Related
I am trying to create an array of 10 for each item I have, but then put those arrays of 10 into a larger array diagonally with zeros filling the missing spaces.
Here is an example of what I am looking for, but only with arrays of 3.
import numpy as np
arr = np.tri(3,3)
arr
This creates an array that looks like this:
[[1,0,0],
[1,1,0],
[1,1,1]]
But I need an array of 10 * n that looks like this: (using arrays a 3 for example here, with n=2)
{1,0,0,0,0,0,
1,1,0,0,0,0,
1,1,1,0,0,0,
0,0,0,1,0,0,
0,0,0,1,1,0,
0,0,0,1,1,1}
Any help would be appreciated, thanks!
I have also tried
df_arr2 = pd.concat([df_arr] * (n), ignore_index=True)
df_arr3 = pd.concat([df_arr2] *(n), axis=1, ignore_index=True)
But this repeats the matrix across all rows and columns, when I only want the diagnonal ones.
Now I got it... AFAIU, the OP wants those np.tri triangles in the diagonal of a bigger, multiple of 3 square shaped array.
As per example, for n=2:
import numpy as np
n = 2
tri = np.tri(3)
arr = np.zeros((n*3, n*3))
for i in range(0, n*3, 3):
arr[i:i+3,i:i+3] = tri
arr.astype(int)
# Out:
# array([[1, 0, 0, 0, 0, 0],
# [1, 1, 0, 0, 0, 0],
# [1, 1, 1, 0, 0, 0],
# [0, 0, 0, 1, 0, 0],
# [0, 0, 0, 1, 1, 0],
# [0, 0, 0, 1, 1, 1]])
I saw #brandt's solution which is definitely the best. Incase you want to construct the them manually you can use this method:
def custom_triangle_matrix(rows, rowlen, tsize):
cm = []
for i in range(rows):
row = []
for j in range(min((i//tsize)*tsize, rowlen)):
row.append(0)
for j in range((i//tsize)*tsize, min(((i//tsize)*tsize) + i%tsize + 1, rowlen)):
row.append(1)
for j in range(((i//tsize)*tsize) + i%tsize + 1, rowlen):
row.append(0)
cm.append(row)
return cm
Here are some example executions and what they look like using ppprint:
matrix = custom_triangle_matrix(6, 6, 3)
pprint.pprint(matrix)
[[1, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0],
[0, 0, 0, 1, 1, 1]]
matrix = custom_triangle_matrix(6, 9, 3)
pprint.pprint(matrix)
[[1, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0]]
matrix = custom_triangle_matrix(9, 6, 3)
pprint.pprint(matrix)
[[1, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]]
matrix = custom_triangle_matrix(10, 10, 5)
pprint.pprint(matrix)
[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]]
Good Luck!
i have defined a matrix m , i wish to return TRUE if there is any column which has all its elements as 1, for example :
m = [[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0]]
i have tried various approaches but they all seem to return True in all cases(since there are multiple columns with all elements as 0)
I agree with ansev's response. You gave us a list of lists. I prefer numpy for these kind of exercises.
import numpy as np
m = [[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0]]
np.array(m).all(axis=0).any()
Output
True
I am trying to make a diagonal numpy array from:
[1,2,3,4,5,6,7,8,9]
Expected result:
[[ 0, 0, 1, 0, 0],
[ 0, 0, 0, 2, 0],
[ 0, 0, 0, 0, 3],
[ 4, 0, 0, 0, 0],
[ 0, 5, 0, 0, 0],
[ 0, 0, 6, 0, 0],
[ 0, 0, 0, 7, 0],
[ 0, 0, 0, 0, 8],
[ 9, 0, 0, 0, 0]]
What would be an efficient way of doing this?
You can use integer array indexing to set the specified elements of the output:
>>> import numpy as np
>>> a = [1,2,3,4,5,6,7,8,9]
>>> arr = np.zeros((9, 5), dtype=int) # create empty array
>>> arr[np.arange(9), np.arange(2,11) % 5] = a # insert a
>>> arr
array([[0, 0, 1, 0, 0],
[0, 0, 0, 2, 0],
[0, 0, 0, 0, 3],
[4, 0, 0, 0, 0],
[0, 5, 0, 0, 0],
[0, 0, 6, 0, 0],
[0, 0, 0, 7, 0],
[0, 0, 0, 0, 8],
[9, 0, 0, 0, 0]])
Inspired by np.fill_diagonal which can wrap, but not offset:
In [308]: arr=np.zeros((9,5),int)
In [309]: arr.flat[2:45:6]=np.arange(1,10)
In [310]: arr
Out[310]:
array([[0, 0, 1, 0, 0],
[0, 0, 0, 2, 0],
[0, 0, 0, 0, 3],
[0, 0, 0, 0, 0],
[4, 0, 0, 0, 0],
[0, 5, 0, 0, 0],
[0, 0, 6, 0, 0],
[0, 0, 0, 7, 0],
[0, 0, 0, 0, 8]])
(though for some reason this has the 4th all zero row).
def fill_diagonal(a, val, wrap=False):
...
step = a.shape[1] + 1
# Write the value out into the diagonal.
a.flat[:end:step] = val
mydata is an numpy array of shape(10,100,100) of the form(z,y,x). And i have created the empty array of shape(10,800,800). Now i need to place the mydata_array into some random locations of empty_array such that if I would plot the output, it should look like mydata is placed randomly in the ouput plot of array(10,800,800).
I used the np.hstack() and np.vstack().
But it places the mydata_array side by side. I need to place my_data_array in random location.
How could i do this? Any Suggestions please..
Regards
Raj
Here's a demonstration of placing several copies of one array inside another, using slice indexing:
In [802]: out = np.zeros((10,10),int)
In [803]: src = np.arange(6).reshape(2,3)
In [804]: out
Out[804]:
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
...
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
One copy in the upper left:
In [805]: out[:2,:3] = src
In [806]: out
Out[806]:
array([[0, 1, 2, 0, 0, 0, 0, 0, 0, 0],
[3, 4, 5, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
....
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
Several more copies:
In [808]: out[4:6, 6:9] = src
In [809]: out[1:3, 4:7] = src
In [810]: out
Out[810]:
array([[0, 1, 2, 0, 0, 0, 0, 0, 0, 0],
[3, 4, 5, 0, 0, 1, 2, 0, 0, 0],
[0, 0, 0, 0, 3, 4, 5, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 2, 0],
[0, 0, 0, 0, 0, 0, 3, 4, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
Just repeat that kind of action for a selection of random locations. Make sure that the slice ranges match the src shape, and that they lie within the dimensions of the target array.
While may be possible to insert many copies at once (the flattening of the answer may be needed), let's start with understanding how to insert one copy at a time.
=========
#alvis' answer places the src items in shuffled order on one row of the out (or wrapped rows):
array([[2, 4, 5, 3, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
...
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
===================
Looped placement of multiple blocks:
def foo1(src, idx, NM):
out = np.zeros(NM, dtype=src.dtype)
n,m = src.shape
for i,j in idx:
out[i:i+n, j:j+m] = src
return out
idx=np.array([[0,0],[1,4],[4,4],[8,7],[7,2]])
In [940]: out1 = foo1(src, idx, (10,10))
In [941]: out1
Out[941]:
array([[0, 1, 2, 0, 0, 0, 0, 0, 0, 0],
[3, 4, 5, 0, 0, 1, 2, 0, 0, 0],
[0, 0, 0, 0, 3, 4, 5, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 2, 0, 0, 0],
[0, 0, 0, 0, 3, 4, 5, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 2, 0, 0, 0, 0, 0],
[0, 0, 3, 4, 5, 0, 0, 0, 1, 2],
[0, 0, 0, 0, 0, 0, 0, 3, 4, 5]])
================
Placement of a block with advanced indexing (arrays instead of slices):
In [880]: I = np.array([1,1,1,2,2,2])
In [881]: J = np.array([3,4,5,3,4,5])
In [882]: out[I,J] = src.flat
In [883]: out
Out[883]:
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 2, 0, 0, 0, 0],
[0, 0, 0, 3, 4, 5, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
...
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
And for multiple blocks
def foo2(src, idx, NM):
out = np.zeros(NM, dtype=src.dtype)
n,m = src.shape
ni = len(idx)
IJ = [np.mgrid[i:i+n, j:j+m] for i,j in idx]
IJ = np.concatenate(IJ, axis=1).reshape(2,-1)
out[IJ[0,:], IJ[1,:]] = np.tile(src,(ni,1)).flat
return out
In this small example the alternate is considerably slower (14x). For (1000,1000) out it is still slow (6x). Most of the time is spent in generating IJ.
This handles the I,J index calculation much faster (it needs to be generalize), but it is still slower than the looped slicing:
def foo3(src, idx, NM):
out = np.zeros(NM, dtype=src.dtype)
n,m = src.shape
ni = len(idx)
I = np.repeat((idx[:,[0]]+np.arange(2)).flatten(),3)
J = np.repeat((idx[:,[1]]+np.arange(3)),2,axis=0).flatten()
out[I, J] = np.tile(src,(ni,1)).flat
return out
This reminds me of work I did years ago to speed up the creation of a finite element stiffness matrix in MATLAB. There it was per-element stiffness blocks that needed to be placed in a large sparse global stiffness matrix.
==================
Regular pattern with broadcasting (see edit history)
According to your question, you don't need to preserve elements relatively to the first dimension of your array. For example, if there is one non-zero element a in (100,100) matrix z=0, and two elements b and c in the matrix z=1, then in your output all a, b, c can appear in z=0. In this case I suggest the following solution:
import numpy as np
#replace this with your input data
mydata = np.ones((10,100,100))
mydata_large = np.zeros((10,800,800))
mydata_flatten = mydata.flatten()
ind = np.array([i for i in range(len(mydata_flatten))])
np.random.shuffle(ind)
mydata_large_f = mydata_large.flatten()
np.put(mydata_large_f,ind[:len(mydata_flatten)],mydata_flatten)
mydata_large = np.reshape(mydata_large_f, (10,800,800))
I have a list of lists such as
[[0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 2, 0, 0, 0, 0, 0], [0, 0, 3, 0, 0, 0, 0], [0, 0, 0, 2, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 0], [0, 0, 0, 0, 0, 0, 3]]
I would like to combine it into one integer list as
[0,1,0,2,3,2,0,3,0,2,3]
I couldn't find a exact way how to achieve it.
The pattern is that if there is any number other than 0 in the list add it as actual number found or else enter it as 0.
3>> [functools.reduce(operator.or_, x) for x in L]
[0, 1, 0, 2, 3, 2, 0, 3, 0, 2, 3]
Is your goal to flatten the 2d list? If so, b in the following snippet is what you want:
a = [[1,2,3],[4,5,6],[7,8,9]]
b = [val for sublist in a for val in sublist]
Just iterate like so:
new = [0 for i in range(len(old[0]))]
for a in old:
for b, c in enumerate(a):
new[b] += c
presuming you only get either all zeros or a single non zero digit you can call next on filter after filtering all the 0's with 0 as the default value to next.
l = [[0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 2, 0, 0, 0, 0, 0], [0, 0, 3, 0, 0, 0, 0], [0, 0, 0, 2, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2, 0], [0, 0, 0, 0, 0, 0, 3]]
print([next(filter(None,sub),0) for sub in l] )
[0, 1, 0, 2, 3, 2, 0, 3, 0, 2, 3]