))) \
- fun(x_i(a, 0, delta)) \
- fun(x_i(a, n, delta)))
Reconstructed the code using formulas at bottom of this page
https://matheguru.com/integralrechnung/trapezregel.html
The summing over the range(0, n+1) - which gives [0, 1, ..., n] -
is implemented using numpy. Usually, you would collect the values using a for loop in normal Python.
But numpy's vectorized behaviour can be used here.
np.arange(0, n+1) gives a np.array([0, 1, ...,n]).
If given as argument to the function (here abstracted as fun) - the function formula for x_0 to x_n
will be then calculated. and collected in a numpy-array. So fun(x_i(...)) returns a numpy-array of the function applied on x_0 to x_n. This array/list is summed up by sum().
The entire sum() is multiplied by 2, and then the function value of x_0 and x_n subtracted afterwards. (Since in the trapezoid formula only the middle summands, but not the first and the last, are multiplied by 2). This was kind of a hack.
The linked German page uses as a function fun(x) = x ^ 2 + 3
which can be nicely defined on the fly by using a lambda expression:
fun = lambda x: x ** 2 + 3
a = -2
b = 3
n = 6
You could instead use a normal function definition, too: defun fun(x): return x ** 2 + 3.
So I tested by typing the command:
T_n(a, b, n, fun)
Which correctly returned:
## Out[172]: 27.24537037037037
For your case, just allocate np.sin tofun and your values for a, b, and n into this function call.
Like:
fun = np.sin # by that eveywhere where `fun` is placed in function,
# it will behave as if `np.sin` will stand there - this is possible,
# because Python treats its functions as first class citizens
a = #your value
b = #your value
n = #your value
Finally, you can call:
T_n(a, b, n, fun)
And it will work!

Finding a way to replace a column in an np.ogrid with a different formula for a specific value of the iterable

a,b=np.ogrid[0:n:1,0:n:1]
A=np.exp(1j*(np.pi/3)*np.abs(a-b))
a,b=np.diag_indices_from(A)
A[a,b]=1-1j/np.sqrt(3)
is my basis. it produces a grid which acts as an n*n matrix.
My issue is I need to replace a column in the grid, say for example where b=17.
I need for this column to be:
A=np.exp(1j*(np.pi/3)*np.abs(a-17+geo_mean(x)))
except for where a=b where it needs to stay as:
A[a,b]=1-1j/np.sqrt(3)
geo_mean(x) is just a geometric average of 50 values determined from a pseudo random number generator, defined in my code as:
x=[random.uniform(0,0.5) for p in range(0,50)]
def geo_mean(iterable):
a = np.array(iterable)
return a.prod()**(1.0/len(a))
So how do i go about replacing a column to include the geo_mean in the exponent formula and do it without changing the diagonal value?
Let's start by saying that diag_indices_from() is kind of useless here since we already know that diagonal elements are those that have equal indices i and j and run up to value n. Therefore, let's simplify the code a little bit at the beginning:
a, b = np.ogrid[0:n:1, 0:n:1]
A = np.exp(1j * (np.pi / 3) * np.abs(a - b))
diag = np.arange(n)
A[diag, diag] = 1 - 1j / np.sqrt(3)
Now, let's say you would like to set the column k values, except for the diagonal element, to
np.exp(1j * (np.pi/3) * np.abs(a - 17 + geo_mean(x)))
(I guess a in the above formula is row index).
This can be done using integer indices, especially that they are almost computed: we already have diag and we just need to remove from it the index of the diagonal element that needs to be kept unchanged:
r = np.delete(diag, k)
Then
x = np.random.uniform(0, 0.5, (r.size, 50))
A[r, k] = np.exp(1j * (np.pi/3) * np.abs(r - k + geo_mean(x)))
However, for the above to work, you need to rewrite your geo_mean() function in a such a way that it will work with 2D input arrays (I will also add some checks and conversions to make it backward compatible):
def geo_mean(x):
x = np.asarray(x)
dim = len(x.shape)
x = np.atleast_2d(x)
v = np.prod(x, axis=1) ** (1.0 / x.shape[1])
return v[0] if dim == 1 else v

python divide by zero encountered in log - logistic regression

I'm trying to implement a multiclass logistic regression classifier that distinguishes between k different classes.
This is my code.
import numpy as np
from scipy.special import expit
def cost(X,y,theta,regTerm):
(m,n) = X.shape
J = (np.dot(-(y.T),np.log(expit(np.dot(X,theta))))-np.dot((np.ones((m,1))-y).T,np.log(np.ones((m,1)) - (expit(np.dot(X,theta))).reshape((m,1))))) / m + (regTerm / (2 * m)) * np.linalg.norm(theta[1:])
return J
def gradient(X,y,theta,regTerm):
(m,n) = X.shape
grad = np.dot(((expit(np.dot(X,theta))).reshape(m,1) - y).T,X)/m + (np.concatenate(([0],theta[1:].T),axis=0)).reshape(1,n)
return np.asarray(grad)
def train(X,y,regTerm,learnRate,epsilon,k):
(m,n) = X.shape
theta = np.zeros((k,n))
for i in range(0,k):
previousCost = 0;
currentCost = cost(X,y,theta[i,:],regTerm)
while(np.abs(currentCost-previousCost) > epsilon):
print(theta[i,:])
theta[i,:] = theta[i,:] - learnRate*gradient(X,y,theta[i,:],regTerm)
print(theta[i,:])
previousCost = currentCost
currentCost = cost(X,y,theta[i,:],regTerm)
return theta
trX = np.load('trX.npy')
trY = np.load('trY.npy')
theta = train(trX,trY,2,0.1,0.1,4)
I can verify that cost and gradient are returning values that are in the right dimension (cost returns a scalar, and gradient returns a 1 by n row vector), but i get the error
RuntimeWarning: divide by zero encountered in log
J = (np.dot(-(y.T),np.log(expit(np.dot(X,theta))))-np.dot((np.ones((m,1))-y).T,np.log(np.ones((m,1)) - (expit(np.dot(X,theta))).reshape((m,1))))) / m + (regTerm / (2 * m)) * np.linalg.norm(theta[1:])
why is this happening and how can i avoid this?
The proper solution here is to add some small epsilon to the argument of log function. What worked for me was
epsilon = 1e-5
def cost(X, y, theta):
m = X.shape[0]
yp = expit(X # theta)
cost = - np.average(y * np.log(yp + epsilon) + (1 - y) * np.log(1 - yp + epsilon))
return cost
You can clean up the formula by appropriately using broadcasting, the operator * for dot products of vectors, and the operator # for matrix multiplication — and breaking it up as suggested in the comments.
Here is your cost function:
def cost(X, y, theta, regTerm):
m = X.shape[0] # or y.shape, or even p.shape after the next line, number of training set
p = expit(X # theta)
log_loss = -np.average(y*np.log(p) + (1-y)*np.log(1-p))
J = log_loss + regTerm * np.linalg.norm(theta[1:]) / (2*m)
return J
You can clean up your gradient function along the same lines.
By the way, are you sure you want np.linalg.norm(theta[1:]). If you're trying to do L2-regularization, the term should be np.linalg.norm(theta[1:]) ** 2.
Cause:
This is happening because in some cases, whenever y[i] is equal to 1, the value of the Sigmoid function (theta) also becomes equal to 1.
Cost function:
J = (np.dot(-(y.T),np.log(expit(np.dot(X,theta))))-np.dot((np.ones((m,1))-y).T,np.log(np.ones((m,1)) - (expit(np.dot(X,theta))).reshape((m,1))))) / m + (regTerm / (2 * m)) * np.linalg.norm(theta[1:])
Now, consider the following part in the above code snippet:
np.log(np.ones((m,1)) - (expit(np.dot(X,theta))).reshape((m,1)))
Here, you are performing (1 - theta) when the value of theta is 1. So, that will effectively become log (1 - 1) = log (0) which is undefined.
I'm guessing your data has negative values in it. You can't log a negative.
import numpy as np
np.log(2)
> 0.69314718055994529
np.log(-2)
> nan
There are a lot of different ways to transform your data that should help, if this is the case.
def cost(X, y, theta):
yp = expit(X # theta)
cost = - np.average(y * np.log(yp) + (1 - y) * np.log(1 - yp))
return cost
The warning originates from np.log(yp) when yp==0 and in np.log(1 - yp) when yp==1. One option is to filter out these values, and not to pass them into np.log. The other option is to add a small constant to prevent the value from being exactly 0 (as suggested in one of the comments above)
Add epsilon value[which is a miniature value] to the log value so that it won't be a problem at all.
But i am not sure if it will give accurate results or not .

What is the most pythonic way to conditionally compute?

I'm implementing Bayesian Changepoint Detection in Python/NumPy (if you are interested have a look at the paper). I need to compute likelihoods for data in ranges [a, b], where a and b can have all values from 1 to n. However I can prune the computation at some points, so that I don't have to compute every likelihood. On the other hand some likelihoods are used more than once, so that I can save time by saving the values in a matrix P[a, b]. Right now I check whether the value is already computed, whenever I use it, but I find that a bit of a hassle. It looks like this:
# ...
P = np.ones((n, n)) * np.inf # a likelihood can't get inf, so I use it
# as pseudo value
for a in range(n):
for b in range(a, n):
# The following two lines get annoying and error prone if you
# use P more than once
if P[a, b] == np.inf:
P[a, b] = likelihood(data, a, b)
Q[a] += P[a, b] * g[a] * Q[a - 1] # some computation using P[a, b]
# ...
I wonder, whether there is a more intuitive and pythonic way to achieve this, without having the if ... statement before every use of a P[a, b]. Something like an automagical function call if some condition is not met. I could of course make the likelihood function aware of the fact that it could save values, but then it needs some kind of state (e.g. becomes an object). I want to avoid that.
The likelihood function
Since it was asked for in a comment, I add the likelihood function. It actually computes the conjugate prior and then the likelihood. And all in log representation... So it is quite complicated.
from scipy.special import gammaln
def gaussian_obs_log_likelihood(data, t, s):
n = s - t
mean = data[t:s].sum() / n
muT = (n * mean) / (1 + n)
nuT = 1 + n
alphaT = 1 + n / 2
betaT = 1 + 0.5 * ((data[t:s] - mean) ** 2).sum() + ((n)/(1 + n)) * (mean**2 / 2)
scale = (betaT*(nuT + 1))/(alphaT * nuT)
# splitting the PDF of the student distribution up is /much/ faster. (~ factor 20)
prob = 1
for yi in data[t:s]:
prob += np.log(1 + (yi - muT)**2/(nuT * scale))
lgA = gammaln((nuT + 1) / 2) - np.log(np.sqrt(np.pi * nuT * scale)) - gammaln(nuT/2)
return n * lgA - (nuT + 1)/2 * prob
Although I work with Python 2.7, both answers for 2.7 and 3.x are appreciated.
I would use a sibling of defaultdict for this (you can't use defaultdict directly since it won't tell you the key that is missing):
class Cache(object):
def __init__(self):
self.cache = {}
def get(self, a, b):
key = (a,b)
result = self.cache.get(key, None)
if result is None:
result = likelihood(data, a, b)
self.cache[key] = result
return result
Another approach would be using a cache decorator on likelihood as described here.

Using combinations or another trick to iterate though 3 different arrays?

consider my code
a,b,c = np.loadtxt ('test.dat', dtype='double', unpack=True)
a,b, and c are the same array length.
for i in range(len(a)):
q[i] = 3*10**5*c[i]/100
x[i] = q[i]*math.sin(a)*math.cos(b)
y[i] = q[i]*math.sin(a)*math.sin(b)
z[i] = q[i]*math.cos(a)
I am trying to find all the combinations for the difference between 2 points in x,y,z to iterate this equation (xi-xj)+(yi-yj)+(zi-zj) = r
I use this combination code
for combinations in it.combinations(x,2):
xdist = (combinations[0] - combinations[1])
for combinations in it.combinations(y,2):
ydist = (combinations[0] - combinations[1])
for combinations in it.combinations(z,2):
zdist = (combinations[0] - combinations[1])
r = (xdist + ydist +zdist)
This takes a long time for python for a large file I have and I am wondering if there is a faster way to get my array for r preferably using a nested loop?
Such as
if i in range(?):
if j in range(?):
Since you're apparently using numpy, let's actually use numpy; it'll be much faster. It's almost always faster and usually easier to read if you avoid python loops entirely when working with numpy, and use its vectorized array operations instead.
a, b, c = np.loadtxt('test.dat', dtype='double', unpack=True)
q = 3e5 * c / 100 # why not just 3e3 * c?
x = q * np.sin(a) * np.cos(b)
y = q * np.sin(a) * np.sin(b)
z = q * np.cos(a)
Now, your example code after this doesn't do what you probably want it to do - notice how you just say xdist = ... each time? You're overwriting that variable and not doing anything with it. I'm going to assume you want the squared euclidean distance between each pair of points, though, and make a matrix dists with dists[i, j] equal to the distance between the ith and jth points.
The easy way, if you have scipy available:
# stack the points into a num_pts x 3 matrix
pts = np.hstack([thing.reshape((-1, 1)) for thing in (x, y, z)])
# get squared euclidean distances in a matrix
dists = scipy.spatial.squareform(scipy.spatial.pdist(pts, 'sqeuclidean'))
If your list is enormous, it's more memory-efficient to not use squareform, but then it's in a condensed format that's a little harder to find specific pairs of distances with.
Slightly harder, if you can't / don't want to use scipy:
pts = np.hstack([thing.reshape((-1, 1)) for thing in (x, y, z)])
sqnorms = np.sum(pts ** 2, axis=1)
dists = sqnorms.reshape((-1, 1)) - 2 * np.dot(pts, pts.T) + sqnorms
which basically implements the formula (a - b)^2 = a^2 - 2 a b + b^2, but all vector-like.
Apologies for not posting a full solution, but you should avoid nesting calls to range(), as it will create a new tuple every time it gets called. You are better off either calling range() once and storing the result, or using a loop counter instead.
For example, instead of:
max = 50
for number in range (0, 50):
doSomething(number)
...you would do:
max = 50
current = 0
while current < max:
doSomething(number)
current += 1
Well, the complexity of your calculation is pretty high. Also, you need to have huge amounts of memory if you want to store all r values in a single list. Often, you don't need a list and a generator might be enough for what you want to do with the values.
Consider this code:
def calculate(x, y, z):
for xi, xj in combinations(x, 2):
for yi, yj in combinations(y, 2):
for zi, zj in combinations(z, 2):
yield (xi - xj) + (yi - yj) + (zi - zj)
This returns a generator that computes only one value each time you call the generator's next() method.
gen = calculate(xrange(10), xrange(10, 20), xrange(20, 30))
gen.next() # returns -3
gen.next() # returns -4 and so on

Categories

Resources