Normal distributed sub-sampling from a numpy array in python - python

I have a numpy array whose values are distributed in the following manner
From this array I need to get a random sub-sample which is normally distributed.
I need to get rid of the values from the array which are above the red line in the picture. i.e. I need to get rid of some occurences of certain values from the array so that my distribution gets smoothened when the abrupt peaks are removed.
And my array's distribution should become like this:
Can this be achieved in python, without manually looking for entries corresponding to the peaks and remove some occurences of them ? Can this be done in a simpler way ?

The following kind of works, it is rather aggressive, though:
It works by ordering the samples, transforming to uniform and then trying to select a regular griddish subsample. If you feel it is too aggressive you could increase ns which is essentially the number of samples kept.
Also, please note that it requires the knowledge of the true distribution. In case of normal distribution you should be fine with using sample mean and unbiased variance estimate (the one with n-1).
Code (without plotting):
import scipy.stats as ss
import numpy as np
a = ss.norm.rvs(size=1000)
b = ss.uniform.rvs(size=1000)<0.4
a[b] += 0.1*np.sin(10*a[b])
def smooth(a, gran=25):
o = np.argsort(a)
s = ss.norm.cdf(a[o])
ns = int(gran / np.max(s[gran:] - s[:-gran]))
grid, dp = np.linspace(0, 1, ns, endpoint=False, retstep=True)
grid += dp/2
idx = np.searchsorted(s, grid)
c = np.flatnonzero(idx[1:] <= idx[:-1])
while c.size > 0:
idx[c+1] = idx[c] + 1
c = np.flatnonzero(idx[1:] <= idx[:-1])
idx = idx[:np.searchsorted(idx, len(a))]
return o[idx]
ap = a[smooth(a)]
c, b = np.histogram(a, 40)
cp, _ = np.histogram(ap, b)

Related

How do I force two arrays to be equal for use in pyplot?

I'm trying to plot a simple moving averages function but the resulting array is a few numbers short of the full sample size. How do I plot such a line alongside a more standard line that extends for the full sample size? The code below results in this error message:
ValueError: x and y must have same first dimension, but have shapes (96,) and (100,)
This is using standard matplotlib.pyplot. I've tried just deleting X values using remove and del as well as switching all arrays to numpy arrays (since that's the output format of my moving averages function) then tried adding an if condition to the append in the while loop but neither has worked.
import random
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
def movingaverage(values, window):
weights = np.repeat(1.0, window) / window
smas = np.convolve(values, weights, 'valid')
return smas
sampleSize = 100
min = -10
max = 10
window = 5
vX = np.array([])
vY = np.array([])
x = 0
val = 0
while x < sampleSize:
val += (random.randint(min, max))
vY = np.append(vY, val)
vX = np.append(vX, x)
x += 1
plt.plot(vX, vY)
plt.plot(vX, movingaverage(vY, window))
plt.show()
Expected results would be two lines on the same graph - one a simple moving average of the other.
Just change this line to the following:
smas = np.convolve(values, weights,'same')
The 'valid' option, only convolves if the window completely covers the values array. What you want is 'same', which does what you are looking for.
Edit: This, however, also comes with its own issues as it acts like there are extra bits of data with value 0 when your window does not fully sit on top of the data. This can be ignored if chosen, as is done in this solution, but another approach is to pad the array with specific values of your choosing instead (see Mike Sperry's answer).
Here is how you would pad a numpy array out to the desired length with 'nan's (replace 'nan' with other values, or replace 'constant' with another mode depending on desired results)
https://docs.scipy.org/doc/numpy/reference/generated/numpy.pad.html
import numpy as np
bob = np.asarray([1,2,3])
alice = np.pad(bob,(0,100-len(bob)),'constant',constant_values=('nan','nan'))
So in your code it would look something like this:
import random
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
def movingaverage(values,window):
weights = np.repeat(1.0,window)/window
smas = np.convolve(values,weights,'valid')
shorted = int((100-len(smas))/2)
print(shorted)
smas = np.pad(smas,(shorted,shorted),'constant',constant_values=('nan','nan'))
return smas
sampleSize = 100
min = -10
max = 10
window = 5
vX = np.array([])
vY = np.array([])
x = 0
val = 0
while x < sampleSize:
val += (random.randint(min,max))
vY = np.append(vY,val)
vX = np.append(vX,x)
x += 1
plt.plot(vX,vY)
plt.plot(vX,(movingaverage(vY,window)))
plt.show()
To answer your basic question, the key is to take a slice of the x-axis appropriate to the data of the moving average. Since you have a convolution of 100 data elements with a window of size 5, the result is valid for the last 96 elements. You would plot it like this:
plt.plot(vX[window - 1:], movingaverage(vY, window))
That being said, your code could stand to have some optimization done on it. For example, numpy arrays are stored in fixed size static buffers. Any time you do append or delete on them, the entire thing gets reallocated, unlike Python lists, which have amortization built in. It is always better to preallocate if you know the array size ahead of time (which you do).
Secondly, running an explicit loop is rarely necessary. You are generally better off using the under-the-hood loops implemented at the lowest level in the numpy functions instead. This is called vectorization. Random number generation, cumulative sums and incremental arrays are all fully vectorized in numpy. In a more general sense, it's usually not very effective to mix Python and numpy computational functions, including random.
Finally, you may want to consider a different convolution method. I would suggest something based on numpy.lib.stride_tricks.as_strided. This is a somewhat arcane, but very effective way to implement a sliding window with numpy arrays. I will show it here as an alternative to the convolution method you used, but feel free to ignore this part.
All in all:
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
def movingaverage(values, window):
# this step creates a view into the same buffer
values = np.lib.stride_tricks.as_strided(values, shape=(window, values.size - window + 1), strides=values.strides * 2)
smas = values.sum(axis=0)
smas /= window # in-place to avoid temp array
return smas
sampleSize = 100
min = -10
max = 10
window = 5
v_x = np.arange(sampleSize)
v_y = np.cumsum(np.random.random_integers(min, max, sampleSize))
plt.plot(v_x, v_y)
plt.plot(v_x[window - 1:], movingaverage(v_y, window))
plt.show()
A note on names: in Python, variable and function names are conventionally name_with_underscore. CamelCase is reserved for class names. np.random.random_integers uses inclusive bounds just like random.randint, but allows you to specify the number of samples to generate. Confusingly, np.random.randint has an exclusive upper bound, more like random.randrange.

Calculating cross-correlation with fft returning backwards output

I'm trying to cross correlate two sets of data, by taking the fourier transform of both and multiplying the conjugate of the first fft with the second fft, before transforming back to time space. In order to test my code, I am comparing the output with the output of numpy.correlate. However, when I plot my code, (restricted to a certain window), it seems the two signals go in opposite directions/are mirrored about zero.
This is what my output looks like
My code:
import numpy as np
import pyplot as plt
phl_data = np.sin(np.arange(0, 10, 0.1))
mlac_data = np.cos(np.arange(0, 10, 0.1))
N = phl_data.size
zeroes = np.zeros(N-1)
phl_data = np.append(phl_data, zeroes)
mlac_data = np.append(mlac_data, zeroes)
# cross-correlate x = phl_data, y = mlac_data:
# take FFTs:
phl_fft = np.fft.fft(phl_data)
mlac_fft = np.fft.fft(mlac_data)
# fft of cross-correlation
Cw = np.conj(phl_fft)*mlac_fft
#Cw = np.fft.fftshift(Cw)
# transform back to time space:
Cxy = np.fft.fftshift(np.fft.ifft(Cw))
times = np.append(np.arange(-N+1, 0, dt),np.arange(0, N, dt))
plt.plot(times, Cxy)
plt.xlim(-250, 250)
# test against convolving:
c = np.correlate(phl_data, mlac_data, mode='same')
plt.plot(times, c)
plt.show()
(both data sets have been padded with N-1 zeroes)
The documentation to numpy.correlate explains this:
This function computes the correlation as generally defined in signal processing texts:
c_{av}[k] = sum_n a[n+k] * conj(v[n])
and:
Notes
The definition of correlation above is not unique and sometimes correlation may be defined differently. Another common definition is:
c'_{av}[k] = sum_n a[n] conj(v[n+k])
which is related to c_{av}[k] by c'_{av}[k] = c_{av}[-k].
Thus, there is not a unique definition, and the two common definitions lead to a reversed output.

Eigen vectors in python giving seemingly random element-wise signs

I'm running the following code:
import numpy as np
import matplotlib
matplotlib.use("TkAgg")
import matplotlib.pyplot as plt
N = 100
t = 1
a1 = np.full((N-1,), -t)
a2 = np.full((N,), 2*t)
Hamiltonian = np.diag(a1, -1) + np.diag(a2) + np.diag(a1, 1)
eval, evec = np.linalg.eig(Hamiltonian)
idx = eval.argsort()[::-1]
eval, evec = eval[idx], evec[:,idx]
wave2 = evec[2] / np.sum(abs(evec[2]))
prob2 = evec[2]**2 / np.sum(evec[2]**2)
_ = plt.plot(wave2)
_ = plt.plot(prob2)
plt.show()
And the plot that comes out is this:
But I'd expect the blue line to be a sinoid as well. This has got me confused and I can't find what's causing the sudden sign changes. Plotting the function absolutely shows that the values associated with each x are fine, but the signs are screwed up.
Any ideas on what might cause this or how to solve it?
Here's a modified version of your script that does what you expected. The changes are:
Corrected the indexing for the eigenvectors; they are the columns of evec.
Use np.linalg.eigh instead of np.linalg.eig. This isn't strictly necessary, but you might as well use the more efficient code.
Don't reverse the order of the sorted eigenvalues. I keep the eigenvalues sorted from lowest to highest. Because eigh returns the eigenvalues in ascending order, I just commented out the code that sorts the eigenvalues.
(Only the first change is a required correction.)
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
N = 100
t = 1
a1 = np.full((N-1,), -t)
a2 = np.full((N,), 2*t)
Hamiltonian = np.diag(a1, -1) + np.diag(a2) + np.diag(a1, 1)
eval, evec = np.linalg.eigh(Hamiltonian)
#idx = eval.argsort()[::-1]
#eval, evec = eval[idx], evec[:,idx]
k = 2
wave2 = evec[:, k] / np.sum(abs(evec[:, k]))
prob2 = evec[:, k]**2 / np.sum(evec[:, k]**2)
_ = plt.plot(wave2)
_ = plt.plot(prob2)
plt.show()
The plot:
I may be wrong, but aren't they all valid eigen vectors/values? The sign shouldn't matter, as the definition of an eigen vector is:
In linear algebra, an eigenvector or characteristic vector of a linear transformation is a non-zero vector that only changes by an overall scale when that linear transformation is applied to it.
Just because the scale is negative doesn't mean it isn't valid.
See this post about Matlab's eig that has a similar problem
One way to fix this is to simply pick a sign for the start, and multiply everthing by -1 that doesn't fit that sign (or take abs of every element and multiply by your expected sign). For your results this should work (nothing crosses 0).
Neither matlab nor numpy care about what you are trying to solve, its simple mathematics that dictates that both signed eigenvector/value combinations are valid, your values are sinusoidal, its just that there exists two sets of eigenvector/values that work (negative and positive)

Using Mann Kendall in python with a lot of data

I have a set of 46 years worth of rainfall data. It's in the form of 46 numpy arrays each with a shape of 145, 192, so each year is a different array of maximum rainfall data at each lat and lon coordinate in the given model.
I need to create a global map of tau values by doing an M-K test (Mann-Kendall) for each coordinate over the 46 years.
I'm still learning python, so I've been having trouble finding a way to go through all the data in a simple way that doesn't involve me making 27840 new arrays for each coordinate.
So far I've looked into how to use scipy.stats.kendalltau and using the definition from here: https://github.com/mps9506/Mann-Kendall-Trend
EDIT:
To clarify and add a little more detail, I need to perform a test on for each coordinate and not just each file individually. For example, for the first M-K test, I would want my x=46 and I would want y=data1[0,0],data2[0,0],data3[0,0]...data46[0,0]. Then to repeat this process for every single coordinate in each array. In total the M-K test would be done 27840 times and leave me with 27840 tau values that I can then plot on a global map.
EDIT 2:
I'm now running into a different problem. Going off of the suggested code, I have the following:
for i in range(145):
for j in range(192):
out[i,j] = mk_test(yrmax[:,i,j],alpha=0.05)
print out
I used numpy.stack to stack all 46 arrays into a single array (yrmax) with shape: (46L, 145L, 192L) I've tested it out and it calculates p and tau correctly if I change the code from out[i,j] to just out. However, doing this messes up the for loop so it only takes the results from the last coordinate in stead of all of them. And if I leave the code as it is above, I get the error: TypeError: list indices must be integers, not tuple
My first guess was that it has to do with mk_test and how the information is supposed to be returned in the definition. So I've tried altering the code from the link above to change how the data is returned, but I keep getting errors relating back to tuples. So now I'm not sure where it's going wrong and how to fix it.
EDIT 3:
One more clarification I thought I should add. I've already modified the definition in the link so it returns only the two number values I want for creating maps, p and z.
I don't think this is as big an ask as you may imagine. From your description it sounds like you don't actually want the scipy kendalltau, but the function in the repository you posted. Here is a little example I set up:
from time import time
import numpy as np
from mk_test import mk_test
data = np.array([np.random.rand(145, 192) for _ in range(46)])
mk_res = np.empty((145, 192), dtype=object)
start = time()
for i in range(145):
for j in range(192):
out[i, j] = mk_test(data[:, i, j], alpha=0.05)
print(f'Elapsed Time: {time() - start} s')
Elapsed Time: 35.21990394592285 s
My system is a MacBook Pro 2.7 GHz Intel Core I7 with 16 GB Ram so nothing special.
Each entry in the mk_res array (shape 145, 192) corresponds to one of your coordinate points and contains an entry like so:
array(['no trend', 'False', '0.894546014835', '0.132554125342'], dtype='<U14')
One thing that might be useful would be to modify the code in mk_test.py to return all numerical values. So instead of 'no trend'/'positive'/'negative' you could return 0/1/-1, and 1/0 for True/False and then you wouldn't have to worry about the whole object array type. I don't know what kind of analysis you might want to do downstream but I imagine that would preemptively circumvent any headaches.
Thanks to the answers provided and some work I was able to work out a solution that I'll provide here for anyone else that needs to use the Mann-Kendall test for data analysis.
The first thing I needed to do was flatten the original array I had into a 1D array. I know there is probably an easier way to go about doing this, but I ultimately used the following code based on code Grr suggested using.
`x = 46
out1 = np.empty(x)
out = np.empty((0))
for i in range(146):
for j in range(193):
out1 = yrmax[:,i,j]
out = np.append(out, out1, axis=0) `
Then I reshaped the resulting array (out) as follows:
out2 = np.reshape(out,(27840,46))
I did this so my data would be in a format compatible with scipy.stats.kendalltau 27840 is the total number of values I have at every coordinate that will be on my map (i.e. it's just 145*192) and the 46 is the number of years the data spans.
I then used the following loop I modified from Grr's code to find Kendall-tau and it's respective p-value at each latitude and longitude over the 46 year period.
`x = range(46)
y = np.zeros((0))
for j in range(27840):
b = sc.stats.kendalltau(x,out2[j,:])
y = np.append(y, b, axis=0)`
Finally, I reshaped the data one for time as shown:newdata = np.reshape(y,(145,192,2)) so the final array is in a suitable format to be used to create a global map of both tau and p-values.
Thanks everyone for the assistance!
Depending on your situation, it might just be easiest to make the arrays.
You won't really need them all in memory at once (not that it sounds like a terrible amount of data). Something like this only has to deal with one "copied out" coordinate trend at once:
SIZE = (145,192)
year_matrices = load_years() # list of one 145x192 arrays per year
result_matrix = numpy.zeros(SIZE)
for x in range(SIZE[0]):
for y in range(SIZE[1]):
coord_trend = map(lambda d: d[x][y], year_matrices)
result_matrix[x][y] = analyze_trend(coord_trend)
print result_matrix
Now, there are things like itertools.izip that could help you if you really want to avoid actually copying the data.
Here's a concrete example of how Python's "zip" might works with data like yours (although as if you'd used ndarray.flatten on each year):
year_arrays = [
['y0_coord0_val', 'y0_coord1_val', 'y0_coord2_val', 'y0_coord2_val'],
['y1_coord0_val', 'y1_coord1_val', 'y1_coord2_val', 'y1_coord2_val'],
['y2_coord0_val', 'y2_coord1_val', 'y2_coord2_val', 'y2_coord2_val'],
]
assert len(year_arrays) == 3
assert len(year_arrays[0]) == 4
coord_arrays = zip(*year_arrays) # i.e. `zip(year_arrays[0], year_arrays[1], year_arrays[2])`
# original data is essentially transposed
assert len(coord_arrays) == 4
assert len(coord_arrays[0]) == 3
assert coord_arrays[0] == ('y0_coord0_val', 'y1_coord0_val', 'y2_coord0_val', 'y3_coord0_val')
assert coord_arrays[1] == ('y0_coord1_val', 'y1_coord1_val', 'y2_coord1_val', 'y3_coord1_val')
assert coord_arrays[2] == ('y0_coord2_val', 'y1_coord2_val', 'y2_coord2_val', 'y3_coord2_val')
assert coord_arrays[3] == ('y0_coord2_val', 'y1_coord2_val', 'y2_coord2_val', 'y3_coord2_val')
flat_result = map(analyze_trend, coord_arrays)
The example above still copies the data (and all at once, rather than a coordinate at a time!) but hopefully shows what's going on.
Now, if you replace zip with itertools.izip and map with itertools.map then the copies needn't occur — itertools wraps the original arrays and keeps track of where it should be fetching values from internally.
There's a catch, though: to take advantage itertools you to access the data only sequentially (i.e. through iteration). In your case, it looks like the code at https://github.com/mps9506/Mann-Kendall-Trend/blob/master/mk_test.py might not be compatible with that. (I haven't reviewed the algorithm itself to see if it could be.)
Also please note that in the example I've glossed over the numpy ndarray stuff and just show flat coordinate arrays. It looks like numpy has some of it's own options for handling this instead of itertools, e.g. this answer says "Taking the transpose of an array does not make a copy". Your question was somewhat general, so I've tried to give some general tips as to ways one might deal with larger data in Python.
I ran into the same task and have managed to come up with a vectorized solution using numpy and scipy.
The formula are the same as in this page: https://vsp.pnnl.gov/help/Vsample/Design_Trend_Mann_Kendall.htm.
The trickiest part is to work out the adjustment for the tied values. I modified the code as in this answer to compute the number of tied values for each record, in a vectorized manner.
Below are the 2 functions:
import copy
import numpy as np
from scipy.stats import norm
def countTies(x):
'''Count number of ties in rows of a 2D matrix
Args:
x (ndarray): 2d matrix.
Returns:
result (ndarray): 2d matrix with same shape as <x>. In each
row, the number of ties are inserted at (not really) arbitary
locations.
The locations of tie numbers in are not important, since
they will be subsequently put into a formula of sum(t*(t-1)*(2t+5)).
Inspired by: https://stackoverflow.com/a/24892274/2005415.
'''
if np.ndim(x) != 2:
raise Exception("<x> should be 2D.")
m, n = x.shape
pad0 = np.zeros([m, 1]).astype('int')
x = copy.deepcopy(x)
x.sort(axis=1)
diff = np.diff(x, axis=1)
cated = np.concatenate([pad0, np.where(diff==0, 1, 0), pad0], axis=1)
absdiff = np.abs(np.diff(cated, axis=1))
rows, cols = np.where(absdiff==1)
rows = rows.reshape(-1, 2)[:, 0]
cols = cols.reshape(-1, 2)
counts = np.diff(cols, axis=1)+1
result = np.zeros(x.shape).astype('int')
result[rows, cols[:,1]] = counts.flatten()
return result
def MannKendallTrend2D(data, tails=2, axis=0, verbose=True):
'''Vectorized Mann-Kendall tests on 2D matrix rows/columns
Args:
data (ndarray): 2d array with shape (m, n).
Keyword Args:
tails (int): 1 for 1-tail, 2 for 2-tail test.
axis (int): 0: test trend in each column. 1: test trend in each
row.
Returns:
z (ndarray): If <axis> = 0, 1d array with length <n>, standard scores
corresponding to data in each row in <x>.
If <axis> = 1, 1d array with length <m>, standard scores
corresponding to data in each column in <x>.
p (ndarray): p-values corresponding to <z>.
'''
if np.ndim(data) != 2:
raise Exception("<data> should be 2D.")
# alway put records in rows and do M-K test on each row
if axis == 0:
data = data.T
m, n = data.shape
mask = np.triu(np.ones([n, n])).astype('int')
mask = np.repeat(mask[None,...], m, axis=0)
s = np.sign(data[:,None,:]-data[:,:,None]).astype('int')
s = (s * mask).sum(axis=(1,2))
#--------------------Count ties--------------------
counts = countTies(data)
tt = counts * (counts - 1) * (2*counts + 5)
tt = tt.sum(axis=1)
#-----------------Sample Gaussian-----------------
var = (n * (n-1) * (2*n+5) - tt) / 18.
eps = 1e-8 # avoid dividing 0
z = (s - np.sign(s)) / (np.sqrt(var) + eps)
p = norm.cdf(z)
p = np.where(p>0.5, 1-p, p)
if tails==2:
p=p*2
return z, p
I assume your data come in the layout of (time, latitude, longitude), and you are examining the temporal trend for each lat/lon cell.
To simulate this task, I synthesized a sample data array of shape (50, 145, 192). The 50 time points are taken from Example 5.9 of the book Wilks 2011, Statistical methods in the atmospheric sciences. And then I simply duplicated the same time series 27840 times to make it (50, 145, 192).
Below is the computation:
x = np.array([0.44,1.18,2.69,2.08,3.66,1.72,2.82,0.72,1.46,1.30,1.35,0.54,\
2.74,1.13,2.50,1.72,2.27,2.82,1.98,2.44,2.53,2.00,1.12,2.13,1.36,\
4.9,2.94,1.75,1.69,1.88,1.31,1.76,2.17,2.38,1.16,1.39,1.36,\
1.03,1.11,1.35,1.44,1.84,1.69,3.,1.36,6.37,4.55,0.52,0.87,1.51])
# create a big cube with shape: (T, Y, X)
arr = np.zeros([len(x), 145, 192])
for i in range(arr.shape[1]):
for j in range(arr.shape[2]):
arr[:, i, j] = x
print(arr.shape)
# re-arrange into tabular layout: (Y*X, T)
arr = np.transpose(arr, [1, 2, 0])
arr = arr.reshape(-1, len(x))
print(arr.shape)
import time
t1 = time.time()
z, p = MannKendallTrend2D(arr, tails=2, axis=1)
p = p.reshape(145, 192)
t2 = time.time()
print('time =', t2-t1)
The p-value for that sample time series is 0.63341565, which I have validated against the pymannkendall module result. Since arr contains merely duplicated copies of x, the resultant p is a 2d array of size (145, 192), with all 0.63341565.
And it took me only 1.28 seconds to compute that.

A fast way to count non-empty regions

I am writing some code that chooses n random hyperplanes in 5 dimensions that go through the origin. It then samples no_points points uniformly at random on the unit sphere and counts how many of the regions created by the hyperplanes have at least one point in them. This is relatively simple to do using the following Python code.
import numpy as np
def points_on_sphere(dim, N, norm=np.random.normal):
"""
http://en.wikipedia.org/wiki/N-sphere#Generating_random_points
"""
normal_deviates = norm(size=(N, dim))
radius = np.sqrt((normal_deviates ** 2).sum(axis=0))
points = normal_deviates / radius
return points
n = 100
d = 5
hpoints = points_on_sphere(n, d).T
for no_points in xrange(0, 10000000,100000):
test_points = points_on_sphere(no_points,d).T
#The next two lines count how many of the test_points are in different regions created by the hyperplanes
signs = np.sign(np.inner(test_points, hpoints))
print no_points, len(set(map(tuple,signs)))
Unfortunately, my naive method of counting how many of the points are in different regions is slow. Overall the method takes O(no_points * n * d) time and in practice it is too slow and too RAM hungry once no_points reaches about 1000000. In particular it reaches 4GB of RAM at no_points = 900,000 .
Can this be done more efficiently so that no_points can get all the way to 10,000,000 (actually it would be great if it could go to 10 times that) fairly quickly and using less than 4GB of RAM?
Storing how each test point classifies with respect to each hyperplane is a lot of data. I would suggest an implicit radix sort on the point labels, e.g.,
import numpy as np
d = 5
n = 100
N = 100000
is_boundary = np.zeros(N, dtype=bool)
tpoints = np.random.normal(size=(N, d))
tperm = np.arange(N)
for i in range(n):
hpoint = np.random.normal(size=d)
region = np.cumsum(is_boundary) * 2 + (np.inner(hpoint, tpoints) < 0.0)[tperm]
region_order = np.argsort(region)
is_boundary[1:] = np.diff(region[region_order])
tperm = tperm[region_order]
print(np.sum(is_boundary))
This code keeps a permutation of test points (tperm) such that all points in the same region are consecutive. boundary indicates whether each point is in a different region from the previous in permutation order. For each successive hyperplane, we partition each of the existing regions and effectively discard the empty regions to avoid storage for 2^100 of them.
Actually, since you have so many points and so few hyperplanes, it makes more sense not to store the points. The following code packs the region signature into two doubles using binary encoding.
import numpy as np
d = 5
hpoints = np.random.normal(size=(100, d))
bits = np.zeros((2, 100))
bits[0, :50] = 2.0 ** np.arange(50)
bits[1, 50:] = 2.0 ** np.arange(50)
N = 100000
uniques = set()
for i in xrange(0, N, 1000):
tpoints = np.random.normal(size=(1000, d))
signatures = np.inner(np.inner(tpoints, hpoints) < 0.0, bits)
uniques.update(map(tuple, signatures))
print(len(uniques))

Categories

Resources