In this SO question I had learnt that I cannot delete a Cosmos DB document using SQL.
Using Python, I believe I need the DeleteDocument() method. This is how I'm getting the document ID's that are required (I believe) to then call the DeleteDocument() method.
# set up the client
client = document_client.DocumentClient()
# use a SQL based query to get a bunch of documents
query = { 'query': 'SELECT * FROM server s' }
result_iterable = client.QueryDocuments('dbs/DB/colls/coll', query, options)
results = list(result_iterable);
for x in range(0, len (results)):
docID = results[x]['id']
Now, at this stage I want to call DeleteDocument().
The inputs into which are document_link and options.
I can define document_link as something like
document_link = 'dbs/DB/colls/coll/docs/'+docID
And successfully call ReadAttachments() for example, which has the same inputs as DeleteDocument().
When I do however, I get an error...
The partition key supplied in x-ms-partitionkey header has fewer
components than defined in the the collection
...and now I'm totally lost
UPDATE
Following on from Jay's help, I believe I'm missing the partitonKey element in the options.
In this example, I've created a testing database, it looks like this
So I think my partition key is /testPART
When I include the partitionKey in the options however, no results are returned, (and so print len(results) outputs 0).
Removing partitionKey means that results are returned, but the delete attempt fails as before.
# Query them in SQL
query = { 'query': 'SELECT * FROM c' }
options = {}
options['enableCrossPartitionQuery'] = True
options['maxItemCount'] = 2
options['partitionKey'] = '/testPART'
result_iterable = client.QueryDocuments('dbs/testDB/colls/testCOLL', query, options)
results = list(result_iterable)
# should be > 0
print len(results)
for x in range(0, len (results)):
docID = results[x]['id']
print docID
client.DeleteDocument('dbs/testDB/colls/testCOLL/docs/'+docID, options=options)
print 'deleted', docID
According to your description, I tried to use pydocument module to delete document in my azure document db and it works for me.
Here is my code:
import pydocumentdb;
import pydocumentdb.document_client as document_client
config = {
'ENDPOINT': 'Your url',
'MASTERKEY': 'Your master key',
'DOCUMENTDB_DATABASE': 'familydb',
'DOCUMENTDB_COLLECTION': 'familycoll'
};
# Initialize the Python DocumentDB client
client = document_client.DocumentClient(config['ENDPOINT'], {'masterKey': config['MASTERKEY']})
# use a SQL based query to get a bunch of documents
query = { 'query': 'SELECT * FROM server s' }
options = {}
options['enableCrossPartitionQuery'] = True
options['maxItemCount'] = 2
result_iterable = client.QueryDocuments('dbs/familydb/colls/familycoll', query, options)
results = list(result_iterable);
print(results)
client.DeleteDocument('dbs/familydb/colls/familycoll/docs/id1',options)
print 'delete success'
Console Result:
[{u'_self': u'dbs/hitPAA==/colls/hitPAL3OLgA=/docs/hitPAL3OLgABAAAAAAAAAA==/', u'myJsonArray': [{u'subId': u'sub1', u'val': u'value1'}, {u'subId': u'sub2', u'val': u'value2'}], u'_ts': 1507687788, u'_rid': u'hitPAL3OLgABAAAAAAAAAA==', u'_attachments': u'attachments/', u'_etag': u'"00002100-0000-0000-0000-59dd7d6c0000"', u'id': u'id1'}, {u'_self': u'dbs/hitPAA==/colls/hitPAL3OLgA=/docs/hitPAL3OLgACAAAAAAAAAA==/', u'myJsonArray': [{u'subId': u'sub3', u'val': u'value3'}, {u'subId': u'sub4', u'val': u'value4'}], u'_ts': 1507687809, u'_rid': u'hitPAL3OLgACAAAAAAAAAA==', u'_attachments': u'attachments/', u'_etag': u'"00002200-0000-0000-0000-59dd7d810000"', u'id': u'id2'}]
delete success
Please notice that you need to set the enableCrossPartitionQuery property to True in options if your documents are cross-partitioned.
Must be set to true for any query that requires to be executed across
more than one partition. This is an explicit flag to enable you to
make conscious performance tradeoffs during development time.
You could find above description from here.
Update Answer:
I think you misunderstand the meaning of partitionkey property in the options[].
For example , my container is created like this:
My documents as below :
{
"id": "1",
"name": "jay"
}
{
"id": "2",
"name": "jay2"
}
My partitionkey is 'name', so here I have two paritions : 'jay' and 'jay1'.
So, here you should set the partitionkey property to 'jay' or 'jay2',not 'name'.
Please modify your code as below:
options = {}
options['enableCrossPartitionQuery'] = True
options['maxItemCount'] = 2
options['partitionKey'] = 'jay' (please change here in your code)
result_iterable = client.QueryDocuments('dbs/db/colls/testcoll', query, options)
results = list(result_iterable);
print(results)
Hope it helps you.
Using the azure.cosmos library:
install and import azure cosmos package:
from azure.cosmos import exceptions, CosmosClient, PartitionKey
define delete items function - in this case using the partition key in query:
def deleteItems(deviceid):
client = CosmosClient(config.cosmos.endpoint, config.cosmos.primarykey)
# Create a database if not exists
database = client.create_database_if_not_exists(id=azure-cosmos-db-name)
# Create a container
# Using a good partition key improves the performance of database operations.
container = database.create_container_if_not_exists(id=container-name, partition_key=PartitionKey(path='/your-pattition-path'), offer_throughput=400)
#fetch items
query = f"SELECT * FROM c WHERE c.device.deviceid IN ('{deviceid}')"
items = list(container.query_items(query=query, enable_cross_partition_query=False))
for item in items:
container.delete_item(item, 'partition-key')
usage:
deviceid=10
deleteItems(items)
github full example here: https://github.com/eladtpro/python-iothub-cosmos
Related
I have a glue script to create new partitions using create_partition(). The glue script is running successfully, and i could see the partitions in the Athena console when using SHOW PARTITIONS. For glue script create_partitions, I did refer to this sample code here : https://medium.com/#bv_subhash/demystifying-the-ways-of-creating-partitions-in-glue-catalog-on-partitioned-s3-data-for-faster-e25671e65574
When I try to run a Athena query for a given partition which was newly added, I am getting no results.
Is it that I need to trigger the MSCK command, even if I add the partitions using create_partitions. Appreciate any suggestions please
.
I have got the solution myself, wanted to share with SO community, so it would be useful someone. The following code when run as a glue job, creates partitions, and can also be queried in Athena for the new partition columns. Please change/add the parameter values db name, table name, partition columns as needed.
import boto3
import urllib.parse
import os
import copy
import sys
# Configure database / table name and emp_id, file_id from workflow params?
DATABASE_NAME = 'my_db'
TABLE_NAME = 'enter_table_name'
emp_id_tmp = ''
file_id_tmp = ''
# # Initialise the Glue client using Boto 3
glue_client = boto3.client('glue')
#get current table schema for the given database name & table name
def get_current_schema(database_name, table_name):
try:
response = glue_client.get_table(
DatabaseName=DATABASE_NAME,
Name=TABLE_NAME
)
except Exception as error:
print("Exception while fetching table info")
sys.exit(-1)
# Parsing table info required to create partitions from table
table_data = {}
table_data['input_format'] = response['Table']['StorageDescriptor']['InputFormat']
table_data['output_format'] = response['Table']['StorageDescriptor']['OutputFormat']
table_data['table_location'] = response['Table']['StorageDescriptor']['Location']
table_data['serde_info'] = response['Table']['StorageDescriptor']['SerdeInfo']
table_data['partition_keys'] = response['Table']['PartitionKeys']
return table_data
#prepare partition input list using table_data
def generate_partition_input_list(table_data):
input_list = [] # Initializing empty list
part_location = "{}/emp_id={}/file_id={}/".format(table_data['table_location'], emp_id_tmp, file_id_tmp)
input_dict = {
'Values': [
emp_id_tmp, file_id_tmp
],
'StorageDescriptor': {
'Location': part_location,
'InputFormat': table_data['input_format'],
'OutputFormat': table_data['output_format'],
'SerdeInfo': table_data['serde_info']
}
}
input_list.append(input_dict.copy())
return input_list
#create partition dynamically using the partition input list
table_data = get_current_schema(DATABASE_NAME, TABLE_NAME)
input_list = generate_partition_input_list(table_data)
try:
create_partition_response = glue_client.batch_create_partition(
DatabaseName=DATABASE_NAME,
TableName=TABLE_NAME,
PartitionInputList=input_list
)
print('Glue partition created successfully.')
print(create_partition_response)
except Exception as e:
# Handle exception as per your business requirements
print(e)
db.comments.find({"_id" : {"$gte": ObjectId("6225f932a7bce76715a9f3bd"), "$lt":ObjectId("6225f932a7bce76715a9f3bd")}}).sort({"created_datetime":1}).limit(10).pretty()
I am using this query which should give me the current "6225f932a7bce76715a9f3bd" doc, 4 docs inserted before this and 5 docs inserted after this. But currently when i run this query, i get null result. Where am i going wrong ??
I had no other option but to seperate my queries in order to achieve my expectation.
query = request.args.to_dict()
find_query = {}
find_query["_id"] = {"$lt": ObjectId(query["comment_id"])}
previous_comments = list(db.comments.find(find_query))
find_query["_id"] = {"$gte": ObjectId(query["comment_id"])}
next_comments = list(db.comments.find(find_query))
previous_comments.extend(next_comments)
return {"comments":previous_comments}
I'm facing a problem with continuation when querying items from CosmosDB.
I've already tried the following solution but with no success. I'm only able to query the first 10 results of a page even though I get a token that is not NULL.
The token has a size of 10733 bytes and looks like this.
{"token":"+RID:gtQwAJ9KbavOAAAAAAAAAA==#RT:1#TRC:10#FPP:AggAAAAAAAAAAGoAAAAAKAAAAAAAAAAAAADCBc6AEoAGgAqADoASgAaACoAOgBKABoAKgA6AE4AHgAuAD4ASgAeACoAPgBOAB4ALgA+AE4AHgAqAD4ASgAeAC4APgBOAB4ALgA+AE4AIgA2AEYAFgAmADYARgAaACYAPgBKABYAKgA6AE4AHgAuAD4ATgAeAC4APgBOAB4ALgA+AE4AIgAuAD4ATgAeAC4APgBOACIAMgA+AFIAIgAyAD4AUgAmADIAQgAWACIALgBCABIAIgAyAEIAEgAiADIAQgAOACYANgBKAB4AJgA6AEYAGgAqADoATgAeAC4APgB....etc...etc","range":{"min":"","max":"05C1BF3FB3CFC0"}}
Code looks like this. Function QueryDocuments did not work. Instead I had to use QueryItems.
options = {}
options['enableCrossPartitionQuery'] = True
options['maxItemCount'] = 10
q = client.QueryItems(collection_link, query, options)
results_1 = q._fetch_function(options)
#this is a string representing a JSON object
token = results_1[1]['x-ms-continuation']
data = list(q._fetch_function({'maxItemCount':10,'enableCrossPartitionQuery':True, 'continuation':token}))
Is there a solution to this? Thanks for your help.
Please use pydocumentdb package and refer to below sample code.
from pydocumentdb import document_client
endpoint = "https://***.documents.azure.com:443/";
primaryKey = "***";
client = document_client.DocumentClient(endpoint, {'masterKey': primaryKey})
collection_link = "dbs/db/colls/coll"
query = "select c.id from c"
query_with_optional_parameters = [];
q = client.QueryDocuments(collection_link, query, {'maxItemCount': 2})
results_1 = q._fetch_function({'maxItemCount': 2})
print(results_1)
token = results_1[1]['x-ms-continuation']
results_2 = q._fetch_function({'maxItemCount': 2, 'continuation': token})
print(results_2)
Output:
I have a dictionary to be inserted dynamically in MongoDB.
Current MongoDB document-
"Customers":{
"Payment":{
"CustomerDetails":{
"Source":"Visa Card",
"Name" :"John",
}
}
}
The document that I am trying to insert into this through python dictionary object -
final= {"CustomerPayable":["Month":"Feb-1FN-2018","Details":
["Code":"ghg23","AmtPayable": "123.00"]]}
The query I am trying -
db.collection.update({"UserID":UserID},{ '$push':{
'Customers.Payment.Output':final}})
I wanted the dynamic field of "Output" to be created through the above query. Expected output-
"Customers":{
"Payment":{
"CustomerDetails":{
"Source":"Visa Card",
"Name" :"John",
},
"Output":{"CustomerPayable":["Month":"Feb-1FN-2018",Details:
["Code":"ghg23","AmtPayable": "123.00"]]}
}
}
Any help is great.Thanks in advance
The following code should achieve your desired results.
from pymongo import MongoClient
client = MongoClient()
db = client.stackoverflow
collection = db.stackoverflow
a = {"Customers":{ "Payment":{ "CustomerDetails":{ "Source":"Visa Card", "Name" :"John"}}}}
collection.insert(a)
# Prints object before update.
cur = collection.find_one({"Customers.Payment.CustomerDetails.Name":"John"})
print(cur)
final = {"CustomerPayable":{"Month":"Feb-1FN-2018","Details":
{"Code":"ghg23","AmtPayable": "123.00"}}}
collection.update({"Customers.Payment.CustomerDetails.Name":"John"},
{'$push':{'Customers.Payment.Output':final}})
# Prints object after update.
cur = collection.find_one({"Customers.Payment.CustomerDetails.Name":"John"})
print(cur)
A couple things wrong with your code are:
In you final declaration you tried to use dictionary syntax inside of a list.
In your update query you don't have a field called UserID for I changed it to query on Name
Anyways, I hope this helps.
How can I optimally (in terms financial cost) empty a DynamoDB table with boto? (as we can do in SQL with a truncate statement.)
boto.dynamodb2.table.delete() or boto.dynamodb2.layer1.DynamoDBConnection.delete_table() deletes the entire table, while boto.dynamodb2.table.delete_item() boto.dynamodb2.table.BatchTable.delete_item() only deletes the specified items.
While i agree with Johnny Wu that dropping the table and recreating it is much more efficient, there may be cases such as when many GSI's or Tirgger events are associated with a table and you dont want to have to re-associate those. The script below should work to recursively scan the table and use the batch function to delete all items in the table. For massively large tables though, this may not work as it requires all items in the table to be loaded into your computer
import boto3
dynamo = boto3.resource('dynamodb')
def truncateTable(tableName):
table = dynamo.Table(tableName)
#get the table keys
tableKeyNames = [key.get("AttributeName") for key in table.key_schema]
"""
NOTE: there are reserved attributes for key names, please see https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
if a hash or range key is in the reserved word list, you will need to use the ExpressionAttributeNames parameter
described at https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#DynamoDB.Table.scan
"""
#Only retrieve the keys for each item in the table (minimize data transfer)
ProjectionExpression = ", ".join(tableKeyNames)
response = table.scan(ProjectionExpression=ProjectionExpression)
data = response.get('Items')
while 'LastEvaluatedKey' in response:
response = table.scan(
ProjectionExpression=ProjectionExpression,
ExclusiveStartKey=response['LastEvaluatedKey'])
data.extend(response['Items'])
with table.batch_writer() as batch:
for each in data:
batch.delete_item(
Key={key: each[key] for key in tableKeyNames}
)
truncateTable("YOUR_TABLE_NAME")
As Johnny Wu mentioned, deleting a table and re-creating it is more efficient than deleting individual items. You should make sure your code doesn't try to create a new table before it is completely deleted.
def deleteTable(table_name):
print('deleting table')
return client.delete_table(TableName=table_name)
def createTable(table_name):
waiter = client.get_waiter('table_not_exists')
waiter.wait(TableName=table_name)
print('creating table')
table = dynamodb.create_table(
TableName=table_name,
KeySchema=[
{
'AttributeName': 'YOURATTRIBUTENAME',
'KeyType': 'HASH'
}
],
AttributeDefinitions= [
{
'AttributeName': 'YOURATTRIBUTENAME',
'AttributeType': 'S'
}
],
ProvisionedThroughput={
'ReadCapacityUnits': 1,
'WriteCapacityUnits': 1
},
StreamSpecification={
'StreamEnabled': False
}
)
def emptyTable(table_name):
deleteTable(table_name)
createTable(table_name)
Deleting a table is much more efficient than deleting items one-by-one. If you are able to control your truncation points, then you can do something similar to rotating tables as suggested in the docs for time series data.
This builds on the answer given by Persistent Plants. If the table already exists, you can extract the table definitions and use that to recreate the table.
import boto3
dynamodb = boto3.resource('dynamodb', region_name='us-east-2')
def delete_table_ddb(table_name):
table = dynamodb.Table(table_name)
return table.delete()
def create_table_ddb(table_name, key_schema, attribute_definitions,
provisioned_throughput, stream_enabled, billing_mode):
settings = dict(
TableName=table_name,
KeySchema=key_schema,
AttributeDefinitions=attribute_definitions,
StreamSpecification={'StreamEnabled': stream_enabled},
BillingMode=billing_mode
)
if billing_mode == 'PROVISIONED':
settings['ProvisionedThroughput'] = provisioned_throughput
return dynamodb.create_table(**settings)
def truncate_table_ddb(table_name):
table = dynamodb.Table(table_name)
key_schema = table.key_schema
attribute_definitions = table.attribute_definitions
if table.billing_mode_summary:
billing_mode = 'PAY_PER_REQUEST'
else:
billing_mode = 'PROVISIONED'
if table.stream_specification:
stream_enabled = True
else:
stream_enabled = False
capacity = ['ReadCapacityUnits', 'WriteCapacityUnits']
provisioned_throughput = {k: v for k, v in table.provisioned_throughput.items() if k in capacity}
delete_table_ddb(table_name)
table.wait_until_not_exists()
return create_table_ddb(
table_name,
key_schema=key_schema,
attribute_definitions=attribute_definitions,
provisioned_throughput=provisioned_throughput,
stream_enabled=stream_enabled,
billing_mode=billing_mode
)
Now call use the function:
table_name = 'test_ddb'
truncate_table_ddb(table_name)