I have joined Machine Learning course on coursera. I am facing an issue while executing following command:
sales = graphlab.SFrame('home_data.gl/')
THe error is as follows:
IOError Traceback (most recent call last)
<ipython-input-9-e5b5a1ead746> in <module>()
----> 1 sales = graphlab.SFrame('home_data.gl')
C:\Users\admin\Anaconda2\envs\gl-env\lib\site-packages\graphlab
\data_structures\sframe.pyc in __init__(self, data, format, _proxy)
951 pass
952 else:
--> 953 raise ValueError('Unknown input type: ' + format)
954
955 sframe_size = -1
C:\Users\admin\Anaconda2\envs\gl-env\lib\site-packages\graphlab\cython\context.pyc in __exit__(self, exc_type, exc_value, traceback)
47 if not self.show_cython_trace:
48 # To hide cython trace, we re-raise from here
---> 49 raise exc_type(exc_value)
50 else:
51 # To show the full trace, we do nothing and let exception propagate
IOError: Cannot open C:/Users/admin/home_data.gl/dir_archive.ini for read. Cannot open C:/Users/admin/home_data.gl/dir_archive.ini for reading
Can you please help me to resolve this issue?
Go to terminal and run:
unzip home_data.gl.zip
You will see following files in directory home_data.gl:
Now in ipython, run:
sales = graphlab.SFrame('home_data.gl/')
sales
which will display the data in tabular format:
Related
As already stated in the title I want to generate so called 'assertions' via Great Expectation. I've done it the normal way by creating a connection to datasource. Now I want to combine it with Pandas Profiling, i.e. creating an Expectation Suite based on a Profiling Report. According to the documentation it should look something like this. However, it does not work as you can see in the error below.
import great_expectations as ge
import pandas as pd
from pandas_profiling import ProfileReport
import os
p = os.getcwd()
p += "\data\cars.csv"
df = pd.read_csv(p)
profile = ProfileReport(df, title="Pandas Profiling Report", explorative=True)
# Example 1
# Obtain expectation suite, this includes profiling the dataset, saving the expectation suite, validating the
# dataframe, and building data docs
suite = profile.to_expectation_suite(suite_name="cars_expectations")
That throws following error:
Summarize dataset: 100%
81/81 [00:37<00:00, 3.01it/s, Completed]
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
C:\ProgramData\Anaconda3\lib\site-packages\great_expectations\data_context\data_context\base_data_context.py in run_validation_operator(self, validation_operator_name, assets_to_validate, run_id, evaluation_parameters, run_name, run_time, result_format, **kwargs)
510 try:
--> 511 validation_operator = self.validation_operators[validation_operator_name]
512 except KeyError:
KeyError: 'action_list_operator'
During handling of the above exception, another exception occurred:
DataContextError Traceback (most recent call last)
~\AppData\Local\Temp/ipykernel_4484/2792258824.py in <module>
16 # Obtain expectation suite, this includes profiling the dataset, saving the expectation suite, validating the
17 # dataframe, and building data docs
---> 18 suite = profile.to_expectation_suite(suite_name="cars_expectations")
C:\ProgramData\Anaconda3\lib\site-packages\pandas_profiling\expectations_report.py in to_expectation_suite(self, suite_name, data_context, save_suite, run_validation, build_data_docs, handler)
101 batch = ge.dataset.PandasDataset(self.df, expectation_suite=suite)
102
--> 103 results = data_context.run_validation_operator(
104 "action_list_operator", assets_to_validate=[batch]
105 )
C:\ProgramData\Anaconda3\lib\site-packages\great_expectations\core\usage_statistics\usage_statistics.py in usage_statistics_wrapped_method(*args, **kwargs)
302 nested_update(event_payload, args_payload_fn(*args, **kwargs))
303
--> 304 result = func(*args, **kwargs)
305 message["success"] = True
306 except Exception:
C:\ProgramData\Anaconda3\lib\site-packages\great_expectations\data_context\data_context\base_data_context.py in run_validation_operator(self, validation_operator_name, assets_to_validate, run_id, evaluation_parameters, run_name, run_time, result_format, **kwargs)
511 validation_operator = self.validation_operators[validation_operator_name]
512 except KeyError:
--> 513 raise ge_exceptions.DataContextError(
514 f"No validation operator `{validation_operator_name}` was found in your project. Please verify this in your great_expectations.yml"
515 )
DataContextError: No validation operator `action_list_operator` was found in your project. Please verify this in your great_expectations.yml
I am using:
Pandas-Profiling 3.4.0,
Great Expectations 0.15.32
Thanks for your help in advance.
My code raised "invalid path or file" error even when the file exists. When I check the list of files in the path, it shows "permission denied" even though I'm root.
import rasterio
sample = pd.read_csv(os.path.join(config.BASE_PATH, "sample_submission.csv"))
test_images = glob.glob(os.path.join(config.BASE_PATH + "test_images", "**", "*.tiff"), recursive=True)
class HuBMAPDataset:
def __init__(self, idx, sz=sz, reduce=reduce):
self.data = rasterio.open(test_images, transform = identity, num_threads='all_cpus')
for idx,row in tqdm(sample.iterrows(),total=len(sample)):
idx = str(row['id'])
ds = HuBMAPDataset(idx)
Traceback:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Input In [89], in <cell line: 2>()
2 for idx,row in tqdm(sample.iterrows(),total=len(sample)):
3 idx = str(row['id'])
----> 4 ds = HuBMAPDataset(idx)
5 #rasterio cannot be used with multiple workers
6 dl = DataLoader(ds,bs,num_workers=0,shuffle=False,pin_memory=True)
Input In [85], in HuBMAPDataset.__init__(self, idx, sz, reduce)
14 def __init__(self, idx, sz=sz, reduce=reduce):
15 #self.data = rasterio.open(os.path.join(config.BASE_PATH, test_images,idx+'.tiff'), transform = identity, num_threads='all_cpus')
---> 16 self.data = rasterio.open(test_images, transform = identity, num_threads='all_cpus')
18 # some images have issues with their format
19 # and must be saved correctly before reading with rasterio
20 if self.data.count != 3:
File ~/anaconda3/lib/python3.9/site-packages/rasterio/env.py:442, in ensure_env_with_credentials.<locals>.wrapper(*args, **kwds)
439 session = DummySession()
441 with env_ctor(session=session):
--> 442 return f(*args, **kwds)
File ~/anaconda3/lib/python3.9/site-packages/rasterio/__init__.py:189, in open(fp, mode, driver, width, height, count, crs, transform, dtype, nodata, sharing, **kwargs)
183 if not isinstance(fp, str):
184 if not (
185 hasattr(fp, "read")
186 or hasattr(fp, "write")
187 or isinstance(fp, (os.PathLike, MemoryFile, FilePath))
188 ):
--> 189 raise TypeError("invalid path or file: {0!r}".format(fp))
190 if mode and not isinstance(mode, str):
191 raise TypeError("invalid mode: {0!r}".format(mode))
TypeError: invalid path or file: ['./input/hubmap-organ-segmentation/test_images/10078.tiff']
File exists in path but permission denied.
!./input/hubmap-organ-segmentation/test_images/10078.tiff
/bin/bash: ./input/hubmap-organ-segmentation/test_images/10078.tiff: Permission denied
This is because you do not have permissions to either read or write to that file/directory.
Try to update the permission of the directory by running chmod -R 660 folder_name:. This command will recursively update the permissions to read and write and then try again.
Also, there is a possibility, that with the root user you do have permissions, but the anaconda process you run, has been started with a different user.
Try to run anaconda with root user and test, although it is not recommended. Would be much better to fix the permissions for your user. It's safer.
I am new to kubectl and kserve.
Tried to implement and create inference service using the below tutorial.
https://www.kubeflow.org/docs/external-add-ons/kserve/first_isvc_kserve/
But while creating the InferenceService I am getting the below error. Can some one help me in this.
KServe = KServeClient()
KServe.create(isvc)
Error:
---------------------------------------------------------------------------
ConfigException Traceback (most recent call last)
<ipython-input-7-0b03661604ad> in <module>()
----> 1 KServe = KServeClient()
2 KServe.create(isvc)
2 frames
/usr/local/lib/python3.7/dist-packages/kubernetes/config/kube_config.py in _get_kube_config_loader(filename, config_dict, persist_config, **kwargs)
766 if kcfg.config is None:
767 raise ConfigException(
--> 768 'Invalid kube-config file. '
769 'No configuration found.')
770 return KubeConfigLoader(
**ConfigException: Invalid kube-config file. No configuration found.**
I am exploring the chainladder package. I tried to export a triangle structure into an excel sheet. But it throws an error. Has anyone ever faced this kind of problem. I am using chainladder==0.7.9 with pandas==0.24.2. Here is my simple code by reading their documentation https://chainladder-python.readthedocs.io/en/latest/tutorials/index.html
import pandas as pd
import numpy as np
import chainladder as cl
raa = cl.load_sample('raa')
cl.load_template('triangle', triangle=raa.latest_diagonal).to_excel('raa_example.xlsx')
I get the following error:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
e:\pyworkspace37\chainladderdemo\venv\lib\site-packages\chainladder\utils\exhibits.py in load_template(template, env, **kwargs)
24 try:
---> 25 return load_yaml(template, env, **kwargs)
26 except:
e:\pyworkspace37\chainladderdemo\venv\lib\site-packages\xlcompose\templates.py in load_yaml(template, env, str_only, **kwargs)
108 else:
--> 109 return _make_xlc(yaml.load(template, Loader=yaml.SafeLoader), **kwargs)
110
e:\pyworkspace37\chainladderdemo\venv\lib\site-packages\xlcompose\templates.py in _make_xlc(template, **kwargs)
51 return core.Tabs(*[('Sheet1', item) for item in tabs])
---> 52 key = list(template.keys())[0]
53 if key in ['Row', 'Column']:
AttributeError: 'str' object has no attribute 'keys'
During handling of the above exception, another exception occurred:
AttributeError Traceback (most recent call last)
<ipython-input-17-270670213d97> in <module>
----> 1 cl.load_template('triangle', triangle=raa.latest_diagonal).to_excel('raa_example.xlsx')
2 #,type(raa.latest_diagonal)
3 type(raa_model.ultimate_)
e:\pyworkspace37\chainladderdemo\venv\lib\site-packages\chainladder\utils\exhibits.py in load_template(template, env, **kwargs)
26 except:
27 template = os.path.join(path, "templates", template.lower() + ".yaml")
---> 28 return load_yaml(template, env, **kwargs)
e:\pyworkspace37\chainladderdemo\venv\lib\site-packages\xlcompose\templates.py in load_yaml(template, env, str_only, **kwargs)
107 return template
108 else:
--> 109 return _make_xlc(yaml.load(template, Loader=yaml.SafeLoader), **kwargs)
110
111 def load_json(template, env=None, **kwargs):
e:\pyworkspace37\chainladderdemo\venv\lib\site-packages\xlcompose\templates.py in _make_xlc(template, **kwargs)
50 except:
51 return core.Tabs(*[('Sheet1', item) for item in tabs])
---> 52 key = list(template.keys())[0]
53 if key in ['Row', 'Column']:
54 return getattr(core, key)(*[_make_xlc(element, **kwargs)
AttributeError: 'str' object has no attribute 'keys'
Please let me know if I am missing something silly.
load_template is used to load a YAML template containing the specs for your Excel file. This particular template file is designed to create a standard exhibit for regular triangles, not diagonals. Templates are used to contain complex layouts, formatting, logic.
This should resolve the issue:
cl.load_template('triangle', triangle=raa).to_excel('raa_example.xlsx')
If you would simply like to export just the diagonal to Excel, you can do so without a template:
raa.latest_diagonal.to_excel('raa_example.xlsx')
# or
cl.DataFrame(raa.latest_diagonal).to_excel('raa_example.xlsx')
I am doing a ML course on Coursera
When I run the following command
sf['Country'] = sf['Country'].apply(transform_country)
Following is the error i get
RuntimeError Traceback (most recent call last)
<ipython-input-10-e97a176c3eea> in <module>()
----> 1 sf['Country'] = sf['Country'].apply(transform_country)
F:\Anaconda2\envs\gl-env\lib\site-packages\graphlab\data_structures\sarray.pyc in apply(self, fn, dtype, skip_undefined, seed)
1892
1893 with cython_context():
-> 1894 return SArray(_proxy=self.__proxy__.transform(fn, dtype, skip_undefined, seed))
1895
1896
F:\Anaconda2\envs\gl-env\lib\site-packages\graphlab\cython\context.pyc in __exit__(self, exc_type, exc_value, traceback)
47 if not self.show_cython_trace:
48 # To hide cython trace, we re-raise from here
---> 49 raise exc_type(exc_value)
50 else:
51 # To show the full trace, we do nothing and let exception propagate
RuntimeError: Runtime Exception. Cannot evaluate lambda. Lambda workers cannot not start.
What do I do now ?