What is the best way to do a quadratic spline in python? I used the interp1d, but this method is not what I pretend to do.
The is the example of python code:
from scipy.interpolate import interp1d
x = [5,6,7,8,9,10,11]
y = [2,9,6,3,4,20,6]
xx = [1,2,3,4,5,6,7,8,9,10,11,12]
f = interp1d(x, y, kind='quadratic')
yy = f(xx)
Every time I run this code I get this error:
ValueError: A value in x_new is below the interpolation range.
That error happens when you try to get a point out of the interpolation range. For instance if you only have data between 5 and 11 you only can interpolate within this range (otherwise we would be talking about extrapolations). However the function "scipy.interpolate.CubicSpline" interpolates and extrapolates, so you can get results out of the range.
Try adding the parameter fill_value:
f= interp1d(x, y, kind='quadratic', fill_value='extrapolate')
Values of xx: 1,2,34 and 12 are out of the initial data you provided so the spline must be built in order to handle this.
Related
I am trying to invert an interpolated function using scipy's interpolate function. Let's say I create an interpolated function,
import scipy.interpolate as interpolate
interpolatedfunction = interpolated.interp1d(xvariable,data,kind='cubic')
Is there some function that can find x when I specify a:
interpolatedfunction(x) == a
In other words, "I want my interpolated function to equal a; what is the value of xvariable such that my function is equal to a?"
I appreciate I can do this with some numerical scheme, but is there a more straightforward method? What if the interpolated function is multivalued in xvariable?
There are dedicated methods for finding roots of cubic splines. The simplest to use is the .roots() method of InterpolatedUnivariateSpline object:
spl = InterpolatedUnivariateSpline(x, y)
roots = spl.roots()
This finds all of the roots instead of just one, as generic solvers (fsolve, brentq, newton, bisect, etc) do.
x = np.arange(20)
y = np.cos(np.arange(20))
spl = InterpolatedUnivariateSpline(x, y)
print(spl.roots())
outputs array([ 1.56669456, 4.71145244, 7.85321627, 10.99554642, 14.13792756, 17.28271674])
However, you want to equate the spline to some arbitrary number a, rather than 0. One option is to rebuild the spline (you can't just subtract a from it):
solutions = InterpolatedUnivariateSpline(x, y - a).roots()
Note that none of this will work with the function returned by interp1d; it does not have roots method. For that function, using generic methods like fsolve is an option, but you will only get one root at a time from it. In any case, why use interp1d for cubic splines when there are more powerful ways to do the same kind of interpolation?
Non-object-oriented way
Instead of rebuilding the spline after subtracting a from data, one can directly subtract a from spline coefficients. This requires us to drop down to non-object-oriented interpolation methods. Specifically, sproot takes in a tck tuple prepared by splrep, as follows:
tck = splrep(x, y, k=3, s=0)
tck_mod = (tck[0], tck[1] - a, tck[2])
solutions = sproot(tck_mod)
I'm not sure if messing with tck is worth the gain here, as it's possible that the bulk of computation time will be in root-finding anyway. But it's good to have alternatives.
After creating an interpolated function interp_fn, you can find the value of x where interp_fn(x) == a by the roots of the function
interp_fn2 = lambda x: interp_fn(x) - a
There are number of options to find the roots in scipy.optimize. For instance, to use Newton's method with the initial value starting at 10:
from scipy import optimize
optimize.newton(interp_fn2, 10)
Actual example
Create an interpolated function and then find the roots where fn(x) == 5
import numpy as np
from scipy import interpolate, optimize
x = np.arange(10)
y = 1 + 6*np.arange(10) - np.arange(10)**2
y2 = 5*np.ones_like(x)
plt.scatter(x,y)
plt.plot(x,y)
plt.plot(x,y2,'k-')
plt.show()
# create the interpolated function, and then the offset
# function used to find the roots
interp_fn = interpolate.interp1d(x, y, 'quadratic')
interp_fn2 = lambda x: interp_fn(x)-5
# to find the roots, we need to supply a starting value
# because there are more than 1 root in our range, we need
# to supply multiple starting values. They should be
# fairly close to the actual root
root1, root2 = optimize.newton(interp_fn2, 1), optimize.newton(interp_fn2, 5)
root1, root2
# returns:
(0.76393202250021064, 5.2360679774997898)
If your data are monotonic you might also try the following:
inversefunction = interpolated.interp1d(data, xvariable, kind='cubic')
Mentioning another option because I found this page in a google search and the other option works for my simple use case. Hopefully it'll be of use to someone.
If the function you're interpolating is very simple and always has a 1:1 relationship between y and x, then you can simply take your data, swap x and y when you pass it into interp1d, and then call the interpolation function in that direction.
Adapting code from https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html
import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate
x = np.arange(0, 10)
y = np.exp(-x/3.0)
f = interpolate.interp1d(x, y)
xnew = np.arange(0, 9, 0.1)
ynew = f(xnew)
plt.plot(x, y, 'o', xnew, ynew, '-')
plt.show()
When x and y have been swapped you can call swappedInterpolationFunction(a) to get the x value where that would occur.
f = interpolate.interp1d(y, x)
xnew = np.arange(np.exp(-9/3), np.exp(0), 0.01)
ynew = f(xnew)
plt.plot(y, x, 'o', xnew, ynew, '-')
plt.title("Inverted")
plt.show()
Of course, if the function ever has multiple x values for a given y value (like sine or a parabola) then this will not work because it will no longer be a 1:1 function from x to y, and the above answers are necessary. This is just a simplification in a limited use case.
I'd like to be able to numerically differentiate and integrate arrays in Python. I am aware that there are functions for this in numpy and scipy. I am noticing an offset however, when integrating.
As an example, I start with an initial function, y=cos(x).
image, y = cos(x)
I then take the derivative using numpy.gradient. It works as expected (plots as -sin(x)):
image, dydx = d/dx(cos(x))
When I integrate the derivative with scipy.cumtrapz, I expect to get back the initial function. However, there is some offset. I realize that the integral of -sin(x) is cos(x)+constant, so is the constant not accounted for with cumtrapz numerical integration?
image, y = int(dydx)
My concern is, if you have some arbitrary signal, and did not know the initial/boundary conditions, will the +constant term be unaccounted for with cumtrapz? Is there a solution for this with cumtrapz?
The code I used is as follows:
import numpy as np
import matplotlib.pyplot as plt
from scipy import integrate
x = np.linspace(-2*np.pi, 2*np.pi,100)
y = np.cos(x) #starting function
dydx = np.gradient(y, x) #derivative of function
dydx_int = integrate.cumtrapz(dydx, x, initial = 0) #integral of derivative
fig, ax = plt.subplots()
ax.plot(x, y)
ax.plot(x, dydx)
ax.plot(x, dydx_int)
ax.legend(['y = cos(x)', 'dydx = d/dx(cos(x))', 'y = int(dydx)'])
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()
cumtrapz(), cumsum() and similar do what they state they do: summing the input array cumulatively. If the summed array starts with 0 as with your input array (dydx), the first element at the summed array is also zero.
To fix it in your code, you should add the offset to the cumulated sum:
dydx_int = dydx_int + y[0]
But for the general question about initial conditions of an integral:
My concern is, if you have some arbitrary signal, and did not know the initial/boundary conditions, will the +constant term be unaccounted for with cumtrapz? Is there a solution for this with cumtrapz?
Well, if you don't know the initial/boundry condition, cumtrapz won't know either... Your question doesn't quite make sense..
So I was doing my assignment and we are required to use interpolation (linear interpolation) for the same. We have been asked to use the interp1d package from scipy.interpolate and use it to generate new y values given new x values and old coordinates (x1,y1) and (x2,y2).
To get new x coordinates (lets call this x_new) I used np.linspace between (x1,x2) and the new y coordinates (lets call this y_new) I found out using interp1d function on x_new.
However, I also noticed that applying np.linspace on (y1,y2) generates the exact same values of y_new which we got from interp1d on x_new.
Can anyone please explain to me why this is so? And if this is true, is it always true?
And if this is always true why do we at all need to use the interp1d function when we can use the np.linspace in it's place?
Here is the code I wrote:
import scipy.interpolate as ip
import numpy as np
x = [-1.5, 2.23]
y = [0.1, -11]
x_new = np.linspace(start=x[0], stop=x[-1], num=10)
print(x_new)
y_new = np.linspace(start=y[0], stop=y[-1], num=10)
print(y_new)
f = ip.interp1d(x, y)
y_new2 = f(x_new)
print(y_new2) # y_new2 values always the same as y_new
The reason why you stumbled upon this is that you only use two points for an interpolation of a linear function. You have as an input two different x values with corresponding y values. You then ask interp1d to find a linear function f(x)=m*x +b that fits best your input data. As you only have two points as input data, there is an exact solution, because a linear function is exactly defined by two points. To see this: take piece of paper, draw two dots an then think about how many straight lines you can draw to connect these dots.
The linear function that you get from two input points is defined by the parameters m=(y1-y2)/(x1-x2) and b=y1-m*x1, where (x1,y1),(x2,y2) are your two inputs points (or elements in your x and y arrays in your code snippet.
So, now what does np.linspace(start, stop, num,...) do? It gives you num evenly spaced points between start and stop. These points are start, start + delta, ..., end. The step width delta is given by delta=(end-start)/(num - 1). The -1 comes from the fact that you want to include your endpoint. So the nth point in your interval will lie at xn=x1+n*(x2-x1)/(num-1). At what y values will these points end up after we apply our linear function from interp1d? Lets plug it in:
f(xn)=m*xn+b=(y1-y2)/(x1-x2)*(x1+n/(num-1)*(x2-x1)) + y1-(y1-y1)/(x1-x2)*x1. Simplifying this results in f(xn)=(y2-y1)*n/(num - 1) + y1. And this is exactly what you get from np.linspace(y1,y2,num), i.e. f(xn)=yn!
Now, does this always work? No! We made use of the fact that our linear function is defined by the two endpoints of the intervals we use in np.linspace. So this will not work in general. Try to add one more x value and one more y value in your input list and then compare the results.
I am trying to interpolate a 2-dimensional function and I am running into what I consider weird behavior by scipy.interpolate.interp2d. I don't understand what the problem is, and I'd be happy for any help or hints.
import numpy as np
from scipy.interpolate import interp2d
x = np.arange(10)
y = np.arange(20)
xx, yy = np.meshgrid(x, y, indexing = 'ij')
val = xx + yy
f = interp2d(xx, yy, val, kind = 'linear')
When I run this code, I get the following Warning:
scipy/interpolate/fitpack.py:981: RuntimeWarning: No more knots can be
added because the number of B-spline coefficients already exceeds the
number of data points m. Probable causes: either s or m too small.
(fp>s) kx,ky=1,1 nx,ny=18,15 m=200 fp=0.000000 s=0.000000
warnings.warn(RuntimeWarning(_iermess2[ierm][0] + _mess))
I don't understand why interp2d would use any splines when I tell it it should do linear interpolation. When I continue and evaluate f on the grid everything is good:
>>> f(1,1)
array([ 2.])
When I evaluate it off the grid, I get large errors, even though the function is clearly linear.
>>> f(1.1,1)
array([ 2.44361975])
I am a bit confused and I am not sure what the problem is. Did anybody run into similar problems? I used to work with matlab and this is almost 1:1 how I would do it there, but maybe I did something wrong.
When I use a rectangular grid (i.e. y = np.arange(10)) everything works fine by the way, but that isn't what I need. When I use cubic instead of linear interpolation, the error gets smaller (that doesn't make much sense either since the function is linear) but is still unacceptably large.
I tried a couple of things and managed to get (kind of) what I want using scipy.LinearNDInterpolator. However, I have to convert the grid to lists of points and values. Since the rest of my program stores coordinates and values in grid format that is kind of annoying, so if possible I'd still like to get the original code to work properly.
import numpy as np
import itertools
from scipy.interpolate import LinearNDInterpolator
x = np.arange(10)
y = np.arange(20)
coords = list(itertools.product(x,y))
val = [sum(c) for c in coords]
f = LinearNDInterpolator(coords, val)
>>>f(1,1)
array(2.0)
>>> f(1.1,1)
array(2.1)
I am trying to find the root(s) of a line which is defined by data like:
x = [1,2,3,4,5]
y = [-2,4,6,8,4]
I have started by using interpolation but I have been told I can then use the brentq function. How can I use brentq from two lists? I thought continuous functions are needed for it.
As the documentation of brentq says, the first argument must be a continuous function. Therefore, you must first generate, from your data, a function that will return a value for each parameter passed to it. You can do that with interp1d:
import numpy as np
from scipy.interpolate import interp1d
from scipy.optimize import brentq
x, y = np.array([1,2,3,4,5]), np.array([-2,4,6,8,4])
f = interp1d(x,y, kind='linear') # change kind to something different if you want e.g. smoother interpolation
brentq(f, x.min(), x.max()) # returns: 1.33333
You could also use splines to generate the continuous function needed for brentq.