Related
I want to perform a probability Weibull fit with 0.95% confidence bounds by means of Python. As test data, I use fail cycles of a measurement which are plotted against the reliability R(t).
So far, I found a way to perform the Weibull fit, however, I still do not manage to get the confidence bounds. The Weibull plot with the same test data set was already performed with origin, therfore I know which shape I would "expect" for the confidence interval. But I do not understand how to get there.
I found information about Weibull confidence intervals on reliawiki(cf. Bounds on Reliability based on Fisher Matrix confidence bounds) and used the description there to calculate the variance and the upper and lower confidence bound (R_U and R_L).
Here is a working code example for my Weibull fit and my confidence bounds with the test data set based on the discription of reliawiki (cf. Bounds on Reliability). For the fit, I used a OLS model fit.
import os, sys
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from scipy.optimize import curve_fit
import math
import statsmodels.api as sm
def weibull_ticks(y, pos):
return "{:.0f}%".format(100 * (1 - np.exp(-np.exp(y))))
def loglog(x):
return np.log(-np.log(1 - np.asarray(x)))
class weibull_example(object):
def __init__(self, dat):
self.fits = {}
dat.index = np.arange(1, len(dat) + 1)
dat.sort_values('data', inplace=True)
#define yaxis-values
dat['percentile'] = dat.index*1/len(dat)
self.data = dat
self.fit()
self.plot_data()
def fit(self):
#fit the data points with a the OLS model
self.data=self.data[:-1]
x0 = np.log(self.data.dropna()['data'].values)
Y = loglog(self.data.dropna()['percentile'])
Yx = sm.add_constant(Y)
model = sm.OLS(x0, Yx)
results = model.fit()
yy = loglog(np.linspace(.001, .999, 100))
YY = sm.add_constant(yy)
XX = np.exp(results.predict(YY))
self.eta = np.exp(results.params[0])
self.beta = 1 / results.params[1]
self.fits['syx'] = {'results': results, 'model': model,
'line': np.row_stack([XX, yy]),
'beta': self.beta,
'eta': self.eta}
cov = results.cov_params()
#get variance and covariance
self.beta_var = cov[1, 1]
self.eta_var = cov[0, 0]
self.cov = cov[1, 0]
def plot_data(self, fit='yx'):
dat = self.data
#plot data points
plt.semilogx(dat['data'], loglog(dat['percentile']), 'o')
fit = 's' + fit
self.plot_fit(fit)
ax = plt.gca()
formatter = mpl.ticker.FuncFormatter(weibull_ticks)
ax.yaxis.set_major_formatter(formatter)
yt_F = np.array([0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 0.95, 0.99])
yt_lnF = loglog(yt_F)
plt.yticks(yt_lnF)
plt.ylim(loglog([.01, .99]))
def plot_fit(self, fit='syx'):
dat = self.fits[fit]['line']
plt.plot(dat[0], dat[1])
#calculate variance to get confidence bound
def variance(x):
return (math.log(x) - math.log(self.eta)) ** 2 * self.beta_var + \
(self.beta/self.eta) ** 2 * self.eta_var - \
2 * (math.log(x) - math.log(self.eta)) * (-self.beta/self.eta) * self.cov
#calculate confidence bounds
def confidence_upper(x):
return 1-np.exp(-np.exp(self.beta*(math.log(x)-math.log(self.eta)) - 0.95*np.sqrt(variance(x))))
def confidence_lower(x):
return 1-np.exp(-np.exp(self.beta*(math.log(x)-math.log(self.eta)) + 0.95*np.sqrt(variance(x))))
yvals_1 = list(map(confidence_upper, dat[0]))
yvals_2 = list(map(confidence_lower, dat[0]))
#plot confidence bounds
plt.semilogx(dat[0], loglog(yvals_1), linestyle="solid", color="black", linewidth=2,
label="fit_u_1", alpha=0.8)
plt.semilogx(dat[0], loglog(yvals_2), linestyle="solid", color="green", linewidth=2,
label="fit_u_1", alpha=0.8)
def main():
fig, ax1 = plt.subplots()
ax1.set_xlabel("$Cycles\ til\ Failure$")
ax1.set_ylabel("$Weibull\ Percentile$")
#my data points
data = pd.DataFrame({'data': [1556, 2595, 11531, 38079, 46046, 57357]})
weibull_example(data)
plt.savefig("Weibull.png")
plt.close(fig)
if __name__ == "__main__":
main()
The confidence bounds in my plot look not like I expected. I tried a lot of different 'variances', just to understand the function and to check, if the problem is just a typing error. Meanwhile, I am convinced that the problem is more general and that I understood something false from the description on reliawiki. Unfortunately, I really do not get what's the problem and I do not know anyone else I can ask. In the internet and on different forums, I did not find an appropriate answer.
That's why I decided to ask this question here. It's the first time I ask a question in a forum. Therefore, I hope that I explained everything sufficiently and that the code example is useful.
Thank you very much :)
Apologies for the very late answer, but I'll provide it for any future readers.
Rather than try implementing this yourself, you may want to consider using a package designed for exactly this called reliability.
Here is the example for your use case.
Remember to upvote this answer if it helps you :)
Edit:
Modeling and fitting with this approach work fine, the data in here is not good.-------------------
I want to do a curve-fitting on a complex dataset. After thorough reading and searching, I found that i can use a couple of methods (e.g. lmfit optimize, scipy leastsq).
But none gives me a good fit at all.
here is the fit equation:
here is the data to be fitted (list of y values):
[(0.00011342104914066835+8.448890220616275e-07j),
(0.00011340386404065371+7.379293582429708e-07j),
(0.0001133540327309949+6.389834505824625e-07j),
(0.00011332170913939336+5.244566142401774e-07j),
(0.00011331311156154074+4.3841061618015007e-07j),
(0.00011329383047059048+3.6163513508002877e-07j),
(0.00011328700094846502+3.0542249453666894e-07j),
(0.00011327650033983806+2.548725558622188e-07j),
(0.00011327702539337786+2.2508174567697671e-07j),
(0.00011327342238146558+1.9607648998100523e-07j),
(0.0001132710747364799+1.721721661949941e-07j),
(0.00011326933241850936+1.5246061350710235e-07j),
(0.00011326798040984542+1.3614817802178457e-07j),
(0.00011326752037650585+1.233483784504962e-07j),
(0.00011326758290166552+1.1258801448459512e-07j),
(0.00011326813100914905+1.0284749122099354e-07j),
(0.0001132684076390416+9.45791423595816e-08j),
(0.00011326982474882009+8.733105218572698e-08j),
(0.00011327158639135678+8.212191452217794e-08j),
(0.00011327366823516856+7.747920115589205e-08j),
(0.00011327694366034208+7.227069986108343e-08j),
(0.00011327915327873038+6.819405851172907e-08j),
(0.00011328181165961218+6.468392148750885e-08j),
(0.00011328531688122571+6.151393311227958e-08j),
(0.00011328857849500441+5.811704586613896e-08j),
(0.00011329241716561626+5.596645863242474e-08j),
(0.0001132970129528527+5.4722461511610696e-08j),
(0.0001133002881788021+5.064523218904898e-08j),
(0.00011330507671740223+5.0307457368330284e-08j),
(0.00011331106068787993+4.7703959367963307e-08j),
(0.00011331577350707601+4.634615394867111e-08j),
(0.00011332064001939156+4.6914747648361504e-08j),
(0.00011333034985824086+4.4992151257444304e-08j),
(0.00011334188526870483+4.363662798446445e-08j),
(0.00011335491299924776+4.364164366097129e-08j),
(0.00011337451201475147+4.262881852644385e-08j),
(0.00011339778209066752+4.275096587356569e-08j),
(0.00011342832992628646+4.4463907608604945e-08j),
(0.00011346526768580432+4.35706649329342e-08j),
(0.00011351108008292451+4.4155812379491554e-08j),
(0.00011356967192325835+4.327004709646922e-08j),
(0.00011364164970635006+4.420660396556604e-08j),
(0.00011373150199883139+4.3672898914161596e-08j),
(0.00011384660942003356+4.326171366194325e-08j),
(0.00011399193321804955+4.1493065523925126e-08j),
(0.00011418043916260295+4.0762418512759096e-08j),
(0.00011443271767970721+3.91359909722939e-08j),
(0.00011479600563688605+3.845666332695652e-08j),
(0.0001153652105925112+3.6224677316584614e-08j),
(0.00011638635682516399+3.386843079212692e-08j),
(0.00011836223959714231+3.6692295450490655e-08j)]
here is the list of x values:
[999.9999960000001,
794.328231,
630.957342,
501.18723099999994,
398.107168,
316.22776400000004,
251.188642,
199.52623,
158.489318,
125.89254,
99.999999,
79.432823,
63.095734,
50.118722999999996,
39.810717,
31.622776,
25.118864000000002,
19.952623000000003,
15.848932000000001,
12.589253999999999,
10.0,
7.943282000000001,
6.309573,
5.011872,
3.981072,
3.1622779999999997,
2.511886,
1.9952619999999999,
1.584893,
1.258925,
1.0,
0.7943279999999999,
0.630957,
0.5011869999999999,
0.398107,
0.316228,
0.251189,
0.199526,
0.15848900000000002,
0.125893,
0.1,
0.079433,
0.063096,
0.050119,
0.039811,
0.031623000000000005,
0.025119,
0.019953,
0.015849000000000002,
0.012589,
0.01]
and here is the code which works but not the way I want:
import numpy as np
import matplotlib.pyplot as plt
from lmfit import minimize, Parameters
#%% the equation
def ColeCole(params, fr): #fr is x values array and params are the fitting parameters
sig0 = params['sig0']
m = params['m']
tau = params['tau']
c = params['c']
w = fr*2*np.pi
num = 1
denom = 1+(1j*w*tau)**c
sigComplex = sig0*(1.0+(m/(1-m))*(1-num/denom))
return sigComplex
def res(params, fr, data): #calculating reseduals of fit
resedual = ColeCole(params, fr) - data
return resedual.view(np.float)
#%% Adding model parameters and fitting
params = Parameters()
params.add('sig0', value=0.00166)
params.add('m', value=0.19,)
params.add('tau', value=0.05386)
params.add('c', value=0.80)
params['tau'].min = 0 # these conditions must be met but even if I remove them the fit is ugly!!
params['m'].min = 0
out= minimize(res, params , args= (np.array(fr2), np.array(data)))
#%%plotting Imaginary part
fig, ax = plt.subplots()
plotX = fr2
plotY = data.imag
fitplot = ColeCole(out.params, fr2)
ax.semilogx(plotX,plotY,'o',label='imc')
ax.semilogx(plotX,fitplot.imag,label='fit')
#%%plotting real part
fig2, ax2 = plt.subplots()
plotX2 = fr2
plotY2 = data.real
fitplot2 = ColeCole(out.params, fr2)
ax2.semilogx(plotX2,plotY2,'o',label='imc')
ax2.semilogx(plotX2,fitplot2.real,label='fit')
I might be doing it completely wrong, please help me if you know the proper solution to do a curve fitting on complex data.
I would suggest first converting the complex data to numpy arrays and get real, imag pairs separately and then using lmfit Model to model that same sort of data. Perhaps something like this:
cdata = np.array((0.00011342104914066835+8.448890220616275e-07j,
0.00011340386404065371+7.379293582429708e-07j,
0.0001133540327309949+6.389834505824625e-07j,
0.00011332170913939336+5.244566142401774e-07j,
0.00011331311156154074+4.3841061618015007e-07j,
0.00011329383047059048+3.6163513508002877e-07j,
0.00011328700094846502+3.0542249453666894e-07j,
0.00011327650033983806+2.548725558622188e-07j,
0.00011327702539337786+2.2508174567697671e-07j,
0.00011327342238146558+1.9607648998100523e-07j,
0.0001132710747364799+1.721721661949941e-07j,
0.00011326933241850936+1.5246061350710235e-07j,
0.00011326798040984542+1.3614817802178457e-07j,
0.00011326752037650585+1.233483784504962e-07j,
0.00011326758290166552+1.1258801448459512e-07j,
0.00011326813100914905+1.0284749122099354e-07j,
0.0001132684076390416+9.45791423595816e-08j,
0.00011326982474882009+8.733105218572698e-08j,
0.00011327158639135678+8.212191452217794e-08j,
0.00011327366823516856+7.747920115589205e-08j,
0.00011327694366034208+7.227069986108343e-08j,
0.00011327915327873038+6.819405851172907e-08j,
0.00011328181165961218+6.468392148750885e-08j,
0.00011328531688122571+6.151393311227958e-08j,
0.00011328857849500441+5.811704586613896e-08j,
0.00011329241716561626+5.596645863242474e-08j,
0.0001132970129528527+5.4722461511610696e-08j,
0.0001133002881788021+5.064523218904898e-08j,
0.00011330507671740223+5.0307457368330284e-08j,
0.00011331106068787993+4.7703959367963307e-08j,
0.00011331577350707601+4.634615394867111e-08j,
0.00011332064001939156+4.6914747648361504e-08j,
0.00011333034985824086+4.4992151257444304e-08j,
0.00011334188526870483+4.363662798446445e-08j,
0.00011335491299924776+4.364164366097129e-08j,
0.00011337451201475147+4.262881852644385e-08j,
0.00011339778209066752+4.275096587356569e-08j,
0.00011342832992628646+4.4463907608604945e-08j,
0.00011346526768580432+4.35706649329342e-08j,
0.00011351108008292451+4.4155812379491554e-08j,
0.00011356967192325835+4.327004709646922e-08j,
0.00011364164970635006+4.420660396556604e-08j,
0.00011373150199883139+4.3672898914161596e-08j,
0.00011384660942003356+4.326171366194325e-08j,
0.00011399193321804955+4.1493065523925126e-08j,
0.00011418043916260295+4.0762418512759096e-08j,
0.00011443271767970721+3.91359909722939e-08j,
0.00011479600563688605+3.845666332695652e-08j,
0.0001153652105925112+3.6224677316584614e-08j,
0.00011638635682516399+3.386843079212692e-08j,
0.00011836223959714231+3.6692295450490655e-08j))
fr = np.array((999.9999960000001, 794.328231, 630.957342,
501.18723099999994, 398.107168, 316.22776400000004,
251.188642, 199.52623, 158.489318, 125.89254, 99.999999,
79.432823, 63.095734, 50.118722999999996, 39.810717,
31.622776, 25.118864000000002, 19.952623000000003,
15.848932000000001, 12.589253999999999, 10.0,
7.943282000000001, 6.309573, 5.011872, 3.981072,
3.1622779999999997, 2.511886, 1.9952619999999999, 1.584893,
1.258925, 1.0, 0.7943279999999999, 0.630957,
0.5011869999999999, 0.398107, 0.316228, 0.251189, 0.199526,
0.15848900000000002, 0.125893, 0.1, 0.079433, 0.063096,
0.050119, 0.039811, 0.031623000000000005, 0.025119, 0.019953,
0.015849000000000002, 0.012589, 0.01))
data = np.concatenate((cdata.real, cdata.imag))
# model function for lmfit
def colecole_function(x, sig0, m, tau, c):
w = x*2*np.pi
denom = 1+(1j*w*tau)**c
sig = sig0*(1.0+(m/(1.0-m))*(1-1.0/denom))
return np.concatenate((sig.real, sig.imag))
mod = Model(colecole_function)
params = mod.make_params(sig0=0.002, m=-0.19, tau=0.05, c=0.8)
params['tau'].min = 0
result = mod.fit(data, params, x=fr)
print(result.fit_report())
You would then want to plot the results like
nf = len(fr)
plt.plot(fr, data[:nf], label='data(real)')
plt.plot(fr, result.best_fit[:nf], label='fit(real)')
and similarly
plt.plot(fr, data[nf:], label='data(imag)')
plt.plot(fr, result.best_fit[nf:], label='fit(imag)')
Note that I think you're going to want to allow m to be negative (or maybe I misuderstand your model). I did not work carefully on getting a great fit, but I think this should get you started.
I'm trying to use PyMC3 to solve a fairly simple multinomial distribution. It works perfectly if I have the 'noise' value set to 0.0. However when I change it to anything else, for example 0.01, I get an error in the find_MAP() function and it hangs if I don't use find_MAP().
Is there some reason that the multinomial has to be sparse?
import numpy as np
from pymc3 import *
import pymc3 as mc
import pandas as pd
print 'pymc3 version: ' + mc.__version__
sample_size = 10
number_of_experiments = 1
true_probs = [0.2, 0.1, 0.3, 0.4]
k = len(true_probs)
noise = 0.0
y = np.random.multinomial(n=number_of_experiments, pvals=true_probs, size=sample_size)+noise
y_denominator = np.sum(y,axis=1)
y = y/y_denominator[:,None]
with Model() as multinom_test:
probs = Dirichlet('probs', a = np.ones(k), shape = k)
for i in range(sample_size):
data = Multinomial('data_%d' % (i),
n = y[i].sum(),
p = probs,
observed = y[i])
with multinom_test:
start = find_MAP()
trace = sample(5000, Slice())
trace[probs].mean(0)
Error:
ValueError: Optimization error: max, logp or dlogp at max have non-
finite values. Some values may be outside of distribution support.
max: {'probs_stickbreaking_': array([ 0.00000000e+00, -4.47034834e-
08, 0.00000000e+00])} logp: array(-inf) dlogp: array([
0.00000000e+00, 2.98023221e-08, 0.00000000e+00])Check that 1) you
don't have hierarchical parameters, these will lead to points with
infinite density. 2) your distribution logp's are properly specified.
Specific issues:
This works for me
sample_size = 10
number_of_experiments = 100
true_probs = [0.2, 0.1, 0.3, 0.4]
k = len(true_probs)
noise = 0.01
y = np.random.multinomial(n=number_of_experiments, pvals=true_probs, size=sample_size)+noise
with pm.Model() as multinom_test:
a = pm.Dirichlet('a', a=np.ones(k))
for i in range(sample_size):
data_pred = pm.Multinomial('data_pred_%s'% i, n=number_of_experiments, p=a, observed=y[i])
trace = pm.sample(50000, pm.Metropolis())
#trace = pm.sample(1000) # also works with NUTS
pm.traceplot(trace[500:]);
In scipy there is no support for fitting a negative binomial distribution using data
(maybe due to the fact that the negative binomial in scipy is only discrete).
For a normal distribution I would just do:
from scipy.stats import norm
param = norm.fit(samp)
Is there something similar 'ready to use' function in any other library?
Statsmodels has discrete.discrete_model.NegativeBinomial.fit(), see here:
https://www.statsmodels.org/dev/generated/statsmodels.discrete.discrete_model.NegativeBinomial.fit.html#statsmodels.discrete.discrete_model.NegativeBinomial.fit
Not only because it is discrete, also because maximum likelihood fit to negative binomial can be quite involving, especially with an additional location parameter. That would be the reason why .fit() method is not provided for it (and other discrete distributions in Scipy), here is an example:
In [163]:
import scipy.stats as ss
import scipy.optimize as so
In [164]:
#define a likelihood function
def likelihood_f(P, x, neg=1):
n=np.round(P[0]) #by definition, it should be an integer
p=P[1]
loc=np.round(P[2])
return neg*(np.log(ss.nbinom.pmf(x, n, p, loc))).sum()
In [165]:
#generate a random variable
X=ss.nbinom.rvs(n=100, p=0.4, loc=0, size=1000)
In [166]:
#The likelihood
likelihood_f([100,0.4,0], X)
Out[166]:
-4400.3696690513316
In [167]:
#A simple fit, the fit is not good and the parameter estimate is way off
result=so.fmin(likelihood_f, [50, 1, 1], args=(X,-1), full_output=True, disp=False)
P1=result[0]
(result[1], result[0])
Out[167]:
(4418.599495886474, array([ 59.61196161, 0.28650831, 1.15141838]))
In [168]:
#Try a different set of start paramters, the fit is still not good and the parameter estimate is still way off
result=so.fmin(likelihood_f, [50, 0.5, 0], args=(X,-1), full_output=True, disp=False)
P1=result[0]
(result[1], result[0])
Out[168]:
(4417.1495981801972,
array([ 6.24809397e+01, 2.91877405e-01, 6.63343536e-04]))
In [169]:
#In this case we need a loop to get it right
result=[]
for i in range(40, 120): #in fact (80, 120) should probably be enough
_=so.fmin(likelihood_f, [i, 0.5, 0], args=(X,-1), full_output=True, disp=False)
result.append((_[1], _[0]))
In [170]:
#get the MLE
P2=sorted(result, key=lambda x: x[0])[0][1]
sorted(result, key=lambda x: x[0])[0]
Out[170]:
(4399.780263084549,
array([ 9.37289361e+01, 3.84587087e-01, 3.36856705e-04]))
In [171]:
#Which one is visually better?
plt.hist(X, bins=20, normed=True)
plt.plot(range(260), ss.nbinom.pmf(range(260), np.round(P1[0]), P1[1], np.round(P1[2])), 'g-')
plt.plot(range(260), ss.nbinom.pmf(range(260), np.round(P2[0]), P2[1], np.round(P2[2])), 'r-')
Out[171]:
[<matplotlib.lines.Line2D at 0x109776c10>]
I know this thread is quite old, but current readers may want to look at this repo which is made for this purpose: https://github.com/gokceneraslan/fit_nbinom
There's also an implementation here, though part of a larger package: https://github.com/ernstlab/ChromTime/blob/master/optimize.py
I stumbled across this thread, and found an answer for anyone else wondering.
If you simply need the n, p parameterisation used by scipy.stats.nbinom you can convert the mean and variance estimates:
mu = np.mean(sample)
sigma_sqr = np.var(sample)
n = mu**2 / (sigma_sqr - mu)
p = mu / sigma_sqr
If you the dispersionparameter you can use a negative binomial regression model from statsmodels with just an interaction term. This will find the dispersionparameter alpha using MLE.
# Data processing
import pandas as pd
import numpy as np
# Analysis models
import statsmodels.formula.api as smf
from scipy.stats import nbinom
def convert_params(mu, alpha):
"""
Convert mean/dispersion parameterization of a negative binomial to the ones scipy supports
Parameters
----------
mu : float
Mean of NB distribution.
alpha : float
Overdispersion parameter used for variance calculation.
See https://en.wikipedia.org/wiki/Negative_binomial_distribution#Alternative_formulations
"""
var = mu + alpha * mu ** 2
p = mu / var
r = mu ** 2 / (var - mu)
return r, p
# Generate sample data
n = 2
p = 0.9
sample = nbinom.rvs(n=n, p=p, size=10000)
# Estimate parameters
## Mean estimates expectation parameter for negative binomial distribution
mu = np.mean(sample)
## Dispersion parameter from nb model with only interaction term
nbfit = smf.negativebinomial("nbdata ~ 1", data=pd.DataFrame({"nbdata": sample})).fit()
alpha = nbfit.params[1] # Dispersion parameter
# Convert parameters to n, p parameterization
n_est, p_est = convert_params(mu, alpha)
# Check that estimates are close to the true values:
print("""
{:<3} {:<3}
True parameters: {:<3} {:<3}
Estimates : {:<3} {:<3}""".format('n', 'p', n, p,
np.round(n_est, 2), np.round(p_est, 2)))
I am exploring the use of bounded distributions in pymc. I am trying to bound a Gamma prior distribution between two values. The model specification seems to fail due to the absence of test values. How may I pass a testval argument such that I am able to specify these sorts of models?
For completeness I have included the error, as well as a minimal example below. Thank you!
AttributeError: <pymc.quickclass.Gamma object at 0x110a62890> has no default value to use, checked for: ['median', 'mean', 'mode'] pass testval argument or provide one of these.
import pymc as pm
import numpy as np
ndims = 2
nobs = 20
zdata = np.random.normal(loc=0, scale=0.75, size=(ndims, nobs))
BoundedGamma = pm.Bound(pm.Gamma, 0.5, 2)
with pm.Model() as model:
xbound = BoundedGamma('xbound', alpha=1, beta=2)
z = pm.Normal('z', mu=0, tau=xbound, shape=(ndims, 1), observed=zdata)
edit: for reference purposes, here is a simple working model utilizing a bounded gamma prior distribution:
import pymc as pm
import numpy as np
ndims = 2
nobs = 20
zdata = np.random.normal(loc=0, scale=0.75, size=(ndims, nobs))
BoundedGamma = pm.Bound(pm.Gamma, 0.5, 2)
with pm.Model() as model:
xbound = BoundedGamma('xbound', alpha=1, beta=2, testval=2)
z = pm.Normal('z', mu=0, tau=xbound, shape=(ndims, 1), observed=zdata)
with model:
start = pm.find_MAP()
with model:
step = pm.NUTS()
with model:
trace = pm.sample(3000, step, start)
pm.traceplot(trace);
Use that line:
xbound = BoundedGamma('xbound', alpha=1, beta=2, testval=1)