subset and change multiple columns with different "functions" - python

How is it possible to change multiple columns on subset by some conditions in a pandas dataframe?
For example given the input data:
import pandas as pd
dat = pd.DataFrame({"y": ("441912", "abc", "121", "4455")})
dat['leny'] = dat['y'].str.len()
dat['yfoo'] = None
dat
y leny yfoo
1: 441912 6 NA
2: abc 3 NA
3: 121 3 NA
4: 4455 4 NA
Then subset the rows for which y starts with 44 and has a length of 4 or 5, then for those rows strip the 44 from the beginning in y, substract 2 from leny and set yfoo to False, resulting to the following output:
y leny yfoo
1: 441912 6 NA
2: abc 3 NA
3: 121 3 NA
4: 55 2 FALSE
My attempt at doing this:
# pandas struggle follows
dat[dat.leny.isin((4, 5)) & dat.y.str.match('^44', na=False)]
What do I do next?

Create a mask:
m = dat.leny.isin((4, 5)) & dat.y.str.startswith('44')
Now, use loc and perform your operations.
dat.loc[m, 'y'] = dat.loc[m, 'y'].str[2:]
dat.loc[m, 'leny'] -= 2
dat.loc[m, 'yfoo'] = False
dat
y leny yfoo
0 441912 6 None
1 abc 3 None
2 121 3 None
3 55 2 False

Using a comprehension to gather data.
y = dat.y.values.tolist()
dat2 = np.array([
[x[2:], len(x) - 2, False, i]
for i, x in enumerate(y)
if x.startswith('44') and (len(x) // 2 == 2)
], object)
dat.iloc[dat2[:, -1].astype(int), :] = dat2[:, :-1]
dat
y leny yfoo
0 441912 6 None
1 abc 3 None
2 121 3 None
3 55 2 False

Related

How can I fill empty DataFrame based on conditions?

I have following dataframe called condition:
[0] [1] [2] [3]
1 0 0 1 0
2 0 1 0 0
3 0 0 0 1
4 0 0 0 1
For easier reproduction:
import numpy as np
import pandas as pd
n=4
t=3
condition = pd.DataFrame([[0,0,1,0], [0,1,0,0], [0,0,0, 1], [0,0,0, 1]], columns=['0','1', '2', '3'])
condition.index=np.arange(1,n+1)
Further I have several dataframes that should be filled in a foor loop
df = pd.DataFrame([],index = range(1,n+1),columns= range(t+1) ) #NaN DataFrame
df_2 = pd.DataFrame([],index = range(1,n+1),columns= range(t+1) )
df_3 = pd.DataFrame(3,index = range(1,n+1),columns= range(t+1) )
for i,t in range(t,-1,-1):
if condition[t]==1:
df.loc[:,t] = df_3.loc[:,t]**2
df_2.loc[:,t]=0
elif (condition == 0 and no 1 in any column after t)
df.loc[:,t] = 2.5
....
else:
df.loc[:,t] = 5
df_2.loc[:,t]= df.loc[:,t+1]
I am aware that this for loop is not correct, but what I wanted to do, is to check elementwise condition (recursevly) and if it is 1 (in condition) to fill dataframe df with squared valued of df_3. If it is 0 in condition, I should differentiate two cases.
In the first case, there are no 1 after 0 (row 1 and 2 in condition) then df = 2.5
Second case, there was 1 after and fill df with 5 (row 3 and 4)
So the dataframe df should look something like this
[0] [1] [2] [3]
1 5 5 9 2.5
2 5 9 2.5 2.5
3 5 5 5 9
4 5 5 5 9
The code should include for loop.
Thanks!
I am not sure if this is what you want, but based on your desired output you can do this with only masking operations (which is more efficient than looping over the rows anyway). Your code could look like this:
is_one = condition.astype(bool)
is_after_one = (condition.cumsum(axis=1) - condition).astype(bool)
df = pd.DataFrame(5, index=condition.index, columns=condition.columns)
df_2 = pd.DataFrame(2.5, index=condition.index, columns=condition.columns)
df_3 = pd.DataFrame(3, index=condition.index, columns=condition.columns)
df.where(~is_one, other=df_3 * df_3, inplace=True)
df.where(~is_after_one, other=df_2, inplace=True)
which yields:
0 1 2 3
1 5 5 9.0 2.5
2 5 9 2.5 2.5
3 5 5 5.0 9.0
4 5 5 5.0 9.0
EDIT after comment:
If you really want to loop explicitly over the rows and columns, you could do it like this with the same result:
n_rows = condition.index.size
n_cols = condition.columns.size
for row_index in range(n_rows):
for col_index in range(n_cols):
cond = condition.iloc[row_index, col_index]
if col_index < n_cols - 1:
rest_row = condition.iloc[row_index, col_index + 1:].to_list()
else:
rest_row = []
if cond == 1:
df.iloc[row_index, col_index] = df_3.iloc[row_index, col_index] ** 2
elif cond == 0 and 1 not in rest_row:
# fill whole row at once
df.iloc[row_index, col_index:] = 2.5
# stop iterating over the rest
break
else:
df.iloc[row_index, col_index] = 5
df_2.loc[:, col_index] = df.iloc[:, col_index + 1]
The result is the same, but this is much more inefficient and ugly, so I would not recommend it like this

Create a New Column Based on Some Values From Other Column in Pandas

Imagine that this Data Set:
A
1 2
2 4
3 3
4 5
5 5
6 5
I would like to create new column by this condition from A:
if A[i] < A[i-1] then B[i] = -1 else B[i] = 1
the result is:
A B
1 2 NaN
2 4 1
3 3 -1
4 5 1
5 7 1
6 6 -1
All codes and solutions that I have found just compare the rows in same location.
Use the diff function. then the sign function:
df.assign(B = np.sign(df.A.diff()))
Out[248]:
A B
0 2 NaN
1 4 1.0
2 3 -1.0
3 5 1.0
4 7 1.0
5 6 -1.0
df['B']=[1 if i!=0 and df['A'][i] < df['A'][i-1] else -1 for i,v in enumerate(df['A'])]
or
df['B']=[1 if i!=0 and df['A'][i] < df['A'][i-1] else -1 for i in range(len(df['A']))]
Edit (for three states like greater, less, and equal):
import numpy as np
df['B']=np.NAN*len(df.a)
for i in range(1,len(df['a'])):
if df['a'][i] < df['a'][i-1]: df['B'][i]=1
elif df['a'][i] == df['a'][i-1]: df['B'][i]=0
else: df['B'][i]=-1
import pandas as pd
import numpy as np
df = pd.DataFrame({'A': [2,4,3,5,7,6]})
df['B'] = np.where(df['A'] < df['A'].shift(1), -1, 1)
in order to keep the nan in the beginning:
df['B'] = np.where(df['A'].shift(1).isna(), np.nan, df['B'])

For each unique value in a pandas DataFrame column, how can I randomly select a proportion of rows?

Python newbie here.
Imagine a csv file that looks something like this:
(...except that in real life, there are 20 distinct names in the Person column, and each Person has 300-500 rows. Also, there are multiple data columns, not just one.)
What I want to do is randomly flag 10% of each Person's rows and mark this in a new column. I came up with a ridiculously convoluted way to do this--it involved creating a helper column of random numbers and all sorts of unnecessarily complicated jiggery-pokery. It worked, but was crazy. More recently, I came up with this:
import pandas as pd
df = pd.read_csv('source.csv')
df['selected'] = ''
names= list(df['Person'].unique()) #gets list of unique names
for name in names:
df_temp = df[df['Person']== name]
samp = int(len(df_temp)/10) # I want to sample 10% for each name
df_temp = df_temp.sample(samp)
df_temp['selected'] = 'bingo!' #a new column to mark the rows I've randomly selected
df = df.merge(df_temp, how = 'left', on = ['Person','data'])
df['temp'] =[f"{a} {b}" for a,b in zip(df['selected_x'],df['selected_y'])]
#Note: initially instead of the line above, I tried the line below, but it didn't work too well:
#df['temp'] = df['selected_x'] + df['selected_y']
df = df[['Person','data','temp']]
df = df.rename(columns = {'temp':'selected'})
df['selected'] = df['selected'].str.replace('nan','').str.strip() #cleans up the column
As you can see, essentially I'm pulling out a temporary DataFrame for each Person, using DF.sample(number) to do the randomising, then using DF.merge to get the 'marked' rows back into the original DataFrame. And it involved iterating through a list to create each temporary DataFrame...and my understanding is that iterating is kind of lame.
There's got to be a more Pythonic, vectorising way to do this, right? Without iterating. Maybe something involving groupby? Any thoughts or advice much appreciated.
EDIT: Here's another way that avoids merge...but it's still pretty clunky:
import pandas as pd
import math
#SETUP TEST DATA:
y = ['Alex'] * 2321 + ['Doug'] * 34123 + ['Chuck'] * 2012 + ['Bob'] * 9281
z = ['xyz'] * len(y)
df = pd.DataFrame({'persons': y, 'data' : z})
df = df.sample(frac = 1) #shuffle (optional--just to show order doesn't matter)
percent = 10 #CHANGE AS NEEDED
#Add a 'helper' column with random numbers
df['rand'] = np.random.random(df.shape[0])
df = df.sample(frac=1) #this shuffles data, just to show order doesn't matter
#CREATE A HELPER LIST
helper = pd.DataFrame(df.groupby('persons'['rand'].count()).reset_index().values.tolist()
for row in helper:
df_temp = df[df['persons'] == row[0]][['persons','rand']]
lim = math.ceil(len(df_temp) * percent*0.01)
row.append(df_temp.nlargest(lim,'rand').iloc[-1][1])
def flag(name,num):
for row in helper:
if row[0] == name:
if num >= row[2]:
return 'yes'
else:
return 'no'
df['flag'] = df.apply(lambda x: flag(x['persons'], x['rand']), axis=1)
You could use groupby.sample, either to pick out a sample of the whole dataframe for further processing, or to identify rows of the dataframe to mark if that's more convenient.
import pandas as pd
percentage_to_flag = 0.5
# Toy data: 8 rows, persons A and B.
df = pd.DataFrame(data={'persons':['A']*4 + ['B']*4, 'data':range(8)})
# persons data
# 0 A 0
# 1 A 1
# 2 A 2
# 3 A 3
# 4 B 4
# 5 B 5
# 6 B 6
# 7 B 7
# Pick out random sample of dataframe.
random_state = 41 # Change to get different random values.
df_sample = df.groupby("persons").sample(frac=percentage_to_flag,
random_state=random_state)
# persons data
# 1 A 1
# 2 A 2
# 7 B 7
# 6 B 6
# Mark the random sample in the original dataframe.
df["marked"] = False
df.loc[df_sample.index, "marked"] = True
# persons data marked
# 0 A 0 False
# 1 A 1 True
# 2 A 2 True
# 3 A 3 False
# 4 B 4 False
# 5 B 5 False
# 6 B 6 True
# 7 B 7 True
If you really do not want the sub-sampled dataframe df_sample you can go straight to marking a sample of the original dataframe:
# Mark random sample in original dataframe with minimal intermediate data.
df["marked2"] = False
df.loc[df.groupby("persons")["data"].sample(frac=percentage_to_flag,
random_state=random_state).index,
"marked2"] = True
# persons data marked marked2
# 0 A 0 False False
# 1 A 1 True True
# 2 A 2 True True
# 3 A 3 False False
# 4 B 4 False False
# 5 B 5 False False
# 6 B 6 True True
# 7 B 7 True True
If I understood you correctly, you can achieve this using:
df = pd.DataFrame(data={'persons':['A']*10 + ['B']*10, 'col_1':[2]*20})
percentage_to_flag = 0.5
a = df.groupby(['persons'])['col_1'].apply(lambda x: pd.Series(x.index.isin(x.sample(frac=percentage_to_flag, random_state= 5, replace=False).index))).reset_index(drop=True)
df['flagged'] = a
Input:
persons col_1
0 A 2
1 A 2
2 A 2
3 A 2
4 A 2
5 A 2
6 A 2
7 A 2
8 A 2
9 A 2
10 B 2
11 B 2
12 B 2
13 B 2
14 B 2
15 B 2
16 B 2
17 B 2
18 B 2
19 B 2
Output with 50% flagged rows in each group:
persons col_1 flagged
0 A 2 False
1 A 2 False
2 A 2 True
3 A 2 False
4 A 2 True
5 A 2 True
6 A 2 False
7 A 2 True
8 A 2 False
9 A 2 True
10 B 2 False
11 B 2 False
12 B 2 True
13 B 2 False
14 B 2 True
15 B 2 True
16 B 2 False
17 B 2 True
18 B 2 False
19 B 2 True
This is TMBailey's answer, tweaked so it works in my Python version. (Didn't want to edit someone else's answer but if I'm doing it wrong I'll take this down.) This works really great and really fast!
EDIT: I've updated this based on additional suggestion by TMBailey to replace frac=percentage_to_flag with n=math.ceil(percentage_to_flag * len(x)). This ensures that rounding doesn't pull the sampled %age under the 'percentage_to_flag' threshhold. (For what it's worth, you can replace it with frac=(math.ceil(percentage_to_flag * len(x)))/len(x) too).
import pandas as pd
import math
percentage_to_flag = .10
# Toy data:
y = ['Alex'] * 2321 + ['Eddie'] * 876 + ['Doug'] * 34123 + ['Chuck'] * 2012 + ['Bob'] * 9281
z = ['xyz'] * len(y)
df = pd.DataFrame({'persons': y, 'data' : z})
df = df.sample(frac = 1) #optional shuffle, just to show order doesn't matter
# Pick out random sample of dataframe.
random_state = 41 # Change to get different random values.
df_sample = df.groupby("persons").apply(lambda x: x.sample(n=(math.ceil(percentage_to_flag * len(x))),random_state=random_state))
#had to use lambda in line above
df_sample = df_sample.reset_index(level=0, drop=True) #had to add this to simplify multi-index DF
# Mark the random sample in the original dataframe.
df["marked"] = False
df.loc[df_sample.index, "marked"] = True
And then to check:
pp = df.pivot_table(index="persons", columns="marked", values="data", aggfunc='count', fill_value=0)
pp.columns = ['no','yes']
pp = pp.append(pp.sum().rename('Total')).assign(Total=lambda d: d.sum(1))
pp['% selected'] = 100 * pp.yes/pp.Total
print(pp)
OUTPUT:
no yes Total % selected
persons
Alex 2088 233 2321 10.038776
Bob 8352 929 9281 10.009697
Chuck 1810 202 2012 10.039761
Doug 30710 3413 34123 10.002051
Eddie 788 88 876 10.045662
Total 43748 4865 48613 10.007611
Works like a charm.

how to pass row values from a column based on bool value from several other columns

I have the following df :
df = data.frame("T" = c(1,2,3,5,1,3,2,5), "A" = c("0","0","1","1","0","1","0","1"), "B" = c("0","0","0","1","0","0","0","1"))
df
T A B
1 1 0 0
2 2 0 0
3 3 1 0
4 5 1 1
5 1 0 0
6 3 1 0
7 2 0 0
8 5 1 1
Column A & B were the results of as follow:
df['A'] = [int(x) for x in total_df["T"] >= 3]
df['B'] = [int(x) for x in total_df["T"] >= 5]
I have a data spilt
train_size = 0.6
training = df.head(int(train_size * df.shape[0]))
test = df.tail(int((1 - train_size) * df.shape[0]))
Here is the question:
How can I pass row values from "T" to a list called 'tr_return' from 'training' where both columns "A" & "B" are == 1?
I tried this:
tr_returns = training[training['A' and 'B'] == 1]['T'] or
tr_returns = training[training['A'] == 1 and training['B'] == 1]['T']
But neither one works :( Any help will be appreciated!

IP Address Duplicate connections cleanup (Dataframes) [duplicate]

from itertools import product
import pandas as pd
df = pd.DataFrame.from_records(product(range(10), range(10)))
df = df.sample(90)
df.columns = "c1 c2".split()
df = df.sort_values(df.columns.tolist()).reset_index(drop=True)
# c1 c2
# 0 0 0
# 1 0 1
# 2 0 2
# 3 0 3
# 4 0 4
# .. .. ..
# 85 9 4
# 86 9 5
# 87 9 7
# 88 9 8
# 89 9 9
#
# [90 rows x 2 columns]
How do I quickly find, identify, and remove the last duplicate of all symmetric pairs in this data frame?
An example of symmetric pair is that '(0, 1)' is equal to '(1, 0)'. The latter should be removed.
The algorithm must be fast, so it is recommended to use numpy. Converting to python object is not allowed.
You can sort the values, then groupby:
a= np.sort(df.to_numpy(), axis=1)
df.groupby([a[:,0], a[:,1]], as_index=False, sort=False).first()
Option 2: If you have a lot of pairs c1, c2, groupby can be slow. In that case, we can assign new values and filter by drop_duplicates:
a= np.sort(df.to_numpy(), axis=1)
(df.assign(one=a[:,0], two=a[:,1]) # one and two can be changed
.drop_duplicates(['one','two']) # taken from above
.reindex(df.columns, axis=1)
)
One way is using np.unique with return_index=True and use the result to index the dataframe:
a = np.sort(df.values)
_, ix = np.unique(a, return_index=True, axis=0)
print(df.iloc[ix, :])
c1 c2
0 0 0
1 0 1
20 2 0
3 0 3
40 4 0
50 5 0
6 0 6
70 7 0
8 0 8
9 0 9
11 1 1
21 2 1
13 1 3
41 4 1
51 5 1
16 1 6
71 7 1
...
frozenset
mask = pd.Series(map(frozenset, zip(df.c1, df.c2))).duplicated()
df[~mask]
I will do
df[~pd.DataFrame(np.sort(df.values,1)).duplicated().values]
From pandas and numpy tri
s=pd.crosstab(df.c1,df.c2)
s=s.mask(np.triu(np.ones(s.shape)).astype(np.bool) & s==0).stack().reset_index()
Here's one NumPy based one for integers -
def remove_symm_pairs(df):
a = df.to_numpy(copy=False)
b = np.sort(a,axis=1)
idx = np.ravel_multi_index(b.T,(b.max(0)+1))
sidx = idx.argsort(kind='mergesort')
p = idx[sidx]
m = np.r_[True,p[:-1]!=p[1:]]
a_out = a[np.sort(sidx[m])]
df_out = pd.DataFrame(a_out)
return df_out
If you want to keep the index data as it is, use return df.iloc[np.sort(sidx[m])].
For generic numbers (ints/floats, etc.), we will use a view-based one -
# https://stackoverflow.com/a/44999009/ #Divakar
def view1D(a): # a is array
a = np.ascontiguousarray(a)
void_dt = np.dtype((np.void, a.dtype.itemsize * a.shape[1]))
return a.view(void_dt).ravel()
and simply replace the step to get idx with idx = view1D(b) in remove_symm_pairs.
If this needs to be fast, and if your variables are integer, then the following trick may help: let v,w be the columns of your vector; construct [v+w, np.abs(v-w)] =: [x, y]; then sort this matrix lexicographically, remove duplicates, and finally map it back to [v, w] = [(x+y), (x-y)]/2.

Categories

Resources