KeyError when trying to save a concatenated model - python

You can check this question for problem description. I create 7 models by a for loop then train them (didn't mention training process in the code):
for i in range(1, 8):
j=str(i)
img_input = Input(shape=(img_width,img_height,1),name='input')
x = Conv2D(32, (3,3), activation='relu', padding='same', name='conv1-'+j)(img_input)
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool1-'+j)(x)
x = Conv2D(64, (3,3), activation='relu', padding='same', name='conv2-'+j)(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool2-'+j)(x)
x = Conv2D(128, (3,3), activation='relu', padding='same', name='conv3-'+j)(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool3-'+j)(x)
x = Flatten()(x)
x = Dense(512, name='dense1-'+j)(x)
x = Dense(512, name='dense2-'+j)(x)
predictions = Dense(6, activation='softmax', name='predictions-'+j)(x)
model = Model(inputs=img_input, outputs=predictions)
model.compile(optimizer='Adam', loss='binary_crossentropy',
metrics=['accuracy'])
Popping the last softmax layer of each model and saving the rest of the models into a list named as models[]:
inputTensor = Input(shape=(img_width,img_height,1),name='inputs')
for i in range (1,8): #save models into a models[] list
j = str(i)
models[i] = load_model(path+j+"/weights.best.hdf5") #load models from disk
models[i].layers.pop() #Pop last layer
models[i].outputs= [models[i].layers[-1].output] #Fix layer pop bug
models[i].layers[-1].outbound_nodes = [] #Fix layer pop bug
for layer in models[i].layers: #Make intermediate
layer.trainable=False #layers untrainable
Implementing a concat to all of these models and then trying to save the finalModel:
outputTensors= [models[m](inputTensor) for m in models]
output = Concatenate()(outputTensors)
predictions = Dense(6, activation='softmax', name='predictionss')(output)
model=Model(inputTensor, predictions)
model.compile(optimizer='Adam', loss='binary_crossentropy', metrics=['accuracy'])
model.save('model')
But when saving occurs it throws an error:
Traceback (most recent call last):
File "<ipython-input-43-6221fb2664c1>", line 10, in <module>
model.save('model')
File "C:\Anaconda3\envs\tensorflow\lib\site-packages\keras\engine\topology.py", line 2553, in save
save_model(self, filepath, overwrite, include_optimizer)
File "C:\Anaconda3\envs\tensorflow\lib\site-packages\keras\models.py", line 107, in save_model
'config': model.get_config()
File "C:\Anaconda3\envs\tensorflow\lib\site-packages\keras\engine\topology.py", line 2326, in get_config
layer_config = layer.get_config()
File "C:\Anaconda3\envs\tensorflow\lib\site-packages\keras\engine\topology.py", line 2390, in get_config
new_node_index = node_conversion_map[node_key]
KeyError: 'predictions-1_ib-0
And I can't overcome this error.
Appreciate your helps.

Related

Issues when loading a sequential model in Python

I had trained and saved the following sequential architecture
model = Sequential([layers.Resizing(IMG_SIZE, IMG_SIZE), # Resize of the image
layers.Rescaling(1./255), # Image rescaling of a factor 1./255
layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu',
padding = 'same', input_shape=(IMG_SIZE,IMG_SIZE,3)),
layers.Dropout(0.2),
layers.BatchNormalization(),
layers.MaxPool2D(pool_size=(2, 2)),
layers.Conv2D(filters=64, kernel_size=(3, 3),
activation='relu', padding = 'same'),
layers.BatchNormalization(),
layers.MaxPool2D(pool_size=(2, 2)),
layers.Conv2D(filters=128, kernel_size=(3, 3),
activation='relu', padding = 'same'),
layers.BatchNormalization(),
layers.MaxPool2D(pool_size=(2, 2)),
layers.Conv2D(filters=256, kernel_size=(3, 3),
activation='relu', padding = 'same'),
layers.BatchNormalization(),
layers.MaxPool2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.2),
layers.Dense(300, activation='relu'),
layers.Dense(150, activation='relu'),
layers.Dense(n_classes, activation='softmax')])
EPOCHS = 50
BATCH_SIZE = 8
history = model.fit(x=train_batches, validation_data=validation_batches,
steps_per_epoch=len(train_batches),
validation_steps=len(validation_batches),
epochs=EPOCHS,
batch_size=BATCH_SIZE)
model.save('my_model.h5')
when i load the saved model
model=tf.keras.models.load_model('my_model.h5')
this error occurre
Traceback (most recent call last):
File "C:\Users\Antonio Di Stolfo\Desktop\nuova codici 3\pythonProject2\main.py", line 88, in <module>
model=tf.keras.models.load_model('my_model.h5')
File "C:\Users\Antonio Di Stolfo\Desktop\nuova codici 3\cnnalzheimer\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler
raise e.with_traceback(filtered_tb) from None
File "C:\Users\Antonio Di Stolfo\Desktop\nuova codici 3\cnnalzheimer\lib\site-packages\keras\layers\convolutional\base_conv.py", line 409, in _get_input_channel
raise ValueError( ValueError: The channel dimension of the inputs should be defined. The input_shape received is (None, 224, 224, None), where axis -1 (0-based) is the channel dimension, which found to be `None`.
Does anyone of you know how to solve this error or how to define the channel dimension of the inputs?
I tried to load a saved model but occurred an error

What dimensions should i change to solve this?

I building a CNN model, an having trouble with the dimensions.
src = Input(shape=(196,41,3))
conv11 = Conv2D(32, kernel_size=4, activation='relu')(src)
pool11 = MaxPooling2D(pool_size=(2, 2))(conv11)
conv12 = Conv2D(16, kernel_size=4, activation='relu')(pool11)
drop = Dropout(0.3)
pool12 = MaxPooling2D(pool_size=(2, 2))(conv12)
flat1 = Flatten()(pool12)
# second input model
trgt = Input(shape=(196,41,3))
conv21 = Conv2D(32, kernel_size=4, activation='relu')(trgt)
pool21 = MaxPooling2D(pool_size=(2, 2))(conv21)
conv22 = Conv2D(16, kernel_size=4, activation='relu')(pool21)
pool22 = MaxPooling2D(pool_size=(2, 2))(conv22)
flat2 = Flatten()(pool22)
# merge input models
merge = keras.layers.concatenate([flat1, flat2])
# interpretation model
hidden1 = Dense(64, activation='relu')(merge)
output = Dense(196, activation='relu')(hidden1)
arch = Model(inputs=[src, trgt], outputs=output)
I am getting this
Error when checking target: expected dense_35 to have 2 dimensions, but got array with shape (70, 41, 196, 3)

AttributeError when using keras.concatenate layer

I'm trying to build a Neural Network, based on the Inception architecture used for images, but for 1D vectors.
I have based the model I created on this one from the keras getting started guide from this link https://keras.io/getting-started/functional-api-guide/:
tf.keras.backend.clear_session()
logger = tf.get_logger()
logger.setLevel(logging.ERROR)
input_vector = Input(shape=(71276,1),)
tower_1 = tf.keras.layers.Conv1D(filters=64, kernel_size=1, padding='same', activation='relu', name='conv_1')(input_vector)
tower_1 = tf.keras.layers.Conv1D(filters=64, kernel_size=3, padding='same', activation='relu', name='conv_2')(tower_1)
tower_2 = tf.keras.layers.Conv1D(filters=64, kernel_size=1, padding='same', activation='relu', name='conv_3')(input_vector)
tower_2 = tf.keras.layers.Conv1D(filters=64, kernel_size=1, padding='same', activation='relu', name='conv_4')(tower_2)
tower_3 = tf.keras.layers.MaxPooling1D(pool_size=3, strides=1, padding='same')(input_vector)
tower_3 = tf.keras.layers.Conv1D(filters=64, kernel_size=1, padding='same', activation='relu', name='conv_4')(tower_3)
output = tf.keras.layers.concatenate([tower_1, tower_2, tower_3])
model = tf.keras.models.Model(inputs=input_vector, outputs=output)
model.compile(loss='mse',
optimizer=tf.keras.optimizers.Adam(lr=0.001),
metrics=['mae'])
model.summary()
This is my code:
from keras.layers import Conv1D, MaxPooling1D, Input
from keras.models import Model
tf.keras.backend.clear_session()
logger = tf.get_logger()
logger.setLevel(logging.ERROR)
input_vector = Input(shape=(71276,1),)
tower_1 = Conv1D(filters=64, kernel_size=1, padding='same', activation='relu', name='conv_1')(input_vector)
tower_1 = Conv1D(filters=64, kernel_size=3, padding='same', activation='relu', name='conv_1')(tower_1)
tower_2 = Conv1D(filters=64, kernel_size=1, padding='same', activation='relu', name='conv_1')(input_vector)
tower_2 = Conv1D(filters=64, kernel_size=1, padding='same', activation='relu', name='conv_1')(tower_2)
tower_3 = MaxPooling1D(pool_size=3, strides=1, padding='same')(input_vector)
tower_3 = Conv1D(filters=64, kernel_size=1, padding='same', activation='relu', name='conv_1')(tower_3)
output = tf.keras.layers.concatenate([tower_1, tower_2, tower_3])
model = Model(inputs=input_vector, outputs=output)
model.compile(loss='mse',
optimizer=tf.keras.optimizers.Adam(lr=0.001),
metrics=['mae'])
model.summary()
When executing, I'm getting the following error, and don't really understand why:
AttributeError Traceback (most recent call last)
<ipython-input-9-2931ae837421> in <module>()
6 input_vector = Input(shape=(71276,1),)
7
----> 8 tower_1 = tf.keras.layers.Conv1D(filters=64, kernel_size=1, padding='same', activation='relu', name='conv_1')(input_vector)
9 tower_1 = tf.keras.layers.Conv1D(filters=64, kernel_size=3, padding='same', activation='relu', name='conv_2')(tower_1)
10
5 frames
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/base_layer.py in <lambda>(t)
2056 `call` method of the layer at the call that created the node.
2057 """
-> 2058 inbound_layers = nest.map_structure(lambda t: t._keras_history.layer,
2059 input_tensors)
2060 node_indices = nest.map_structure(lambda t: t._keras_history.node_index,
AttributeError: 'tuple' object has no attribute 'layer'
I don't have a lot of experience with convolutional layers so it is very possible I have made a very obvious mistake. Searching online I haven't been able to find someone else having the same problem.
I'm running this on Google Colaboratory, in a python 3 runtime.
Any help would be appreciated, thank you!
A few things:
All your layers have the same name? I bet that could cause lots of strange bugs
tower_3 doesn't have the same shape as the other two towers. It's impossible to concatenate. (You're using a MaxPooling1D, check the summary to confirm.)
You are mixing keras and tf.keras, that is certainly a huge problem. Choose only one.

why does this error "input_2_1:0 is both fed and fetched" happen?

I am trying to show the output of intermediate layers in my network and I used the below code:
from keras import models
layer_outputs = [layer.output for layer in w_extraction.layers[:102]]
activation_model = models.Model(inputs=w_extraction.input, outputs=layer_outputs)
activations = activation_model.predict([x_test[8000:8001],wt_expand])
but it produces this error. I do not know why it produces this error! coudl you please help me with this issue
Traceback (most recent call last):
File "", line 1, in
activations = activation_model.predict([x_test[8000:8001],wt_expand])
File
"D:\software\Anaconda3\envs\py36\lib\site-packages\keras\engine\training.py",
line 1169, in predict
steps=steps)
File
"D:\software\Anaconda3\envs\py36\lib\site-packages\keras\engine\training_arrays.py",
line 294, in predict_loop
batch_outs = f(ins_batch)
File
"D:\software\Anaconda3\envs\py36\lib\site-packages\keras\backend\tensorflow_backend.py",
line 2715, in call
return self._call(inputs)
File
"D:\software\Anaconda3\envs\py36\lib\site-packages\keras\backend\tensorflow_backend.py",
line 2671, in _call
session)
File
"D:\software\Anaconda3\envs\py36\lib\site-packages\keras\backend\tensorflow_backend.py",
line 2623, in _make_callable
callable_fn = session._make_callable_from_options(callable_opts)
File
"D:\software\Anaconda3\envs\py36\lib\site-packages\tensorflow\python\client\session.py",
line 1471, in _make_callable_from_options
return BaseSession._Callable(self, callable_options)
File
"D:\software\Anaconda3\envs\py36\lib\site-packages\tensorflow\python\client\session.py",
line 1425, in init
session._session, options_ptr, status)
File
"D:\software\Anaconda3\envs\py36\lib\site-packages\tensorflow\python\framework\errors_impl.py",
line 528, in exit
c_api.TF_GetCode(self.status.status))
InvalidArgumentError: input_2_1:0 is both fed and fetched.
my complete code is here:
from keras.layers import Input, Concatenate, GaussianNoise,Dropout,BatchNormalization
from keras.layers import Conv2D, AtrousConv2D
from keras.models import Model
from keras.datasets import mnist
from keras.callbacks import TensorBoard
from keras import backend as K
from keras import layers
import matplotlib.pyplot as plt
import tensorflow as tf
import keras as Kr
from keras.optimizers import SGD,RMSprop,Adam
from keras.callbacks import ReduceLROnPlateau
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
import numpy as np
import pylab as pl
import matplotlib.cm as cm
import keract
from matplotlib import pyplot
from keras import optimizers
from keras import regularizers
from tensorflow.python.keras.layers import Lambda;
#-----------------building w train---------------------------------------------
w_expand=np.zeros((49999,28,28),dtype='float32')
wv_expand=np.zeros((9999,28,28),dtype='float32')
wt_random=np.random.randint(2, size=(49999,4,4))
wt_random=wt_random.astype(np.float32)
wv_random=np.random.randint(2, size=(9999,4,4))
wv_random=wv_random.astype(np.float32)
w_expand[:,:4,:4]=wt_random
wv_expand[:,:4,:4]=wv_random
x,y,z=w_expand.shape
w_expand=w_expand.reshape((x,y,z,1))
x,y,z=wv_expand.shape
wv_expand=wv_expand.reshape((x,y,z,1))
#-----------------building w test---------------------------------------------
w_test = np.random.randint(2,size=(1,4,4))
w_test=w_test.astype(np.float32)
wt_expand=np.zeros((1,28,28),dtype='float32')
wt_expand[:,0:4,0:4]=w_test
wt_expand=wt_expand.reshape((1,28,28,1))
#-----------------------encoder------------------------------------------------
#------------------------------------------------------------------------------
wtm=Input((28,28,1))
image = Input((28, 28, 1))
conv1 = Conv2D(64, (5, 5), activation='relu', padding='same', name='convl1e',dilation_rate=(2,2))(image)
conv2 = Conv2D(64, (5, 5), activation='relu', padding='same', name='convl2e',dilation_rate=(2,2))(conv1)
conv3 = Conv2D(64, (5, 5), activation='relu', padding='same', name='convl3e',dilation_rate=(2,2))(conv2)
BN=BatchNormalization()(conv3)
encoded = Conv2D(1, (5, 5), activation='relu', padding='same',name='encoded_I',dilation_rate=(2,2))(BN)
add_const = Kr.layers.Lambda(lambda x: x[0] + x[1])
encoded_merged = add_const([encoded,wtm])
#-----------------------decoder------------------------------------------------
#------------------------------------------------------------------------------
deconv1 = Conv2D(64, (5, 5), activation='relu', padding='same', name='convl1d',dilation_rate=(2,2))(encoded_merged)
deconv2 = Conv2D(64, (5, 5), activation='relu', padding='same', name='convl2d',dilation_rate=(2,2))(deconv1)
deconv3 = Conv2D(64, (5, 5), activation='relu',padding='same', name='convl3d',dilation_rate=(2,2))(deconv2)
deconv4 = Conv2D(64, (5, 5), activation='relu',padding='same', name='convl4d',dilation_rate=(2,2))(deconv3)
BNd=BatchNormalization()(deconv3)
#DrO2=Dropout(0.25,name='DrO2')(BNd)
decoded = Conv2D(1, (5, 5), activation='sigmoid', padding='same', name='decoder_output',dilation_rate=(2,2))(BNd)
#model=Model(inputs=image,outputs=decoded)
model=Model(inputs=[image,wtm],outputs=decoded)
decoded_noise = GaussianNoise(0.5)(decoded)
#----------------------w extraction------------------------------------
convw1 = Conv2D(64, (3,3), activation='relu', padding='same', name='conl1w',dilation_rate=(2,2))(decoded_noise)
convw2 = Conv2D(64, (3, 3), activation='relu', padding='same', name='convl2w',dilation_rate=(2,2))(convw1)
convw3 = Conv2D(64, (3, 3), activation='relu', padding='same', name='conl3w',dilation_rate=(2,2))(convw2)
convw4 = Conv2D(64, (3, 3), activation='relu', padding='same', name='conl4w',dilation_rate=(2,2))(convw3)
convw5 = Conv2D(64, (3, 3), activation='relu', padding='same', name='conl5w',dilation_rate=(2,2))(convw4)
convw6 = Conv2D(64, (3, 3), activation='relu', padding='same', name='conl6w',dilation_rate=(2,2))(convw5)
pred_w = Conv2D(1, (1, 1), activation='sigmoid', padding='same', name='reconstructed_W',dilation_rate=(2,2))(convw6)
w_extraction=Model(inputs=[image,wtm],outputs=[decoded,pred_w])
#----------------------training the model--------------------------------------
#------------------------------------------------------------------------------
#----------------------Data preparation----------------------------------------
(x_train, _), (x_test, _) = mnist.load_data()
x_validation=x_train[1:10000,:,:]
x_train=x_train[10001:60000,:,:]
#
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_validation = x_validation.astype('float32') / 255.
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) # adapt this if using `channels_first` image data format
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1)) # adapt this if using `channels_first` image data format
x_validation = np.reshape(x_validation, (len(x_validation), 28, 28, 1))
#---------------------compile and train the model------------------------------
w_extraction.compile(optimizer='adam', loss={'decoder_output':'mse','reconstructed_W':'binary_crossentropy'}, loss_weights={'decoder_output': 0.45, 'reconstructed_W': 1.0},metrics=['mae'])
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=20)
#rlrp = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=20, min_delta=1E-4, verbose=1)
mc = ModelCheckpoint('best_model_5x5F_dil_Los751.h5', monitor='val_loss', mode='min', verbose=1, save_best_only=True)
history=w_extraction.fit([x_train,w_expand], [x_train,w_expand],
epochs=200,
batch_size=16,
validation_data=([x_validation,wv_expand], [x_validation,wv_expand]),
callbacks=[TensorBoard(log_dir='E:concatnatenetwork', histogram_freq=0, write_graph=False),es,mc])
You can't both feed and fetch a placeholder (i.e. the underlying Tensor of an Input layer). See this answer for more information. Therefore, you must exclude the input Tensors of w_extraction model from the outputs of activation_model. One way to do this is to filter them based on layer name:
layer_outputs = [layer.output for layer in w_extraction.layers[:102] if not layer.name.startswith('input')]

Keras model doesn't work with a larger dataset

I'm just getting started with Keras and with Deep learning, so the answer to my question could be obvious to some, but for me it isn't.
I made a model to colorize some black and white photos following the article on Floydhub (where I'm training it) and it works just fine when I train it with similar pictures (such as human faces) but as soon as I use a larger dataset as an input with different pictures, the loss just remains stable and doesn't get better.
I've tried different learning rates and optimizers but just cannot get a good result.
What could I change to get a better result?
This is the code (thanks to Emil Wallner for the article on Floydhub)
# Get images
X = []
for filename in os.listdir('/data/images/Train/'):
X.append(img_to_array(load_img('/data/images/Train/'+filename)))
X = np.array(X, dtype=float)
Xtrain = 1.0/255*X
#Load weights
inception = InceptionResNetV2(weights=None, include_top=True)
inception.load_weights('/data/inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5')
inception.graph = tf.get_default_graph()
embed_input = Input(shape=(1000,))
#Encoder
encoder_input = Input(shape=(256, 256, 1,))
encoder_output = Conv2D(64, (3,3), activation='relu', padding='same', strides=2)(encoder_input)
encoder_output = Conv2D(128, (3,3), activation='relu', padding='same')(encoder_output)
encoder_output = Conv2D(128, (3,3), activation='relu', padding='same', strides=2)(encoder_output)
encoder_output = Conv2D(256, (3,3), activation='relu', padding='same')(encoder_output)
encoder_output = Conv2D(256, (3,3), activation='relu', padding='same', strides=2)(encoder_output)
encoder_output = Conv2D(512, (3,3), activation='relu', padding='same')(encoder_output)
encoder_output = Conv2D(512, (3,3), activation='relu', padding='same')(encoder_output)
encoder_output = Conv2D(256, (3,3), activation='relu', padding='same')(encoder_output)
#Fusion
fusion_output = RepeatVector(32 * 32)(embed_input)
fusion_output = Reshape(([32, 32, 1000]))(fusion_output)
fusion_output = concatenate([encoder_output, fusion_output], axis=3)
fusion_output = Conv2D(256, (1, 1), activation='relu', padding='same')(fusion_output)
#Decoder
decoder_output = Conv2D(128, (3,3), activation='relu', padding='same')(fusion_output)
decoder_output = UpSampling2D((2, 2))(decoder_output)
decoder_output = Conv2D(64, (3,3), activation='relu', padding='same')(decoder_output)
decoder_output = UpSampling2D((2, 2))(decoder_output)
decoder_output = Conv2D(32, (3,3), activation='relu', padding='same')(decoder_output)
decoder_output = Conv2D(16, (3,3), activation='relu', padding='same')(decoder_output)
decoder_output = Conv2D(2, (3, 3), activation='tanh', padding='same')(decoder_output)
decoder_output = UpSampling2D((2, 2))(decoder_output)
model = Model(inputs=[encoder_input, embed_input], outputs=decoder_output)
#Create embedding
def create_inception_embedding(grayscaled_rgb):
grayscaled_rgb_resized = []
for i in grayscaled_rgb:
i = resize(i, (299, 299, 3), mode='constant')
grayscaled_rgb_resized.append(i)
grayscaled_rgb_resized = np.array(grayscaled_rgb_resized)
grayscaled_rgb_resized = preprocess_input(grayscaled_rgb_resized)
with inception.graph.as_default():
embed = inception.predict(grayscaled_rgb_resized)
return embed
# Image transformer
datagen = ImageDataGenerator(
shear_range=0.4,
zoom_range=0.4,
rotation_range=40,
horizontal_flip=True)
#Generate training data
batch_size = 20
def image_a_b_gen(batch_size):
for batch in datagen.flow(Xtrain, batch_size=batch_size):
grayscaled_rgb = gray2rgb(rgb2gray(batch))
embed = create_inception_embedding(grayscaled_rgb)
lab_batch = rgb2lab(batch)
X_batch = lab_batch[:,:,:,0]
X_batch = X_batch.reshape(X_batch.shape+(1,))
Y_batch = lab_batch[:,:,:,1:] / 128
yield ([X_batch, create_inception_embedding(grayscaled_rgb)], Y_batch)
#Train model
tensorboard = TensorBoard(log_dir="/output")
model.compile(optimizer='adam', loss='mse')
model.fit_generator(image_a_b_gen(batch_size), callbacks=[tensorboard], epochs=1000, steps_per_epoch=20)
#Make a prediction on the unseen images
color_me = []
for filename in os.listdir('../Test/'):
color_me.append(img_to_array(load_img('../Test/'+filename)))
color_me = np.array(color_me, dtype=float)
color_me = 1.0/255*color_me
color_me = gray2rgb(rgb2gray(color_me))
color_me_embed = create_inception_embedding(color_me)
color_me = rgb2lab(color_me)[:,:,:,0]
color_me = color_me.reshape(color_me.shape+(1,))
# Test model
output = model.predict([color_me, color_me_embed])
output = output * 128
# Output colorizations
for i in range(len(output)):
cur = np.zeros((256, 256, 3))
cur[:,:,0] = color_me[i][:,:,0]
cur[:,:,1:] = output[i]
imsave("result/img_"+str(i)+".png", lab2rgb(cur))

Categories

Resources