Restricted integer partitions in Python - python

I want to find out how many ways there are to make 500 using only 1, 2, 5, 10, 20, 50, 100, and 200.
I understand that there exist greedy algorithms etc that can solve this type of question, but I want to be able to do it the following way:
The number of integer partitions of a given number, n, using only numbers from some set T, can be obtained from the coefficient of the xn term in the product of all (1-xt)-1, where t is in T.
To do this, note that the Taylor expansion of (1-xt)-1 equals (1+xt+x2t+...).
Here is the code I've written so far:
#################################
# First, define a function that returns the product of two
# polynomials. A list here
# represents a polynomial with the entry in a list corresponding to
# the coefficient of the power of x associated to that position, e.g.
# [1,2,3] = 1 + 2x + 3x^2.
#################################
def p(a,v):
"""(list,list) -> list"""
prodav = [0]*(len(a)+len(v)-1)
for n in range(len(a)):
for m in range(len(v)):
prodav[n+m] += v[m]*a[n]
return prodav
#################################
# Now, let a,b,c,...,h represent the first 501 terms in the Taylor
# expansion of 1/(1-x^n), where n gives the coin value, i.e
# 1,2,5,10,20,50,100,200 in pence. See the generating function
# section in https://en.wikipedia.org/wiki/Partition_(number_theory).
# Our function, p, multiplies all these polynomials together
# (when applied iteratively). As per the Wiki entry, the coefficient
# of x^t is equal to the number of possible ways t can be made,
# using only the denominations of change available, a so called
# 'restricted integer partition'. Note that it isn't necessary to
# consider the entire Taylor expansion since we only need the
# 500th power.
#################################
a = ( [1] ) * 501 # 1
b = ( [1] + [0] ) * 250 + [1] # 2
c = ( [1] + [0]*4 ) * 100 + [1] # 5
d = ( [1] + [0]*9 ) * 50 + [1] # 10
e = ( [1] + [0]*19 ) * 25 + [1] # 20
f = ( [1] + [0]*49 ) * 10 + [1] # 50
g = ( [1] + [0]*99 ) * 5 + [1] # 100
h = ( [1] + [0]*199 ) * 2 + [0]*101 # 200
x = p(h,p(g,p(f,p(e,p(d,p(c,p(b,a)))))))
print(x[500]) # = 6290871
My problem is that I'm not confident the answer this gives is correct. I've compared it to two other greedy algorithms whose outputs agree with each other, but not mine. Can anyone see where I might have gone wrong?

Related

Geometric series: calculate quotient and number of elements from sum and first & last element

Creating evenly spaced numbers on a log scale (a geometric progression) can easily be done for a given base and number of elements if the starting and final values of the sequence are known, e.g., with numpy.logspace and numpy.geomspace. Now assume I want to define the geometric progression the other way around, i.e., based on the properties of the resulting geometric series. If I know the sum of the series as well as the first and last element of the progression, can I compute the quotient and number of elements?
For instance, assume the first and last elements of the progression are and and the sum of the series should be equal to . I know from trial and error that it works out for n=9 and r≈1.404, but how could these values be computed?
You have enough information to solve it:
Sum of series = a + a*r + a*(r^2) ... + a*(r^(n-1))
= a*((r^n)-1)/(r-1)
= a*((last element * r) - 1)/(r-1)
Given the sum of series, a, and the last element, you can use the above equation to find the value of r.
Plugging in values for the given example:
50 = 1 * ((15*r)-1) / (r-1)
50r - 50 = 15r - 1
35r = 49
r = 1.4
Then, using sum of series = a*((r^n)-1)/(r-1):
50 = 1*((1.4^n)-1)(1.4-1)
21 = 1.4^n
n = log(21)/log(1.4) = 9.04
You can approximate n and recalculate r if n isn't an integer.
We have to reconstruct geometric progesssion, i.e. obtain a, q, m (here ^ means raise into power):
a, a * q, a * q^2, ..., a * q^(m - 1)
if we know first, last, total:
first = a # first item
last = a * q^(m - 1) # last item
total = a * (q^m - 1) / (q - 1) # sum
Solving these equation we can find
a = first
q = (total - first) / (total - last)
m = log(last / a) / log(q)
if you want to get number of items n, note that n == m + 1
Code:
import math
...
def Solve(first, last, total):
a = first
q = (total - first) / (total - last)
n = math.log(last / a) / math.log(q) + 1
return (a, q, n);
Fiddle
If you put your data (1, 15, 50) you'll get the solution
a = 1
q = 1.4
n = 9.04836151801382 # not integer
since n is not an integer you, probably want to adjust; let last == 15 be exact, when total can vary. In this case q = (last / first) ^ (1 / (n - 1)) and total = first * (q ^ n - 1) / (q - 1)
a = 1
q = 1.402850552006674
n = 9
total = 49.752 # now n is integer, but total <> 50
You have to solve the following two equations for r and n:
a:= An / Ao = r^(n - 1)
and
s:= Sn / Ao = (r^n - 1) / (r - 1)
You can eliminate n by
s = (r a - 1) / (r - 1)
and solve for r. Then n follows by log(a) / log(r) + 1.
In your case, from s = 50 and a = 15, we obtain r = 7/5 = 1.4 and n = 9.048...
It makes sense to round n to 9, but then r^8 = 15 (r ~ 1.40285) and r = 1.4 are not quite compatible.

How to perform a ranking selection in this Genetic Algorithm

I'm building a Genetic Algorithm to maximize this function: x^5 - 10x^3 + 30x - y^2 + 21y.
The code must be in binary and the bounds for x and y are [-2.5, 2.5]. To generate the initial population I made a 16 bit string for both x and y where:
The first bit represents the signal [0 or 1]
The the second and third bit represents the integer part [00, 01 or 10]
The rest represents the float part
This is the function that generates the initial population:
def generate_population(n_pop):
population = list()
for _ in range(n_pop):
aux = list()
for _ in range(2):
signal = bin(randint(0, 1))[2:]
int_part = bin(randint(0, 2))[2:].zfill(2)
float_part = bin(randint(0, 5000))[2:].zfill(13)
aux.append((signal+int_part+float_part))
population.append(aux)
return population
I also made a function that returns the binary number into float:
def convert_float(individual):
float_num = list()
for i in range(2):
signal = int(individual[i][0])
int_part = int(individual[i][1:3], 2)
float_part = int(individual[i][3:], 2) * (10 ** -4)
value = round(int_part + float_part, 4)
if value > 2.5:
value = 2.5
if signal == 1:
value = value * (-1)
float_num.append(value)
return float_num
And lastly this function that calculate the fitness of each individual:
def get_fitness(individual):
x = individual[0]
y = individual[1]
return x ** 5 - 10 * x ** 3 + 30 * x - y ** 2 + 21 * y
This is my main function:
def ga(n_pop=10, n_iter=10):
population = generate_population(n_pop)
best_fitness_id, best_fitness = 0, get_fitness(convert_float(population[0]))
for i in range(n_iter):
float_population = [convert_float(x) for x in population]
fitness_population = [get_fitness(x) for x in float_population]
for j in range(n_pop):
if fitness_population[j] > best_fitness:
best_fitness_id, best_fitness = j, fitness_population[j]
print(f'--> NEW BEST FOUND AT GENERATION {i}:')
print(f'{float_population[j]} = {fitness_population[j]}')
selected_parents = rank_selection()
# childrens = list()
# childrens = childrens + population[best_fitness_id] # ELITE
After running the program I have something like this:
The population looks like: [['0000001100110111', '0000110111110101'], ['0010011111101110', '1000100101001001'], ...
The float population: [[0.0823, 0.3573], [1.203, -0.2377], ...
And the fitness values: [9.839066068044746, 16.15145434928624, ...
I need help to build the rank_selection() function, I've been stuck in this selection for 2 days. I know is something 1/N, 2/N etc and I've seen tons of examples in multiple languages but I could not apply any of them to this particular algorithm and it MUST be rank selecion.
I already know how to perform crossover and mutation.

Need to reduce run time on creating a list of numbers based on a formula and a number n

Need a better way to create a list of numbers, so that the run time is less. Or probably figure out a better approach to my problem.
I'm running a code to create a series of numbers based on 2 formulas. Starting from 1, the formulas create the following numbers. The idea is to return the number n from the list that is created at the end. Even tough the formulas create the same number in some cases, only unique values remain, and the list is sorted to match. I use a while loop to create the list, and I believe that reducing the number of repetitions can help with my problem, but I can't figure out a way to effectively reduce it, without ruining the purpose of my code.
def dbl_linear(n):
x = 1
y = 0
z = 0
i = 0
u = []
u.append(x)
while i <= n:
x = (u)[i]
y = 2 * x + 1
u.append(y)
z = 3 * x + 1
u.append(z)
i = i + 1
u.sort()
uFix = set(u)
uFix = list(uFix)
uFix.sort()
return uFix[n]
print(dbl_linear(50))
These are the expected results. Which I get, but it takes too long.
dbl_linear(10), 22)
dbl_linear(20), 57)
dbl_linear(30), 91)
dbl_linear(50), 175)
Your function can be considerably simplified to:
Code:
def dbl_linear(n):
u = [1]
for i in range(n):
x = u[i]
u.extend((2 * x + 1, 3 * x + 1))
return sorted(set(u))[n]
Test Code:
assert dbl_linear(10) == 22
assert dbl_linear(20) == 57
assert dbl_linear(30) == 91
assert dbl_linear(50) == 175

Why is the computing of the value of pi using the Machin Formula giving a wrong value?

For my school project I was trying to compute the value of using different methods. One of the formula I found was the Machin Formula that can be calculated using the Taylor expansion of arctan(x).
I wrote the following code in python:
import decimal
count = pi = a = b = c = d = val1 = val2 = decimal.Decimal(0) #Initializing the variables
decimal.getcontext().prec = 25 #Setting percision
while (decimal.Decimal(count) <= decimal.Decimal(100)):
a = pow(decimal.Decimal(-1), decimal.Decimal(count))
b = ((decimal.Decimal(2) * decimal.Decimal(count)) + decimal.Decimal(1))
c = pow(decimal.Decimal(1/5), decimal.Decimal(b))
d = (decimal.Decimal(a) / decimal.Decimal(b)) * decimal.Decimal(c)
val1 = decimal.Decimal(val1) + decimal.Decimal(d)
count = decimal.Decimal(count) + decimal.Decimal(1)
#The series has been divided into multiple small parts to reduce confusion
count = a = b = c = d = decimal.Decimal(0) #Resetting the variables
while (decimal.Decimal(count) <= decimal.Decimal(10)):
a = pow(decimal.Decimal(-1), decimal.Decimal(count))
b = ((decimal.Decimal(2) * decimal.Decimal(count)) + decimal.Decimal(1))
c = pow(decimal.Decimal(1/239), decimal.Decimal(b))
d = (decimal.Decimal(a) / decimal.Decimal(b)) * decimal.Decimal(c)
val2 = decimal.Decimal(val2) + decimal.Decimal(d)
count = decimal.Decimal(count) + decimal.Decimal(1)
#The series has been divided into multiple small parts to reduce confusion
pi = (decimal.Decimal(16) * decimal.Decimal(val1)) - (decimal.Decimal(4) * decimal.Decimal(val2))
print(pi)
The problem is that I am getting the right value of pi only till 15 decimal places, no matter the number of times the loop repeats itself.
For example:
at 11 repetitions of the first loop
pi = 3.141592653589793408632493
at 100 repetitions of the first loop
pi = 3.141592653589793410703296
I am not increasing the repetitions of the second loop as arctan(1/239) is very small and reaches an extremely small value with a few repetitions and therefore should not affect the value of pi at only 15 decimal places.
EXTRA INFORMATION:
The Machin Formula states that:
π = (16 * Summation of (((-1)^n) / 2n+1) * ((1/5)^(2n+1))) - (4 * Summation of (((-1)^n) / 2n+1) * ((1/239)^(2n+1)))
That many terms is enough to get you over 50 decimal places. The problem is that you are mixing Python floats with Decimals, so your calculations are polluted with the errors in those floats, which are only precise to 53 bits (around 15 decimal digits).
You can fix that by changing
c = pow(decimal.Decimal(1/5), decimal.Decimal(b))
to
c = pow(1 / decimal.Decimal(5), decimal.Decimal(b))
or
c = pow(decimal.Decimal(5), decimal.Decimal(-b))
Obviously, a similar change needs to be made to
c = pow(decimal.Decimal(1/239), decimal.Decimal(b))
You could make your code a lot more readable. For starters, you should put the stuff that calculates the arctan series into a function, rather than duplicating it for arctan(1/5) and arctan(1/239).
Also, you don't need to use Decimal for everything. You can just use simple Python integers for things like count and a. Eg, your calculation for a can be written as
a = (-1) ** count
or you could just set a to 1 outside the loop and negate it each time through the loop.
Here's a more compact version of your code.
import decimal
decimal.getcontext().prec = 60 #Setting precision
def arccot(n, terms):
base = 1 / decimal.Decimal(n)
result = 0
sign = 1
for b in range(1, 2*terms, 2):
result += sign * (base ** b) / b
sign = -sign
return result
pi = 16 * arccot(5, 50) - 4 * arccot(239, 11)
print(pi)
output
3.14159265358979323846264338327950288419716939937510582094048
The last 4 digits are rubbish, but the rest are fine.

Solving Puzzle in Python

I got one puzzle and I want to solve it using Python.
Puzzle:
A merchant has a 40 kg weight which he used in his shop. Once, it fell
from his hands and was broken into 4 pieces. But surprisingly, now he
can weigh any weight between 1 kg to 40 kg with the combination of
these 4 pieces.
So question is, what are weights of those 4 pieces?
Now I wanted to solve this in Python.
The only constraint i got from the puzzle is that sum of 4 pieces is 40. With that I could filter all the set of 4 values whose sum is 40.
import itertools as it
weight = 40
full = range(1,41)
comb = [x for x in it.combinations(full,4) if sum(x)==40]
length of comb = 297
Now I need to check each set of values in comb and try all the combination of operations.
Eg if (a,b,c,d) is the first set of values in comb, I need to check a,b,c,d,a+b,a-b, .................a+b+c-d,a-b+c+d........ and so on.
I tried a lot, but i am stuck at this stage, ie how to check all these combination of calculations to each set of 4 values.
Question :
1) I think i need to get a list all possible combination of [a,b,c,d] and [+,-].
2) does anyone have a better idea and tell me how to go forward from here?
Also, I want to do it completely without help of any external libraries, need to use only standard libraries of python.
EDIT : Sorry for the late info. Its answer is (1,3,9,27), which I found a few years back. I have checked and verified the answer.
EDIT : At present, fraxel's answer works perfect with time = 0.16 ms. A better and faster approach is always welcome.
Regards
ARK
Earlier walk-through anwswer:
We know a*A + b*B + c*C + d*D = x for all x between 0 and 40, and a, b, c, d are confined to -1, 0, 1. Clearly A + B + C + D = 40. The next case is x = 39, so clearly the smallest move is to remove an element (it is the only possible move that could result in successfully balancing against 39):
A + B + C = 39, so D = 1, by neccessity.
next:
A + B + C - D = 38
next:
A + B + D = 37, so C = 3
then:
A + B = 36
then:
A + B - D = 35
A + B - C + D = 34
A + B - C = 33
A + B - C - D = 32
A + C + D = 31, so A = 9
Therefore B = 27
So the weights are 1, 3, 9, 27
Really this can be deduced immediately from the fact that they must all be multiples of 3.
Interesting Update:
So here is some python code to find a minimum set of weights for any dropped weight that will span the space:
def find_weights(W):
weights = []
i = 0
while sum(weights) < W:
weights.append(3 ** i)
i += 1
weights.pop()
weights.append(W - sum(weights))
return weights
print find_weights(40)
#output:
[1, 3, 9, 27]
To further illustrate this explaination, one can consider the problem as the minimum number of weights to span the number space [0, 40]. It is evident that the number of things you can do with each weight is trinary /ternary (add weight, remove weight, put weight on other side). So if we write our (unknown) weights (A, B, C, D) in descending order, our moves can be summarised as:
ABCD: Ternary:
40: ++++ 0000
39: +++0 0001
38: +++- 0002
37: ++0+ 0010
36: ++00 0011
35: ++0- 0012
34: ++-+ 0020
33: ++-0 0021
32: ++-- 0022
31: +0++ 0100
etc.
I have put ternary counting from 0 to 9 alongside, to illustrate that we are effectively in a trinary number system (base 3). Our solution can always be written as:
3**0 + 3**1 +3**2 +...+ 3**N >= Weight
For the minimum N that this holds true. The minimum solution will ALWAYS be of this form.
Furthermore, we can easily solve the problem for large weights and find the minimum number of pieces to span the space:
A man drops a known weight W, it breaks into pieces. His new weights allow him to weigh any weight up to W. How many weights are there, and what are they?
#what if the dropped weight was a million Kg:
print find_weights(1000000)
#output:
[1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 202839]
Try using permutations for a large weight and unknown number of pieces!!
Here is a brute-force itertools solution:
import itertools as it
def merchant_puzzle(weight, pieces):
full = range(1, weight+1)
all_nums = set(full)
comb = [x for x in it.combinations(full, pieces) if sum(x)==weight]
funcs = (lambda x: 0, lambda x: x, lambda x: -x)
for c in comb:
sums = set()
for fmap in it.product(funcs, repeat=pieces):
s = sum(f(x) for x, f in zip(c, fmap))
if s > 0:
sums.add(s)
if sums == all_nums:
return c
>>> merchant_puzzle(40, 4)
(1, 3, 9, 27)
For an explanation of how it works, check out the answer Avaris gave, this is an implementation of the same algorithm.
You are close, very close :).
Since this is a puzzle you want to solve, I'll just give pointers. For this part:
Eg if (a,b,c,d) is the first set of values in comb, i need to check
a,b,c,d,a+b,a-b, .................a+b+c-d,a-b+c+d........ and so on.
Consider this: Each weight can be put to one scale, the other or neither. So for the case of a, this can be represented as [a, -a, 0]. Same with the other three. Now you need all possible pairings with these 3 possibilities for each weight (hint: itertools.product). Then, a possible measuring of a pairing (lets say: (a, -b, c, 0)) is merely the sum of these (a-b+c+0).
All that is left is just checking if you could 'measure' all the required weights. set might come handy here.
PS: As it was stated in the comments, for the general case, it might not be necessary that these divided weights should be distinct (for this problem it is). You might reconsider itertools.combinations.
I brute forced the hell out of the second part.
Do not click this if you don't want to see the answer. Obviously, if I was better at permutations, this would have required a lot less cut/paste search/replace:
http://pastebin.com/4y2bHCVr
I don't know Python syntax, but maybe you can decode this Scala code; start with the 2nd for-loop:
def setTo40 (a: Int, b: Int, c: Int, d: Int) = {
val vec = for (
fa <- List (0, 1, -1);
fb <- List (0, 1, -1);
fc <- List (0, 1, -1);
fd <- List (0, 1, -1);
prod = fa * a + fb * b + fc * c + fd * d;
if (prod > 0)
) yield (prod)
vec.toSet
}
for (a <- (1 to 9);
b <- (a to 14);
c <- (b to 20);
d = 40-(a+b+c)
if (d > 0)) {
if (setTo40 (a, b, c, d).size > 39)
println (a + " " + b + " " + c + " " + d)
}
With weights [2, 5, 15, 18] you can also measure all objects between 1 and 40kg, although some of them will need to be measured indirectly. For example, to measure an object weighting 39kg, you would first compare it with 40kg and the balance would pend to the 40kg side (because 39 < 40), but then if you remove the 2kg weight it would pend to the other side (because 39 > 38) and thus you can conclude the object weights 39kg.
More interestingly, with weights [2, 5, 15, 45] you can measure all objects up to 67kg.
If anyone doesn't want to import a library to import combos/perms, this will generate all possible 4-move strategies...
# generates permutations of repeated values
def permutationsWithRepeats(n, v):
perms = []
value = [0] * n
N = n - 1
i = n - 1
while i > -1:
perms.append(list(value))
if value[N] < v:
value[N] += 1
else:
while (i > -1) and (value[i] == v):
value[i] = 0
i -= 1
if i > -1:
value[i] += 1
i = N
return perms
# generates the all possible permutations of 4 ternary moves
def strategy():
move = ['-', '0', '+']
perms = permutationsWithRepeats(4, 2)
for i in range(len(perms)):
s = ''
for j in range(4):
s += move[perms[i][j]]
print s
# execute
strategy()
My solution as follows:
#!/usr/bin/env python3
weight = 40
parts = 4
part=[0] * parts
def test_solution(p, weight,show_result=False):
cv=[0,0,0,0]
for check_weight in range(1,weight+1):
sum_ok = False
for parts_used in range(2 ** parts):
for options in range(2 ** parts):
for pos in range(parts):
pos_neg = int('{0:0{1}b}'.format(options,parts)[pos]) * 2 - 1
use = int('{0:0{1}b}'.format(parts_used,parts)[pos])
cv[pos] = p[pos] * pos_neg * use
if sum(cv) == check_weight:
if show_result:
print("{} = sum of:{}".format(check_weight, cv))
sum_ok = True
break
if sum_ok:
continue
else:
return False
return True
for part[0] in range(1,weight-parts):
for part[1] in range(part[0]+1, weight - part[0]):
for part[2] in range( part[1] + 1 , weight - sum(part[0:2])):
part[3] = weight - sum(part[0:3])
if test_solution(part,weight):
print(part)
test_solution(part,weight,True)
exit()
It gives you all the solutions for the given weights
More dynamic than my previous answer, so it also works with other numbers. But breaking up into 5 peaces takes some time:
#!/usr/bin/env python3
weight = 121
nr_of_parts = 5
# weight = 40
# nr_of_parts = 4
weight = 13
nr_of_parts = 3
part=[0] * nr_of_parts
def test_solution(p, weight,show_result=False):
cv=[0] * nr_of_parts
for check_weight in range(1,weight+1):
sum_ok = False
for nr_of_parts_used in range(2 ** nr_of_parts):
for options in range(2 ** nr_of_parts):
for pos in range(nr_of_parts):
pos_neg = int('{0:0{1}b}'.format(options,nr_of_parts)[pos]) * 2 - 1
use = int('{0:0{1}b}'.format(nr_of_parts_used,nr_of_parts)[pos])
cv[pos] = p[pos] * pos_neg * use
if sum(cv) == check_weight:
if show_result:
print("{} = sum of:{}".format(check_weight, cv))
sum_ok = True
break
if sum_ok:
continue
else:
return False
return True
def set_parts(part,position, nr_of_parts, weight):
if position == 0:
part[position] = 1
part, valid = set_parts(part,position+1,nr_of_parts,weight)
return part, valid
if position == nr_of_parts - 1:
part[position] = weight - sum(part)
if part[position -1] >= part[position]:
return part, False
return part, True
part[position]=max(part[position-1]+1,part[position])
part, valid = set_parts(part, position + 1, nr_of_parts, weight)
if not valid:
part[position]=max(part[position-1]+1,part[position]+1)
part=part[0:position+1] + [0] * (nr_of_parts - position - 1)
part, valid = set_parts(part, position + 1, nr_of_parts, weight)
return part, valid
while True:
part, valid = set_parts(part, 0, nr_of_parts, weight)
if not valid:
print(part)
print ('No solution posible')
exit()
if test_solution(part,weight):
print(part,' ')
test_solution(part,weight,True)
exit()
else:
print(part,' ', end='\r')

Categories

Resources