half yearly colorbar in matplotlib and pandas - python

I have a panda dataframe. I am making scatter plot and tried to categorize the data based on colorbar. I did it for monthly classification and quality classification as shown in the example code below.
a = np.random.rand(366)
b = np.random.rand(366)*0.4
index = (pd.date_range(pd.to_datetime('01-01-2000'), periods=366))
df = pd.DataFrame({'a':a,'b':b},index = index)
plt.scatter(df['a'],df['b'],c = df.index.month)
plt.colorbar()
And also for quality:
plt.scatter(df['a'],df['b'],c = df.index.quarter)
plt.colorbar()
My question: is there any way to categorize by half yearly. for example from the month 1-6 and 7-12 and also by month like: 10-3 and 4-9
Thank you and your help/suggestion will be highly appreciated.

Make a custom function to put in scatter function to color argument. I made an example for half yearly division. You can use it as template for your own split function:
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
# if month is 1 to 6 then the first halfyear else the second halfyear
def halfyear(m):
return 0 if (m <= 6) else 1
# vectorize function to use with Series
hy = np.vectorize(halfyear)
a = np.random.rand(366)
b = np.random.rand(366)*0.4
index = (pd.date_range(pd.to_datetime('01-01-2000'), periods=366))
df = pd.DataFrame({'a':a,'b':b},index = index)
# apply custom function 'hy' for 'c' argument
plt.scatter(df['a'],df['b'], c = hy(df.index.month))
plt.colorbar()
plt.show()
Another way to use lambda function like:
plt.scatter(df['a'],df['b'], \
c = df.index.map(lambda m: 0 if (m.month > 0 and m.month < 7) else 1))

I would opt for a solution which does not completely truncate the monthly information. Using colors which are similar but distinguishable for the months allows to visually classify by half-year as well as month.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.colors
a = np.random.rand(366)
b = np.random.rand(366)*0.4
index = (pd.date_range(pd.to_datetime('01-01-2000'), periods=366))
df = pd.DataFrame({'a':a,'b':b},index = index)
colors=["crimson", "orange", "darkblue", "skyblue"]
cdic = list(zip([0,.499,.5,1],colors))
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("name", cdic,12 )
norm = matplotlib.colors.BoundaryNorm(np.arange(13)+.5,12)
plt.scatter(df['a'],df['b'],c = df.index.month, cmap=cmap, norm=norm)
plt.colorbar(ticks=np.arange(1,13))
plt.show()

Related

Graph the average line using sns lineplot

I have a dataframe that looks like this:
id|date |amount
1 |02-04-18|3000
1 |05-04-19|5000
1 |10-04-19|2600
2 |10-04-19|2600
2 |11-04-19|3000
I want to the amount spent over time for each unique id and have an average trend line. This is the code that I have:
import matplotlib.pyplot as plt
import pandas as pd
temp_m = df.pivot_table(index='id',columns='id',values='amount', fill_value=0)
temp_m = pd.melt(temp, id_vars=['id'])
temp_m['date'] = temp_m['date'].astype('str')
fig, ax = plt.subplots(figsize=(20,10))
for i, group in temp_m.groupby('id'):
group.plot('id', y='amount', ax=ax,legend=None)
plt.xticks(rotation = 90)
Each line is a unique customer.
Goal: I want to add another line that is the average of all the individual customer trends.
Also if there is a better way to graph the individual lines as well please let me know
At first we reshape the data
agg = df.set_index(['date', 'id']).unstack()
agg.columns = agg.columns.get_level_values(-1)
This makes plotting very easy:
sns.lineplot(data=agg)
The average trends can be calculated by
from sklearn.linear_model import LinearRegression
regress = {}
idx = agg.index.to_julian_date()[:, None]
for c in agg.columns:
regress[c] = LinearRegression().fit(idx, agg[c].fillna(0)).predict(idx)
trend = pd.Series(pd.DataFrame(regress).mean(axis=1).values, agg.index)

Bar plots of data frame columns split by criterion of another column

I would like to create bar plots of specified data frame columns split by a criterion of another column (here < 5). It works like below but certainly there is a more dataframe-like way? Something like df.makeCoolBarPlots()?
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
df = pd.DataFrame({'score':[1,6,2,3,1,9,5], 'age':[10,16,33,12,8,24,18], 'IQ':[89,120,88,94,103,110,102]})
df_pass = df[df['score'] >= 5]
df_fail = df[df['score'] < 5]
fieldsOfInterest = ['age', 'IQ']
ind = np.arange(2)
for fieldOfInterest in fieldsOfInterest:
plt.figure()
plt.bar(ind, [df_pass[fieldOfInterest].mean(), df_fail[fieldOfInterest].mean()], yerr=[df_pass[fieldOfInterest].std(), df_fail[fieldOfInterest].std()])
stat, p = stats.ttest_ind(df_pass[fieldOfInterest], df_fail[fieldOfInterest])
plt.title("p={:0.3f}".format(p))
plt.xticks(ind, ('pass', 'fail'))
plt.ylabel(fieldOfInterest)
plt.show()
You can use pandas builtin plot function alongside groupby:
# First make your conditions using np.select
df["group"] = np.select([df["score"].ge(5), df["score"].lt(5)], ["pass", "fail"])
# Create a groupby
gb = df.groupby('group')
for col in ["age", "IQ"]:
# Get p value, mean, and std for each column
_, p = stats.ttest_ind(*[g[col] for n, g in gb])
means = gb[col].mean()
errors = gb[col].std()
# Plot using pandas.plot
fig, ax = plt.subplots()
means.plot.bar(yerr=errors, ax=ax)
ax.set(ylabel=col, title="p={:.3f}".format(p))
Results in:

Seaborn clustermap show only axis labels for genes with high z-value

I am generating heatmaps for expression matrices containing 1000-15000 genes and I'm only interested in the subset of highly expressed genes. Is there a way to show labels only for the ones with high z-values?
Right now I'm just setting a very small font for the x-axis, but that's not a scalable solution.
Example code:
import numpy as np
import pandas as pd
import seaborn as sns; sns.set(color_codes=True)
from functools import reduce
df = pd.DataFrame(np.random.randn(200, 4), columns=['cell_1', 'cell_2', 'cell_3', 'cell_4',])
idx=([f'Gene {i}' for i in range(0, 200)])
df['gene'] = idx
df.set_index('gene', inplace=True)
g = sns.clustermap(df.transpose(), method='average', metric='correlation', z_score=0, figsize=(15,15), xticklabels=True)
g.ax_heatmap.set_xticklabels(g.ax_heatmap.get_xmajorticklabels(), fontsize = 5)
Example heatmap with too many gene labels
I'd like to get a more readable x-axis, where only labels for genes with high z-values are shown.
Thank you!
Here is a quick and dirty attempt.
You can make it cleaner or with better perfs, but you get the idea.
It might be better to have a look at this matplotlib doc link it explains how to make custom annotations to heatmap and might be of use.
You also may consider working on your dataframe first and only plot relevant data (dataframe "filtering")
Result:
Code:
import numpy as np
import pandas as pd
import seaborn as sns; sns.set(color_codes=True)
from functools import reduce
total_genes = 50
df = pd.DataFrame(np.random.randn(total_genes, 4), columns=['cell_1', 'cell_2', 'cell_3', 'cell_4',])
idx=([f'Gene {i}' for i in range(0, total_genes)])
df['gene'] = idx
df.set_index('gene', inplace=True)
transposed = df.transpose()
# print(transposed)
g = sns.clustermap(transposed, method='average', metric='correlation', z_score=0, figsize=(15,15), xticklabels=True)
g.ax_heatmap.set_xticklabels(g.ax_heatmap.get_xmajorticklabels())#, fontsize = 5)
# tmp = g.ax_heatmap.get_xaxis()
threshold = 1.2
x_labels_ticks = g.ax_heatmap.get_xticklabels()
total_genes_above_threshold = 0
for i, xtickdata in enumerate(x_labels_ticks):
gene = xtickdata._text
if transposed[gene].max() >= threshold:
# print("gene {} has at least one value > {}".format(xtickdata, threshold))
# print(transposed[gene])
# print("#########")
total_genes_above_threshold = total_genes_above_threshold + 1
else:
xtickdata._text = ''
print("total_genes_above_threshold {}".format(total_genes_above_threshold))
# re set the tick labels with the modified list
g.ax_heatmap.set_xticklabels(x_labels_ticks)

Plotting CDF of a pandas series in python

Is there a way to do this? I cannot seem an easy way to interface pandas series with plotting a CDF.
I believe the functionality you're looking for is in the hist method of a Series object which wraps the hist() function in matplotlib
Here's the relevant documentation
In [10]: import matplotlib.pyplot as plt
In [11]: plt.hist?
...
Plot a histogram.
Compute and draw the histogram of *x*. The return value is a
tuple (*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*,
[*patches0*, *patches1*,...]) if the input contains multiple
data.
...
cumulative : boolean, optional, default : False
If `True`, then a histogram is computed where each bin gives the
counts in that bin plus all bins for smaller values. The last bin
gives the total number of datapoints. If `normed` is also `True`
then the histogram is normalized such that the last bin equals 1.
If `cumulative` evaluates to less than 0 (e.g., -1), the direction
of accumulation is reversed. In this case, if `normed` is also
`True`, then the histogram is normalized such that the first bin
equals 1.
...
For example
In [12]: import pandas as pd
In [13]: import numpy as np
In [14]: ser = pd.Series(np.random.normal(size=1000))
In [15]: ser.hist(cumulative=True, density=1, bins=100)
Out[15]: <matplotlib.axes.AxesSubplot at 0x11469a590>
In [16]: plt.show()
In case you are also interested in the values, not just the plot.
import pandas as pd
# If you are in jupyter
%matplotlib inline
This will always work (discrete and continuous distributions)
# Define your series
s = pd.Series([9, 5, 3, 5, 5, 4, 6, 5, 5, 8, 7], name = 'value')
df = pd.DataFrame(s)
# Get the frequency, PDF and CDF for each value in the series
# Frequency
stats_df = df \
.groupby('value') \
['value'] \
.agg('count') \
.pipe(pd.DataFrame) \
.rename(columns = {'value': 'frequency'})
# PDF
stats_df['pdf'] = stats_df['frequency'] / sum(stats_df['frequency'])
# CDF
stats_df['cdf'] = stats_df['pdf'].cumsum()
stats_df = stats_df.reset_index()
stats_df
# Plot the discrete Probability Mass Function and CDF.
# Technically, the 'pdf label in the legend and the table the should be 'pmf'
# (Probability Mass Function) since the distribution is discrete.
# If you don't have too many values / usually discrete case
stats_df.plot.bar(x = 'value', y = ['pdf', 'cdf'], grid = True)
Alternative example with a sample drawn from a continuous distribution or you have a lot of individual values:
# Define your series
s = pd.Series(np.random.normal(loc = 10, scale = 0.1, size = 1000), name = 'value')
# ... all the same calculation stuff to get the frequency, PDF, CDF
# Plot
stats_df.plot(x = 'value', y = ['pdf', 'cdf'], grid = True)
For continuous distributions only
Please note if it is very reasonable to make the assumption that there is only one occurence of each value in the sample (typically encountered in the case of continuous distributions) then the groupby() + agg('count') is not necessary (since the count is always 1).
In this case, a percent rank can be used to get to the cdf directly.
Use your best judgment when taking this kind of shortcut! :)
# Define your series
s = pd.Series(np.random.normal(loc = 10, scale = 0.1, size = 1000), name = 'value')
df = pd.DataFrame(s)
# Get to the CDF directly
df['cdf'] = df.rank(method = 'average', pct = True)
# Sort and plot
df.sort_values('value').plot(x = 'value', y = 'cdf', grid = True)
A CDF or cumulative distribution function plot is basically a graph with on the X-axis the sorted values and on the Y-axis the cumulative distribution. So, I would create a new series with the sorted values as index and the cumulative distribution as values.
First create an example series:
import pandas as pd
import numpy as np
ser = pd.Series(np.random.normal(size=100))
Sort the series:
ser = ser.sort_values()
Now, before proceeding, append again the last (and largest) value. This step is important especially for small sample sizes in order to get an unbiased CDF:
ser[len(ser)] = ser.iloc[-1]
Create a new series with the sorted values as index and the cumulative distribution as values:
cum_dist = np.linspace(0.,1.,len(ser))
ser_cdf = pd.Series(cum_dist, index=ser)
Finally, plot the function as steps:
ser_cdf.plot(drawstyle='steps')
I came here looking for a plot like this with bars and a CDF line:
It can be achieved like this:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
series = pd.Series(np.random.normal(size=10000))
fig, ax = plt.subplots()
ax2 = ax.twinx()
n, bins, patches = ax.hist(series, bins=100, normed=False)
n, bins, patches = ax2.hist(
series, cumulative=1, histtype='step', bins=100, color='tab:orange')
plt.savefig('test.png')
If you want to remove the vertical line, then it's explained how to accomplish that here. Or you could just do:
ax.set_xlim((ax.get_xlim()[0], series.max()))
I also saw an elegant solution here on how to do it with seaborn.
This is the easiest way.
import pandas as pd
df = pd.Series([i for i in range(100)])
df.hist( cumulative = True )
Image of cumulative histogram
I found another solution in "pure" Pandas, that does not require specifying the number of bins to use in a histogram:
import pandas as pd
import numpy as np # used only to create example data
series = pd.Series(np.random.normal(size=10000))
cdf = series.value_counts().sort_index().cumsum()
cdf.plot()
To me, this seemed like a simply way to do it:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
heights = pd.Series(np.random.normal(size=100))
# empirical CDF
def F(x,data):
return float(len(data[data <= x]))/len(data)
vF = np.vectorize(F, excluded=['data'])
plt.plot(np.sort(heights),vF(x=np.sort(heights), data=heights))
I really like the answer by Raphvanns. It is helpful because it not only produces the plot, but it also helps me understand what pdf, cdf, and ccdf is.
I have two things to add to Raphvanns's solution: (1) use collections.Counter wisely to make the process easier; (2) remember to sort (assending) value before calculating pdf, cdf, and ccdf.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
Generate random numbers:
s = pd.Series(np.random.randint(1000, size=(1000)))
Build a dataframe as Raphvanns suggested:
dic = dict(Counter(s))
df = pd.DataFrame(s.items(), columns = ['value', 'frequency'])
Calculate PDF, CDF, and CCDF:
df['pdf'] = df.frequency/sum(df.frequency)
df['cdf'] = df['pdf'].cumsum()
df['ccdf'] = 1-df['cdf']
Plot:
df.plot(x = 'value', y = ['cdf', 'ccdf'], grid = True)
You may wonder why we have to sort the value before calculating PDF, CDF, and CCDF. Well, let's say what would the results be if we don't sort them (note that dict(Counter(s)) automatically sorted the items, we will make the order random in the following).
dic = dict(Counter(s))
df = pd.DataFrame(s.items(), columns = ['value', 'frequency'])
# randomize the order of `value`:
df = df.sample(n=1000)
df['pdf'] = df.frequency/sum(df.frequency)
df['cdf'] = df['pdf'].cumsum()
df['ccdf'] = 1-df['cdf']
df.plot(x = 'value', y = ['cdf'], grid = True)
This is the plot:
Why did it happen? Well, the essence of CDF is "The number of data points we have seen so far", citing YY's lecture slides of his Data Visualization class. Therefore, if the order of value is not sorted (either ascending or descending is fine), then when you plot, where x axis is in ascending order, the y value of course will be just a mess.
If you apply a descending order, you can imagine that the CDF and CCDF will just swap their places:
I will leave a question to the readers of this post: if I randomize the order of value like above, will sorting value after (rather than before) calculating PDF, CDF, and CCDF solve the problem?
dic = dict(Counter(s))
df = pd.DataFrame(s.items(), columns = ['value', 'frequency'])
# randomize the order of `value`:
df = df.sample(n=1000)
df['pdf'] = df.frequency/sum(df.frequency)
df['cdf'] = df['pdf'].cumsum()
df['ccdf'] = 1-df['cdf']
# Will this solve the problem?
df = df.sort_values(by='value')
df.plot(x = 'value', y = ['cdf'], grid = True)
Upgrading the answer of #wroscoe
df[your_column].plot(kind = 'hist', histtype = 'step', density = True, cumulative = True)
You can also provide a number of desired bins.
If you're looking to plot a "true" empirical CDF, which jumps exactly at the values of your data set a, and with the jump at each value proportional to the frequency of the value, NumPy has builtin functions to do the work:
import matplotlib.pyplot as plt
import numpy as np
def ecdf(a):
x, counts = np.unique(a, return_counts=True)
y = np.cumsum(counts)
x = np.insert(x, 0, x[0])
y = np.insert(y/y[-1], 0, 0.)
plt.plot(x, y, drawstyle='steps-post')
plt.grid(True)
plt.savefig('ecdf.png')
The call to unique() returns the data values in sorted order along with their corresponding frequencies. The option drawstyle='steps-post' in the plot() call ensures that the jumps occur where they should. To force a jump at the smallest data value, the code inserts an additional element in front of x and y.
Example usage:
xvec = np.array([7,1,2,2,7,4,4,4,5.5,7])
ecdf(xvec)
Another usage:
df = pd.DataFrame({'x':[7,1,2,2,7,4,4,4,5.5,7]})
ecdf(df['x'])
with output:

Step plot by reading from file

I am a newbie to matplotlib. I am trying to plot step function and having some trouble. Right now I am able to read from the file and plot it as shown below. But the graph in the top is not in steps and the one below is not a proper step. I saw examples to plot step function by giving x & y value. I am not sure how to do it by reading from a file though. Can someone help me?
from pylab import plotfile, show, gca
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
fname = cbook.get_sample_data('sample.csv', asfileobj=False)
plotfile(fname, cols=(0,1), delimiter=' ')
plotfile(fname, cols=(0,2), newfig=False, delimiter=' ')
plt.show()
Sample inputs(3 columns):
27023927 3 0
27023938 2 0
27023949 3 0
27023961 2 0
27023972 3 0
27023984 2 0
27023995 3 0
27024007 2 0
27024008 2 1
27024018 3 1
27024030 2 1
27024031 2 0
27024041 3 0
27024053 2 0
27024054 2 1
27024098 2 0
Note: I have made the y-axis1 values as 3 & 2 so that this graph can occur in the top and another y-axis2 values 0 & 1 so that it comes in the bottom as shown below
Waveform as it looks now
Essentially your resolution is too low, for the lower plot the steps (except the last one) occur over 1 unit in x, while the steps are about an order of magnitude larger. This gives the appearance of steps while if you zoom in you will see the vertical lines have a non-infinite gradient (true steps change with an infinite gradient).
This is the same problem for both the top and bottom plots. We can easily remedy this by using the step function. You will generally find it easier to import the data, in this example I use the powerful numpy genfromtxt. This loads the data as an array data:
import numpy as np
import matplotlib.pylab as plt
data = np.genfromtxt('test.csv', delimiter=" ")
ax1 = plt.subplot(2,1,1)
ax1.step(data[:,0], data[:,1])
ax2 = plt.subplot(2,1,2)
ax2.step(data[:,0], data[:,2])
plt.show()
If you are new to python then there may be two things to mention, we use two subplots (ax1 and ax2) to plot the data rather than plotting on the same plot (this means you wouldn't need to add values to spatially separate them). We access the elements of the array through the [] this gives the [column, row] with : meaning all columns and and index i being the ith column
I would propose to load the data to a numpy array
import numpy as np
data = np.loadtxt('sample.csv')
And than plot it:
# first point
ax = [data[0,0]]
ay = [data[0,1]]
for i in range(1, data.shape[0]):
if ay[-1] != data[i,1]: # if y value has changed
# add current x and old y
ax.append(data[i,0])
ay.append(ay[-1])
# add current x and current y
ax.append(data[i,0])
ay.append(data[i,1])
import matplotlib.pyplot as plt
plt.plot(ax,ay)
plt.show()
What my solution differs from yours, is that I plot two points for every change in y. The two points produce this 90 degree bend. I Only plot the first curve. Change [?,1] to [?,2] for the second one.
Thanks for the suggestions. I was able to plot it after some research and here is my code,
import csv
import datetime
import matplotlib.pyplot as plt
import numpy as np
import dateutil.relativedelta as rd
import bisect
import scipy as sp
fname = "output.csv"
portfolio_list = []
x = []
a = []
b = []
portfolio = csv.DictReader(open(fname, "r"))
portfolio_list.extend(portfolio)
for data in portfolio_list:
x.append(data['i'])
a.append(data['a'])
b.append(data['b'])
stepList = [0, 1,2,3]
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
plt.step(x, a, 'g', where='post')
plt.step(x, b, 'r', where='post')
plt.show()
and got the image like,

Categories

Resources