My planets orbits are not matching up with my circular paths im plotting of the orbits, I have matched in my for loop the distance for every planet with the distance they are from the center.(image is attached)
from pylab import *
from matplotlib.animation import *
Here is where I am defining the circes I will plot to show the paths of the orbits at the "def circle..."
def circle(x0,y0,R,N) :
''' create circle, given center x0,y0, input radius R,
and number of points N, then
output arrays of x and y coordinates '''
theta = linspace(0.0,2.0*pi,N)
x = R * cos(theta) + x0
y = R * sin(theta) + y0
return x,y
a= array([.39,.72,1,1.52,5.20,9.54,19.2,30.1]) #astronomical units of #the planets in order of the planets(i.e mercury, venus, earth,mars...)
period = a**(3.0/2.0)
I am taking the distane of the planets and inputting them in array, to be able to use a for loop to graph the circles.
#distance of the planets
d= array([390,790,980, 1520,5200,9540,19200,30100])#same order of the #planets as well
#attributes of the sun
x0 =0
y0 = 0
r_s=70*1.2#actual earth radius is 695e6
#radius of the planets
r_Ear = 63.781#e in m {for all the planets}
r_Merc= 24
r_Ven = 60
r_Mars= 33.9
r_Jup = 700
r_Sat = 582
r_Ura = 253
r_Nep = 246
the actual distance of the planets
#Distance of the planets
d_Ear = 1000#152
d_Merc= 390#70
d_Ven = 790#109
d_Mars= 1520#249
d_Jup = 5200#816
d_Sat = 9540#1514
d_Ura = 19200#3003
d_Nep = 30100#4545
fig = plt.figure()
ax = plt.axes(xlim=(-1e4-5000, 1e4+5000), ylim=(-1e4-5000, 1e4+5000), aspect=True)
This is where I am looping over, to plot 8 circles. Theres a link here to see the plot I have generated.
for i in range(8) :
x, y = circle(0.0,0.0,d[i],10000) # orbit
plot(x,y,':k')
[enter image description here][1]
The rest are the patches of the planets and the FuncAnimation.
Sun = plt.Circle((x0, y0), radius=r_s, ec='yellow', fc='yellow', lw=3)
Mercury = plt.Circle((0, 0), radius=r_Merc, ec='brown', fc='brown', lw=3)
Venus = plt.Circle((0, 0), radius=r_Ven, ec='brown', fc='brown', lw=3)
Earth = plt.Circle((0, 0), radius=r_Ear, ec='black', fc='black', lw=3)
Mars = plt.Circle((0, 0), radius=r_Mars, ec='brown', fc='brown', lw=3)
Jupiter = plt.Circle((0, 0), radius=r_Jup, ec='green', fc='green', lw=3)
Saturn = plt.Circle((0, 0), radius=r_Sat, ec='green', fc='green', lw=3)
Uranus = plt.Circle((0, 0), radius=r_Ura, ec='green', fc='green', lw=3)
Neptune = plt.Circle((0, 0), radius=r_Nep, ec='green', fc='green', lw=3)
ax.add_patch(Sun)
def init():
ax.add_patch(Earth)
ax.add_patch(Mercury)
ax.add_patch(Venus)
ax.add_patch(Mars)
ax.add_patch(Jupiter)
ax.add_patch(Saturn)
ax.add_patch(Uranus)
ax.add_patch(Neptune)
return Mercury, Venus,Earth,Mars,Jupiter,Saturn,Uranus,Neptune,
def animate(i):
theta = radians(i)
mx = d_Merc*np.cos(theta/period[0]) - d_Merc*np.sin(theta/period[0])
my = d_Merc*np.sin(theta/period[0]) + d_Merc*np.cos(theta/period[0])
vx = d_Ven *np.cos(theta/period[1]) - d_Ven*np.sin(theta/period[1])
vy = d_Ven *np.cos(theta/period[1]) + d_Ven*np.sin(theta/period[1])
ex = d_Ear*np.cos(theta/period[2]) - d_Ear*np.sin(theta/period[2])
ey = d_Ear*np.sin(theta/period[2]) + d_Ear*np.cos(theta/period[2])
Mx = d_Mars*np.cos(theta/period[3]) - d_Mars*np.sin(theta/period[3])
My = d_Mars*np.sin(theta/period[3]) + d_Mars*np.cos(theta/period[3])
Jx = d_Jup*np.cos(theta/period[4]) - d_Jup*np.sin(theta/period[4])
Jy = d_Jup*np.sin(theta/period[4]) + d_Jup*np.cos(theta/period[4])
Sx = d_Sat*np.cos(theta/period[5]) - d_Sat*np.sin(theta/period[5])
Sy = d_Sat*np.sin(theta/period[5]) + d_Sat*np.cos(theta/period[5])
Ux = d_Ura*np.cos(theta/period[6]) - d_Ura*np.sin(theta/period[6])
Uy = d_Ura*np.sin(theta/period[6]) + d_Ura*np.cos(theta/period[6])
Nx = d_Nep*np.cos(theta/period[7]) - d_Nep*np.sin(theta/period[7])
Ny = d_Nep*np.sin(theta/period[7]) + d_Nep*np.cos(theta/period[7])
Mercury.center = (mx, my)
Mercury._angle = i
Venus.center = (vx, vy)
Venus._angle = i
Earth.center = (ex, ey)
Earth._angle = i
Mars.center = (Mx, My)
Mars.angle =i
Jupiter.center = (Jx, Jy)
Jupiter._angle = i
Saturn.center = (Sx, Sy)
Saturn._angle = i
Uranus.center = (Ux, Uy)
Uranus.angle = i
Neptune.center = (Nx, Ny)
Neptune._angle = i
return Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune,
anim = FuncAnimation(fig, animate, init_func=init, frames=1080,
interval=25, blit=True)
plt.show()
I'm not following your math on this:
mx = d_Merc*np.cos(theta/period[0]) - d_Merc*np.sin(theta/period[0])
my = d_Merc*np.sin(theta/period[0]) + d_Merc*np.cos(theta/period[0])
You'll be more correct if you change that to this:
mx = d_Merc*np.cos(theta/period[0])
my = d_Merc*np.sin(theta/period[0])
And even more correct if you take the size of the planet into account
mx = (d_Merc+(r_Merc/2))*np.cos(theta/period[0])
my = (d_Merc+(r_Merc/2))*np.sin(theta/period[0])
That will fix your basic issue I think.
Beyond that:
d_Ear differs from Earth's value in the d array. 980 vs. 1000.
vy = d_Ven *np.cos(theta/period[1]) is not correct. That needs
to be vy = d_Ven *np.sin(theta/period[1])
As far as the code goes, you may consider using a few dictionaries to
avoid repetition like with your d array.
Related
I need help to generate this graph, especially with domains limits
and the arrow indicating the domain
all I can do is generate the domains name but not the limits and arrow
The following code will produce something like what you require:
from matplotlib import pyplot as plt
from matplotlib.patches import Wedge
import numpy as np
labels = ["Obésité\nmassive", "Obésité", "Surpoids", "Normal", "Maigreur"]
innerlabels = [">40", "30 à 40", "25 à 30", "18,5 à 25", "< 18,5"]
colours = ["red", "darkorange", "orange", "green", "blue"]
fig, ax = plt.subplots(figsize=(6, 6), dpi=200)
theta = 0
dtheta = 180 / len(labels)
width = 0.35
def pol2cart(rho, phi):
x = rho * np.cos(phi)
y = rho * np.sin(phi)
return(x, y)
patches = []
for i in range(len(labels)):
# outer wedge
wedge = Wedge(0, r=1, width=width, theta1=theta, theta2=(theta + dtheta), fc=colours[i], alpha=0.6, edgecolor="whitesmoke")
ax.add_patch(wedge)
# inner wedge
wedge = Wedge(0, r=1 - width, width=width, theta1=theta, theta2=(theta + dtheta), fc=colours[i], edgecolor="whitesmoke")
ax.add_patch(wedge)
theta += dtheta
# add text label
tr = 1 - (width / 2)
ta = theta - dtheta / 2
x, y = pol2cart(tr, np.deg2rad(ta))
textangle = -np.fmod(90 - ta, 180)
ax.text(x, y, labels[i], rotation=textangle, va="center", ha="center", color="white", fontweight="bold")
# inner labels
tr = (1 - width) - (width / 2)
x, y = pol2cart(tr, np.deg2rad(ta))
textangle = -np.fmod(90 - ta, 180)
ax.text(x, y, innerlabels[i], rotation=textangle, va="center", ha="center", color="white")
ax.set_xlim([-1, 1])
ax.set_ylim([0, 1])
ax.set_axis_off()
ax.set_aspect("equal")
def bmiposition(bmi):
"""
Get angular position of BMI arrow.
"""
from scipy.interpolate import interp1d
bmiranges = [(0, 18.5), (18.5, 25), (25, 30), (30, 40), (40, 80)]
angrange = [(180 - dtheta * i, 180 - dtheta * (i + 1)) for i in range(len(bmiranges))]
interpfuncs = []
for i in range(len(bmiranges)):
interpfuncs.append(interp1d(bmiranges[i], angrange[i], kind="linear"))
bmiang = np.piecewise(
bmi,
[bmiranges[i][0] < bmi <= bmiranges[i][1] for i in range(len(bmiranges))],
interpfuncs,
)
return bmiang
bmi = 22.5 # set BMI
# add arrow
pos = bmiposition(bmi) # get BMI angle
x, y = pol2cart(0.25, np.deg2rad(pos))
ax.arrow(0, 0, x, y, head_length=0.125, width=0.025, fc="k")
ax.plot(0, 0, 'ko', ms=10) # circle at origin
giving:
The code below animates a bar chart and associated label values. The issue I'm having is positioning the label when the integer is negative. Specifically, I want the label to be positioned on top of the bar, not inside it. It's working for the first frame but the subsequent frames of animation revert back to plotting the label inside the bar chart for negative integers.
def autolabel(rects, ax):
# Get y-axis height to calculate label position from.
ts = []
(y_bottom, y_top) = ax.get_ylim()
y_height = y_top - y_bottom
for rect in rects:
height = 0
if rect.get_y() < 0:
height = rect.get_y()
else:
height = rect.get_height()
p_height = (height / y_height)
if p_height > 0.95:
label_position = height - (y_height * 0.05) if (height > -0.01) else height + (y_height * 0.05)
else:
label_position = height + (y_height * 0.01) if (height > -0.01) else height - (y_height * 0.05)
t = ax.text(rect.get_x() + rect.get_width() / 2., label_position,
'%d' % int(height),
ha='center', va='bottom')
ts.append(t)
return ts
def gradientbars(bars, ax, cmap, vmin, vmax):
g = np.linspace(vmin,vmax,100)
grad = np.vstack([g,g]).T
xmin,xmax = ax.get_xlim()
ymin,ymax = ax.get_ylim()
ims = []
for bar in bars:
bar.set_facecolor('none')
im = ax.imshow(grad, aspect="auto", zorder=0, cmap=cmap, vmin=vmin, vmax=vmax, extent=(xmin,xmax,ymin,ymax))
im.set_clip_path(bar)
ims.append(im)
return ims
vmin = -6
vmax = 6
cmap = 'PRGn'
data = np.random.randint(-5,5, size=(10, 4))
x = [chr(ord('A')+i) for i in range(4)]
fig, ax = plt.subplots()
ax.grid(False)
ax.set_ylim(vmin, vmax)
rects = ax.bar(x,data[0])
labels = autolabel(rects, ax)
imgs = gradientbars(rects, ax, cmap=cmap, vmin=vmin, vmax=vmax)
def animate(i):
for rect,label,img,yi in zip(rects, labels, imgs, data[i]):
rect.set_height(yi)
label.set_text('%d'%int(yi))
label.set_y(yi)
img.set_clip_path(rect)
anim = animation.FuncAnimation(fig, animate, frames = len(data), interval = 500)
plt.show()
It's working for the first frame.
You call autolabel(rects, ax) in the first plot, so the label is well placed.
The subsequent frames of animation revert back to plotting the label inside the bar chart for negative integers.
The label position of subsequent frames is set by label.set_y(yi). yi is from data[i], you didn't consider the negative value here.
I create a function named get_label_position(height) to calculate the right label position for give height. It uses a global variable y_height. And call this function before label.set_y().
import matplotlib.pyplot as plt
from matplotlib import animation
import pandas as pd
import numpy as np
def get_label_position(height):
p_height = (height / y_height)
label_position = 0
if p_height > 0.95:
label_position = height - (y_height * 0.05) if (height > -0.01) else height + (y_height * 0.05)
else:
label_position = height + (y_height * 0.01) if (height > -0.01) else height - (y_height * 0.05)
return label_position
def autolabel(rects, ax):
# Get y-axis height to calculate label position from.
ts = []
(y_bottom, y_top) = ax.get_ylim()
y_height = y_top - y_bottom
for rect in rects:
height = 0
if rect.get_y() < 0:
height = rect.get_y()
else:
height = rect.get_height()
p_height = (height / y_height)
if p_height > 0.95:
label_position = height - (y_height * 0.05) if (height > -0.01) else height + (y_height * 0.05)
else:
label_position = height + (y_height * 0.01) if (height > -0.01) else height - (y_height * 0.05)
t = ax.text(rect.get_x() + rect.get_width() / 2., label_position,
'%d' % int(height),
ha='center', va='bottom')
ts.append(t)
return ts
def gradientbars(bars, ax, cmap, vmin, vmax):
g = np.linspace(vmin,vmax,100)
grad = np.vstack([g,g]).T
xmin,xmax = ax.get_xlim()
ymin,ymax = ax.get_ylim()
ims = []
for bar in bars:
bar.set_facecolor('none')
im = ax.imshow(grad, aspect="auto", zorder=0, cmap=cmap, vmin=vmin, vmax=vmax, extent=(xmin,xmax,ymin,ymax))
im.set_clip_path(bar)
ims.append(im)
return ims
vmin = -6
vmax = 6
cmap = 'PRGn'
data = np.random.randint(-5,5, size=(10, 4))
x = [chr(ord('A')+i) for i in range(4)]
fig, ax = plt.subplots()
ax.grid(False)
ax.set_ylim(vmin, vmax)
rects = ax.bar(x,data[0])
labels = autolabel(rects, ax)
imgs = gradientbars(rects, ax, cmap=cmap, vmin=vmin, vmax=vmax)
(y_bottom, y_top) = ax.get_ylim()
y_height = y_top - y_bottom
def animate(i):
for rect,label,img,yi in zip(rects, labels, imgs, data[i]):
rect.set_height(yi)
label.set_text('%d'%int(yi))
label.set_y(get_label_position(yi))
img.set_clip_path(rect)
anim = animation.FuncAnimation(fig, animate, frames = len(data), interval = 500)
plt.show()
Below is a model that I have been working on for a few weeks now, slowly adding more complexity as I learn how to code (coding newbie). If it is not clear, I am trying to create a model of particles of 2 different densities that settle according to stokes settling velocity (as a function of concentration). I am having trouble getting the animation to work with the second particle (working code with one animated particle at the bottom). I have broken out the variables for the two different particles in an attempt to debug the code, but have not had any luck determining what I am doing wrong.
Any help would be greatly appreciated!
import numpy as np
import matplotlib.pyplot as plt
from pylab import *
from matplotlib.animation import FuncAnimation
import random
import pdb
from scipy import spatial
from scipy.spatial import KDTree
n = 100
n2 = 50
sigma = 0.01
sigma2 = 0.01
pp = 2.56 # pp = particle density (Sphene=3.53) #(Feldspar=2.56)
#(g/cm^3)
pp2 = 3.53
pf = 2.7 # pf = fluid density(g/cm^3)
pf2 = 2.7
g = 9.8 # g = gravity (m/s^2)
g2 = 9.8
r = 0.003 # r = radius of sphere (meter)
r2 = 0.0002
mu = 0.53 # mu = dynamic viscosity of fluid (log10Poise)
mu2 = 0.53
rp = 0.01 #radius around particle to check for nearest neighbor
rp2 = 0.001
dt = 0.008
dt2 = 0.008
fig, ax = plt.subplots()
az = plt.axes(xlim=(-.5, .5), ylim=(-1, 0))
xdata, ydata = [0.0], [0.0]
xdata2, ydata2 = [0.0], [0.0]
ln, = plt.plot([], [], marker= 'o',
markerfacecolor='r',markeredgecolor='k', linestyle='None',
animated=True)
ln2, = plt.plot([], [], marker= 's',
markerfacecolor='b',markeredgecolor='k', linestyle='None',
animated=True)
#pdb.set_trace()
def v_stokes(pp,pf,g,r,mu):
top=2*(pp-pf)*g*(r**2)
bottom=9*mu
ws=top/bottom
return ws
def v_stokes2(pp2,pf2,g2,r2,mu2):
top2=2*(pp2-pf2)*g2*(r2**2)
bottom2=9*mu2
ws2=top2/bottom2
return ws2
def init():
ax.set_xlim( -2, 2)
ax.set_ylim(-10, 0)
return ln, ln2,
def concentration(xdata, ydata, rp):
coords = list(zip(xdata, ydata))
tree = spatial.KDTree(coords)
test = np.column_stack([xdata, ydata])
nnl = tree.query_ball_point(test, rp) #nearest neighbors as a list
#(had tree in here before test but shape was wrong)
#pdb.set.trace()
nnt = np.zeros(len(nnl)) #nearest neighbors total
for i in range(len(nnt)):
nnt[i] = len(nnl[i])
return nnt
def concentration2(xdata2, ydata2, rp2):
coords2 = list(zip(xdata2, ydata2))
tree2 = spatial.KDTree(coords2)
test2 = np.column_stack([xdata2, ydata2])
nnl2 = tree2.query_ball_point(test2, rp2)
nnt2 = np.zeros(len(nnl2)) #nearest neighbors total
for i in range(len(nnt2)):
nnt2[i] = len(nnl2[i])
return nnt2
#y0 = []
#y1 = []
#y2 = []
#y3 = []
#y4 = []
def update(frame):
global xdata
global ydata
global concentration, v_stokes, pp, pf, g, r, mu, rp, dt, n, sigma
xdata = xdata + np.random.normal(0, sigma, n)
wss = v_stokes(pp,pf,g,r,mu)
if frame == 0.0:
ydata = np.zeros(len(xdata)) #makes the ydata length = xdata at
#time 0 print(ydata)
rp = 0.003
if frame > 10:
rp = 0.008
cp = concentration(xdata, ydata, rp)
if np.any(cp == 1):
cp = cp-1
if frame > 0.0:
#y0.append(ydata)
#y1.append(wss)
#y2.append(cp)
#y3.append(dt)
#y4.append(xdata)
ydata = ydata + (wss*(1-cp)**3) - dt # [0]
for v in ydata:
if v < -1.001:
ydata = -1
ln.set_data(xdata, ydata)
return ln,
def update2(frame2):
global xdata2
global ydata2
global concentration2, v_stokes2, pp2, pf2, g2, r2, mu2, rp2, dt2,
n2, sigma2
xdata2 = xdata2 + np.random.normal(0, sigma2, n2)
wss2 = v_stokes2(pp2,pf2,g2,r2,mu2)
if frame2 == 0.0:
ydata2 = np.zeros(len(xdata2)) #makes the ydata length = xdata
#at time 0 print(ydata)
rp2 = 0.003
if frame2 > 10:
rp2 = 0.008
cp2 = concentration2(xdata2, ydata2, rp2)
if np.any(cp2 == 1):
cp2 = cp2-1
if frame2 > 0.0:
#y5.append(ydata2)
#y6.append(wss2)
#y7.append(cp2)
#y8.append(dt2)
#y9.append(xdata2)
ydata2 = ydata2 + (wss2*(1-cp2)**3) - dt2 # [0]
for v2 in ydata2:
if v2 < -1.001:
ydata2 = -1
ln2.set_data(xdata2, ydata2)
return ln2,
def update_all(i):
l1 = update(i)
l2 = update2(i)
return l1, l2,
ani = FuncAnimation(fig, update_all, frames=range(0,200),
init_func=init, blit=True, interval=100, repeat =
False)
# change frames=range(0:1000) to change the number of frames
plt.show()
Below is the original working code with one animated particle:
import numpy as np
import matplotlib.pyplot as plt
from pylab import *
from matplotlib.animation import FuncAnimation
import random
import pdb
from scipy import spatial
from scipy.spatial import KDTree
n=100
sigma= 0.01
#m = np.random.uniform(n)
pp = 2.56 # pp = particle density (Sphene=3.53) #(Feldspar=2.56)
#(g/cm^3)
pf = 2.7 # pf = fluid density(g/cm^3)
g = 9.8 # g = gravity (m/s^2)
r = 0.003 # r = radius of sphere (meter)
mu = 0.53 # mu = dynamic viscosity of fluid (log10Poise)
rp = 0.01 #radius around particle to check for nearest neighbor
dt =0.008
fig, ax = plt.subplots()
az = plt.axes(xlim=(-.5, .5), ylim=(-1, 0))
xdata, ydata = [0.0], [0.0]
ln, = plt.plot([], [], marker= 'o',
markerfacecolor='r',markeredgecolor='k', linestyle='None',
animated=True)
#pdb.set_trace()
def v_stokes(pp,pf,g,r,mu):
top=2*(pp-pf)*g*(r**2)
bottom=9*mu
ws=top/bottom
return ws
def init():
ax.set_xlim( -2, 2)
ax.set_ylim(-10, 0)
return ln,
def concentration(xdata, ydata, rp):
coords = list(zip(xdata, ydata))
tree = spatial.KDTree(coords)
test = np.column_stack([xdata, ydata])
nnl = tree.query_ball_point(test, rp) #nearest neighbors as a list
#(had tree in here before test but shape was wrong)
#pdb.set.trace()
nnt = np.zeros(len(nnl)) #nearest neighbors total
for i in range(len(nnt)):
nnt[i] = len(nnl[i])
return nnt
y0 = []
y1 = []
y2 = []
y3 = []
y4 = []
def update(frame):
global xdata
global ydata
global concentration, v_stokes, pp, pf, g, r, mu, rp, dt, n
xdata = xdata + np.random.normal(0, sigma, n)
wss = v_stokes(pp,pf,g,r,mu)
#print(wss)
if frame == 0.0:
ydata = np.zeros(len(xdata)) #makes the ydata length = xdata at
#time 0 print(ydata)
rp = 0.003
if frame > 10:
rp = 0.008
if frame > 30:
rp = 0.01
if frame > 50: #notice that the particles move up instead of just
#slowing down
rp = 0.013
cp = concentration(xdata, ydata, rp)
#print(cp)
if np.any(cp == 1):
cp = cp-1
#print(xdata)
print(cp)
if frame > 0.0:
y0.append(ydata)
y1.append(wss)
y2.append(cp)
y3.append(dt)
y4.append(xdata)
ydata = ydata + (wss*(1-cp)**3) - dt # [0]
for v in ydata:
if v < -1.001:
ydata = -1
#if np.all(ydata) > 0:
#print(ydata)
#print(frame)
#print(ydata[0:5])
#ydata = ydata + (wss*(1-cp))
ln.set_data(xdata, ydata)
return ln,
#print(test)
ani = FuncAnimation(fig, update, frames=range(0,200),
init_func=init, blit=True, interval=100, repeat =
False)
# change frames=range(0:1000) to change the number of frames
plt.show()
The matplotlib.animation.FuncAnimation(fig, func, ...) expects as its second argument a callable (e.g. a function) to update the plot.
func : callable
The function to call at each frame. The first argument will be the next value in frames. Any additional positional arguments can be supplied via the fargs parameter.
If you have two functions to update, you would need to merge them into one,
def update_all(i):
l1 = update(i)
l2 = update2(i)
return l1,l2
ani = FuncAnimation(fig, update_all, frames=range(0,200), init_func=init, ...)
Mind that you need to define the plots in the same manner as usual, ln, = plt.plot and that you need to return the line object itself in the two updating functions.
Complete running code:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from scipy import spatial
n=100
sigma= 0.01
pp = 2.56 # pp = particle density (Sphene=3.53) #(Feldspar=2.56)
#(g/cm^3)
pp2 = 3.53
pf = 2.7 # pf = fluid density(g/cm^3)
pf2 = 2.7
g = 9.8 # g = gravity (m/s^2)
g2 = 9.8
r = 0.003 # r = radius of sphere (meter)
r2 = 0.0002
mu = 0.53 # mu = dynamic viscosity of fluid (log10Poise)
mu2 = 0.53
rp = 0.01 #radius around particle to check for nearest neighbor
rp2 = 0.001
dt = 0.008
dt2 = 0.008
fig, ax = plt.subplots()
az = plt.axes(xlim=(-.5, .5), ylim=(-1, 0))
xdata, ydata = [0.0], [0.0]
xdata2, ydata2 = [0.0], [0.0]
ln, = plt.plot([], [], marker= 'o',
markerfacecolor='r',markeredgecolor='k', linestyle='None',
animated=True)
ln2, = plt.plot([], [], marker= 's',
markerfacecolor='b',markeredgecolor='k', linestyle='None',
animated=True)
#pdb.set_trace()
def v_stokes(pp,pf,g,r,mu):
top=2*(pp-pf)*g*(r**2)
bottom=9*mu
ws=top/bottom
return ws
def v_stokes2(pp2,pf2,g2,r2,mu2):
top2=2*(pp2-pf2)*g2*(r2**2)
bottom2=9*mu2
ws2=top2/bottom2
return ws2
def init():
ax.set_xlim( -2, 2)
ax.set_ylim(-10, 0)
return ln, ln2
def concentration(xdata, ydata, rp):
coords = list(zip(xdata, ydata))
tree = spatial.KDTree(coords)
test = np.column_stack([xdata, ydata])
nnl = tree.query_ball_point(test, rp)
nnt = np.zeros(len(nnl)) #nearest neighbors total
for i in range(len(nnt)):
nnt[i] = len(nnl[i])
return nnt
def concentration2(xdata2, ydata2, rp2):
coords2 = list(zip(xdata2, ydata2))
tree2 = spatial.KDTree(coords2)
test2 = np.column_stack([xdata2, ydata2])
nnl2 = tree2.query_ball_point(test2, rp2)
nnt2 = np.zeros(len(nnl2)) #nearest neighbors total
for i in range(len(nnt2)):
nnt2[i] = len(nnl2[i])
return nnt2
y0 = [];y1 = [];y2 = [];y3 = [];y4 = []
def update(frame):
global xdata
global ydata
global concentration, v_stokes, pp, pf, g, r, mu, rp, dt, n
xdata = xdata + np.random.normal(0, sigma, n)
wss = v_stokes(pp,pf,g,r,mu)
if frame == 0.0:
ydata = np.zeros(len(xdata)) #makes the ydata length = xdata at
#time 0 print(ydata)
rp = 0.003
if frame > 10:
rp = 0.008
if frame > 30:
rp = 0.01
if frame > 50: #notice that the particles move up instead of just
#slowing down
rp = 0.013
cp = concentration(xdata, ydata, rp)
if np.any(cp == 1):
cp = cp-1
#print(cp)
if frame > 0.0:
y0.append(ydata)
y1.append(wss)
y2.append(cp)
y3.append(dt)
y4.append(xdata)
ydata = ydata + (wss*(1-cp)**3) - dt # [0]
for j,v in enumerate(ydata):
if v < -1.001:
ydata[j] = -1
ln.set_data(xdata, ydata)
return ln
def update2(frame2):
global xdata2
global ydata2
global concentration2, v_stokes, pp2, pf2, g2, r2, mu2, rp2, dt2, n
xdata2 = xdata2 + np.random.normal(0, sigma, n)
wss2 = v_stokes2(pp2,pf2,g2,r2,mu2)
if frame2 == 0.0:
ydata2 = np.zeros(len(xdata2)) #makes the ydata length = xdata
#at time 0 print(ydata)
rp2 = 0.003
if frame2 > 10:
rp2 = 0.008
if frame2 > 30:
rp2 = 0.01
if frame2 > 50: #notice that the particles move up instead of just
#slowing down
rp2 = 0.013
cp2 = concentration2(xdata2, ydata2, rp2)
if np.any(cp2 == 1):
cp2 = cp2-1
if frame2 > 0.0:
y0.append(ydata2)
y1.append(wss2)
y2.append(cp2)
y3.append(dt2)
y4.append(xdata2)
ydata2 = ydata2 + (wss2*(1-cp2)**3) - dt2 # [0]
for j,v in enumerate(ydata2):
if v < -1.001:
ydata2[j] = -1
ln2.set_data(xdata2, ydata2)
return ln2
def update_all(i):
l1 = update(i)
l2 = update2(i)
return l1,l2
ani = FuncAnimation(fig, update_all, frames=range(0,200),
init_func=init, blit=True, interval=100, repeat = False)
plt.show()
Since the code seems mostly redundant for the two particle classes, I would suggest to simplify it by putting it into a class.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from scipy import spatial
n=100
sigma= 0.01
pp = 2.56 # pp = particle density (Sphene=3.53) #(Feldspar=2.56)
#(g/cm^3)
pp2 = 3.53
pf = 2.7 # pf = fluid density(g/cm^3)
pf2 = 2.7
g = 9.8 # g = gravity (m/s^2)
g2 = 9.8
r = 0.003 # r = radius of sphere (meter)
r2 = 0.0002
mu = 0.53 # mu = dynamic viscosity of fluid (log10Poise)
mu2 = 0.53
rp = 0.01 #radius around particle to check for nearest neighbor
rp2 = 0.001
dt = 0.008
dt2 = 0.008
class Particles():
def __init__(self,ax, xdata,
pp, pf, g, r, mu, rp, dt, n,
marker="o",mfc="r"):
self.xdata=xdata
self.ydata = np.zeros(len(self.xdata))
self.pp=pp;self.pf=pf;self.g=g;self.r=r;self.mu=mu
self.rp=rp;self.dt=dt;self.n=n
self.ln, = ax.plot([], [], marker= marker,
markerfacecolor=mfc,markeredgecolor='k', linestyle='None',
animated=True)
def v_stokes(self, pp,pf,g,r,mu):
top=2*(pp-pf)*g*(r**2)
bottom=9*mu
return top/bottom
def concentration(self,xdata, ydata, rp):
coords = list(zip(xdata, ydata))
tree = spatial.KDTree(coords)
test = np.column_stack([xdata, ydata])
nnl = tree.query_ball_point(test, rp)
nnt = np.zeros(len(nnl)) #nearest neighbors total
for i in range(len(nnt)):
nnt[i] = len(nnl[i])
return nnt
def update(self, frame):
self.xdata += np.random.normal(0, sigma, n)
if frame == 0:
self.ydata = np.zeros(len(self.xdata))
wss = self.v_stokes(self.pp,self.pf,self.g,self.r,self.mu)
cp = self.concentration(self.xdata, self.ydata, self.rp)
if np.any(cp == 1):
cp = cp-1
if frame > 0.0:
self.ydata += (wss*(1-cp)**3) - dt
for j,v in enumerate(self.ydata):
if v < -1.001:
self.ydata[j] = -1
self.ln.set_data(self.xdata, self.ydata)
return self.ln
fig, ax = plt.subplots()
xdata, xdata2 = [0.0], [0.0]
p1 = Particles(ax,xdata, pp, pf, g, r, mu, rp, dt, n,
marker="o",mfc="r")
p2 = Particles(ax,xdata2, pp2, pf2, g2, r2, mu2, rp2, dt2, n,
marker="s",mfc="b")
def init():
ax.set_xlim(-2, 2)
ax.set_ylim(-1, 1)
return p1.ln, p2.ln
def update(i):
l1 = p1.update(i)
l2 = p2.update(i)
return l1, l2
ani = FuncAnimation(fig, update, frames=range(0,200),
init_func=init, blit=True, interval=100, repeat = False)
plt.show()
I am attempting to animate two different particles in matplotlib (python). I just figured out a way to animate one particle in matplotlib, but I am havign difficulties trying to get the program to work with multiple particles. Does anyone know what is wrong and how to fix it?
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
fig = plt.figure()
fig.set_dpi(100)
fig.set_size_inches(5, 4.5)
ax = plt.axes(xlim=(0, 100), ylim=(0, 100))
enemy = plt.Circle((10, -10), 0.75, fc='r')
agent = plt.Circle((10, -10), 0.75, fc='b')
def init():
#enemy.center = (5, 5)
#agent.center = (5, 5)
ax.add_patch(agent)
ax.add_patch(enemy)
return []
def animationManage(i,agent,enemy):
patches = []
enemy.center = (5, 5)
agent.center = (5, 5)
enemy_patches = animateCos(i,agent)
agent_patches = animateLine(i,enemy)
patches[enemy_patches, agent_patches]
#patches.append(ax.add_patch(enemy_patches))
#patches.append(ax.add_patch(agent_patches))
return enemy_patches
def animateCirc(i, patch):
# It seems that i represents time step
x, y = patch.center
# 1st constant = position and 2nd constant = trajectory
x = 50 + 30 * np.sin(np.radians(i))
y = 50 + 30 * np.cos(np.radians(i))
patch.center = (x, y)
return patch,
def animateLine(i, patch):
x, y = patch.center
x = x + 1
y = x+ 1
patch.center = (x, y)
return patch,
def animateCos(i, patch):
x, y = patch.center
x = x + 0.2
y = 50 + 30 * np.cos(np.radians(i))
patch.center = (x, y)
return patch,
def animateSin(i, patch):
x, y = patch.center
x = x + 0.2
y = 50 + 30 * np.sin(np.radians(i))
patch.center = (x, y)
return patch,
anim = animation.FuncAnimation(fig, animationManage,
init_func=init,
frames=360,
fargs=(agent,enemy,),
interval=20,
blit=True)
plt.show()
Working code for animating one particle
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
fig = plt.figure()
fig.set_dpi(100)
fig.set_size_inches(5, 4.5)
ax = plt.axes(xlim=(0, 100), ylim=(0, 100))
enemy = plt.Circle((10, -10), 0.75, fc='r')
agent = plt.Circle((10, -10), 0.75, fc='b')
def init():
enemy.center = (5, 5)
agent.center = (5, 5)
ax.add_patch(enemy)
ax.add_patch(agent)
return enemy,
def animateCirc(i, patch):
# It seems that i represents time step
x, y = patch.center
# 1st constant = position and 2nd constant = trajectory
x = 50 + 30 * np.sin(np.radians(i))
y = 50 + 30 * np.cos(np.radians(i))
patch.center = (x, y)
return patch,
def animateLine(i, patch):
x, y = patch.center
x = x + 1
y = x+ 1
patch.center = (x, y)
return patch,
def animateCos(i, patch):
x, y = patch.center
x = x + 0.2
y = 50 + 30 * np.cos(np.radians(i))
patch.center = (x, y)
return patch,
def animateSin(i, patch):
x, y = patch.center
x = x + 0.2
y = 50 + 30 * np.sin(np.radians(i))
patch.center = (x, y)
return patch,
anim = animation.FuncAnimation(fig, animateCos,
init_func=init,
frames=360,
fargs=(enemy,),
interval=20,
blit=True)
plt.show()
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
fig = plt.figure()
fig.set_dpi(100)
fig.set_size_inches(5, 4.5)
ax = plt.axes(xlim=(0, 100), ylim=(0, 100))
enemy = plt.Circle((10, -10), 0.75, fc='r')
agent = plt.Circle((10, -10), 0.75, fc='b')
def init():
enemy.center = (5, 5)
agent.center = (5, 5)
ax.add_patch(agent)
ax.add_patch(enemy)
return []
def animationManage(i,agent,enemy):
animateCos(i,enemy)
animateLine(i,agent)
return []
def animateLine(i, patch):
x, y = patch.center
x += 0.25
y += 0.25
patch.center = (x, y)
return patch,
def animateCos(i, patch):
x, y = patch.center
x += 0.2
y = 50 + 30 * np.cos(np.radians(i))
patch.center = (x, y)
return patch,
anim = animation.FuncAnimation(fig, animationManage,
init_func=init,
frames=360,
fargs=(agent,enemy,),
interval=20,
blit=True,
repeat=True)
plt.show()
Problem
I am trying to simulate the landing of an upright rocket. I can plot the point representation of the dynamics easily; however, in order to make this simulation look cool I would like to add a picture representation of the rocket. Basically all I want to do is refresh an image of the rocket, with a height of L, a width of W, a position of (x,y), and an orientation of ϕ, where (x,y) and ϕ are determined from the rocket's data point.
What is currently happening is that the .png image is being plotted at every time step and not refreshing. My problem can easily be understood by the animation I have so far in this video. Please take a look at the animation portion of my Python code below. Any help is appreciated.
Python Code
# Initial and global vars
Earth = Environment('Earth')
Falcon = Lander(Earth)
dt = 1. / 30. # 30 fps
#///////////////////////////////////////////////////////////////////////////
# set up figure and animation
fig = plt.figure()
ax = fig.add_subplot(111, aspect='equal', autoscale_on=False,
xlim=(0,150), ylim=(0,100))
ax.grid()
line, = ax.plot([], 'o-', lw=2)
status = ax.text(0.02, 0.50, '', transform=ax.transAxes)
im_fname = os.path.dirname(os.path.realpath(__file__)) + '/falcon9.png'
im = img.imread(im_fname)
def init():
"""initialize animation"""
line.set_data([], [])
status.set_text('')
return line, status
def animate(i):
"""perform animation step"""
global Falcon, dt; Falcon.step(dt)
x, y, vx, vy, theta, omega, mass = Falcon.state
L, W, Isp = Falcon.params # Length and width of rocket
line.set_data([Falcon.state[0], Falcon.state[1]])
t = Falcon.time_elapsed
aax, aay = Falcon.Drag()/mass
theta = np.degrees(theta)%360
v = np.linalg.norm([vx, vy])
status.set_text('$Time = %.2f$\n' % t +
'$a_D = (%.2f, %.2f)$\n' % (aax, aay) +
'$v = %.2f$\n' % v +
'$angle = %.2f$\n' % theta +
'$mass = %.4f$\n' % mass)
# Show Falcon9 image
x_hat, y_hat = Falcon.Orientation() # in this orientation
left, right = x-W/2., x+W/2. # perimeter of object
down, up = y-L/2., y+L/2.
ax.imshow(im, aspect='auto', extent=(left, right, down, up))
return line, status
# Interval based on dt and time to animate one step
from time import time
t0 = time()
animate(0)
t1 = time()
interval = 1000 * dt - (t1 - t0)
ani = animation.FuncAnimation(fig, animate, frames=300,
interval=interval, blit=True, init_func=init)
ani.save('falcon9.mp4', fps=30, extra_args=['-vcodec', 'libx264'])
plt.show()