Plotting horizontal hyperbola/circle using fsolve, numpy, and matplotlib - python

I was recently trying to plot a nonlinear decision boundary, and the function ended up being a partially horizontal hyperbola, where there were multiple y-values for a given x. Although I got it to work, I know there has to be a more pythonic or numpythonic way of plotting this line.
Background: The problem was a perceptron classifier on a set of inputs that were not linearly separable. In order to find this, the inputs were mapped to a general hyperbola function to increase the dimensionality to 5, and have these separable by a hyperplane. The equation for the decision boundary that will be plotted is
d(x) = w0 + w1xx + w2yy + w3xy + wx + w5y
Through the course of the perceptron's gradient descent, the values for w0-w5 are found, and the boundary is the x,y value when d(x)=0.
Current implementation: I got it to work, but I think it is hacky. I first have to create an array of the given size so that I can append these values, and I have to delete the initialized value the first time I append my found value. I then sweep through my the space on my graph and find a y-value, first by guessing high, second by guessing low, in order to find both possible y-values. I put these found values at the front and back of D, in order to plot this using matplotlib.
D = np.array([[0], [0]])
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
a_iter, b_iter = 0, 0 # used as initial guess for numeric solver
for xx in range(x_min, x_max):
# used to print top and bottom sides of hyperbola
yya = fsolve(lambda yy: W[:,0] + W[:,1]*xx**2 + W[:,2]*yy**2 + W[:,3]*xx*yy + W[:,4]*xx + W[:,5]*yy, max(a_iter, 7))
yyb = fsolve(lambda yy: W[:,0] + W[:,1]*xx**2 + W[:,2]*yy**2 + W[:,3]*xx*yy + W[:,4]*xx + W[:,5]*yy, b_iter)
a_iter = yya
b_iter = yyb
# add these points to a single matrix for printing
dda = np.array([[xx],[yya]])
ddb = np.array([[xx],[yyb]])
D = np.concatenate((dda, D), axis=1)
if xx == x_min: # delete initial [0; 0]
D = dda
D = np.concatenate((D, ddb), axis=1)
I know there has to be a better way to do this. Any insight is appreciated.
Edit: Apologies, I realize that without an image this is really difficult to understand. The main issue of finding multiple roots and populating a numpy array are a bit generic. I don't have enough rep to post images, but the link is below
nonlinear classifier

If you want plot an implicit equation curve, you can use pyplot.contour(), here is an example:
np.random.seed(1)
w = np.random.randn(6)
def f(x, y, w):
return w[0] + w[1]*x**2 + w[2]*y**2 + w[3]*x*y + w[4]*x + w[5]*y
X, Y = np.mgrid[-2:2:100j, -2:2:100j]
pl.contour(X, Y, f(X, Y, w), levels=[0])

there are parameterized options too - a trig one, branches centered at 0, pi
t = np.linspace(-np.pi/3, np.pi/3, 200) # 0 centered branch
y = 1/np.cos(t)
x = 1*np.tan(t)
plt.plot(x, y) # (default blue)
Out[94]: [<matplotlib.lines.Line2D at 0xe26e6a0>]
t = np.linspace(np.pi-np.pi/3, np.pi+np.pi/3, 200) # pi centered branch
y = 1/np.cos(t)
x = 1*np.tan(t)
plt.plot(x, y) # (default orange)
Out[96]: [<matplotlib.lines.Line2D at 0xf68e780>]
sympy ought to be up to finding the full denormalized, rotated, offset parameterized hyperbola coefficients from the bivariate polynomial ws
(or continue the hackage with a fit)

Related

SGD on a Piecewise non-differentiable function

Setup for the problem:
I have a canvas which represents a city, each second I add a new resident to the city. The each resident has a job with a location that is randomly sampled from a distribution. Each resident also has a custom cost function that helps them decide where they want to live which they do by minimizing this cost function with respect to two variables x and y. So the function for example looks something like:
cost(x,y) = distance_to_job(x,y) + distance_to_center_of_city(x,y) + population_density(x,y)
where population_density(x,y) is just the population density at point (x,y). Naturally population_density(x,y) (without any transformations) is a piecewise non-differentiable function as one has to define a grid of blocks in the city and keep track of how many people per grid unit there is (think of a population density map of the world, each country has a distinct value that isn't necessarily the same as its neighbor, so if you were to map this on a 3-D plot, the function that you map would not be smooth).
Let me know if this setup is confusing, I'll try to make it a bit more clear.
The Question:
One could define a transformation where between each grid cell you designate a steep but smooth transition between the values of the piecewise function but as of now my population density function is not smooth and not differentiable at each boundary between grid cells. At first I did not think that SGD optimization in tensorflow would not work as I don't have a differentiable cost function but it seems to run fine. I am confused about what exactly is going on here and would love any clarification about how SGD optimization works and if my code is doing what I want it to.
Relevant Code:
def concentrationLookup(self, x, y):
r_index = int(x // (self.city.total_w / self.city.rows))
c_index = int(y // (self.city.total_h / self.city.cols))
return self.city.grid[r_index, c_index]
tf_jobCost = lambda x,y: (0.1/travelCost) * (tf.pow(x - self.jobx, 2) + tf.pow(y - self.joby, 2))
tf_cityCost = lambda x,y: 0.01 * (tf.pow(x - self.city.centerX, 2)) + 0.01*(tf.pow(y - self.city.centerY, 2))
xVar = tf.Variable(locX)
yVar = tf.Variable(locY)
self.costfn = lambda: tf_jobCost(xVar, yVar) + tf_cityCost(xVar, yVar) + self.concentrationLookup(xVar, yVar)
opt = tf.keras.optimizers.SGD(learning_rate = 3.0)
for _ in range(100):
opt.minimize(self.costfn, var_list = [xVar, yVar])
self.x = xVar.numpy()
self.y = yVar.numpy()
I believe it's treating population_density(x,y) as a constant function of x,y. In other words, it doesn't contribute to the gradient, and doesn't contribute to the solution.
You can also verify this by zeroing out other components of the loss, and verifying that opt.minimize() fails with something like ValueError: No gradients provided for any variable....
I think the solution should be to forget that the function is piecewise constant and non-differentiable, and instead to treat it as piecewise linear instead. In that case, concentrationLookup(x,y) can be written as returning a bilinearly-weighted sum of points at the 4 neighboring pixels.
Something like this:
def concentrationLookup(x, y):
r = x / (total_w / rows) # no quantizing
c = y / (total_h / cols) # no quantizing
r1, c1 = int(r), int(c) # lower bounds
r2, c2 = r1 + 1, c1 + 1 # upper bounds
w_r2, w_c2 = r - r1, c - c1
w_r1, w_c1 = 1.0 - w_r2, 1.0 - w_c2
# Assume constant boundary conditions.
c2 = tf.clip_by_value(c2, 0, grid.shape[1]-1)
c1 = tf.clip_by_value(c1, 0, grid.shape[1]-1)
r2 = tf.clip_by_value(r2, 0, grid.shape[0]-1)
r1 = tf.clip_by_value(r1, 0, grid.shape[0]-1)
return w_r1*w_c1*grid[r1, c1] + w_r2*w_c2*grid[r2,c2] + w_r1*w_c2*grid[r1,c2] + w_r2*w_c1*grid[r2, c1]
In this case, the gradient seems to be well defined.

Smooth a curve in Python while preserving the value and slope at the end points

I have two solutions to this problem actually, they are both applied below to a test case. The thing is that none of them is perfect: first one only take into account the two end points, the other one can't be made "arbitrarily smooth": there is a limit in the amount of smoothness one can achieve (the one I am showing).
I am sure there is a better solution, that kind-of go from the first solution to the other and all the way to no smoothing at all. It may already be implemented somewhere. Maybe solving a minimization problem with an arbitrary number of splines equidistributed?
Thank you very much for your help
Ps: the seed used is a challenging one
import matplotlib.pyplot as plt
from scipy import interpolate
from scipy.signal import savgol_filter
import numpy as np
import random
def scipy_bspline(cv, n=100, degree=3):
""" Calculate n samples on a bspline
cv : Array ov control vertices
n : Number of samples to return
degree: Curve degree
"""
cv = np.asarray(cv)
count = cv.shape[0]
degree = np.clip(degree,1,count-1)
kv = np.clip(np.arange(count+degree+1)-degree,0,count-degree)
# Return samples
max_param = count - (degree * (1-periodic))
spl = interpolate.BSpline(kv, cv, degree)
return spl(np.linspace(0,max_param,n))
def round_up_to_odd(f):
return np.int(np.ceil(f / 2.) * 2 + 1)
def generateRandomSignal(n=1000, seed=None):
"""
Parameters
----------
n : integer, optional
Number of points in the signal. The default is 1000.
Returns
-------
sig : numpy array
"""
np.random.seed(seed)
print("Seed was:", seed)
steps = np.random.choice(a=[-1, 0, 1], size=(n-1))
roughSig = np.concatenate([np.array([0]), steps]).cumsum(0)
sig = savgol_filter(roughSig, round_up_to_odd(n/10), 6)
return sig
# Generate a random signal to illustrate my point
n = 1000
t = np.linspace(0, 10, n)
seed = 45136. # Challenging seed
sig = generateRandomSignal(n=1000, seed=seed)
sigInit = np.copy(sig)
# Add noise to the signal
mean = 0
std = sig.max()/3.0
num_samples = n/5
idxMin = n/2-100
idxMax = idxMin + num_samples
tCut = t[idxMin+1:idxMax]
noise = np.random.normal(mean, std, size=num_samples-1) + 2*std*np.sin(2.0*np.pi*tCut/0.4)
sig[idxMin+1:idxMax] += noise
# Define filtering range enclosing the noisy area of the signal
idxMin -= 20
idxMax += 20
# Extreme filtering solution
# Spline between first and last points, the points in between have no influence
sigTrim = np.delete(sig, np.arange(idxMin,idxMax))
tTrim = np.delete(t, np.arange(idxMin,idxMax))
f = interpolate.interp1d(tTrim, sigTrim, kind='quadratic')
sigSmooth1 = f(t)
# My attempt. Not bad but not perfect because there is a limit in the maximum
# amount of smoothing we can add (degree=len(tSlice) is the maximum)
# If I could do degree=10*len(tSlice) and converging to the first solution
# I would be done!
sigSlice = sig[idxMin:idxMax]
tSlice = t[idxMin:idxMax]
cv = np.stack((tSlice, sigSlice)).T
p = scipy_bspline(cv, n=len(tSlice), degree=len(tSlice))
tSlice = p.T[0]
sigSliceSmooth = p.T[1]
sigSmooth2 = np.copy(sig)
sigSmooth2[idxMin:idxMax] = sigSliceSmooth
# Plot
plt.figure()
plt.plot(t, sig, label="Signal")
plt.plot(t, sigSmooth1, label="Solution 1")
plt.plot(t, sigSmooth2, label="Solution 2")
plt.plot(t[idxMin:idxMax], sigInit[idxMin:idxMax], label="What I'd want (kind of, smoother will be even better actually)")
plt.plot([t[idxMin],t[idxMax]], [sig[idxMin],sig[idxMax]],"o")
plt.legend()
plt.show()
sys.exit()
Yes, a minimization is a good way to approach this smoothing problem.
Least squares problem
Here is a suggestion for a least squares formulation: let s[0], ..., s[N] denote the N+1 samples of the given signal to smooth, and let L and R be the desired slopes to preserve at the left and right endpoints. Find the smoothed signal u[0], ..., u[N] as the minimizer of
min_u (1/2) sum_n (u[n] - s[n])² + (λ/2) sum_n (u[n+1] - 2 u[n] + u[n-1])²
subject to
s[0] = u[0], s[N] = u[N] (value constraints),
L = u[1] - u[0], R = u[N] - u[N-1] (slope constraints),
where in the minimization objective, the sums are over n = 1, ..., N-1 and λ is a positive parameter controlling the smoothing strength. The first term tries to keep the solution close to the original signal, and the second term penalizes u for bending to encourage a smooth solution.
The slope constraints require that
u[1] = L + u[0] = L + s[0] and u[N-1] = u[N] - R = s[N] - R. So we can consider the minimization as over only the interior samples u[2], ..., u[N-2].
Finding the minimizer
The minimizer satisfies the Euler–Lagrange equations
(u[n] - s[n]) / λ + (u[n+2] - 4 u[n+1] + 6 u[n] - 4 u[n-1] + u[n-2]) = 0
for n = 2, ..., N-2.
An easy way to find an approximate solution is by gradient descent: initialize u = np.copy(s), set u[1] = L + s[0] and u[N-1] = s[N] - R, and do 100 iterations or so of
u[2:-2] -= (0.05 / λ) * (u - s)[2:-2] + np.convolve(u, [1, -4, 6, -4, 1])[4:-4]
But with some more work, it is possible to do better than this by solving the E–L equations directly. For each n, move the known quantities to the right-hand side: s[n] and also the endpoints u[0] = s[0], u[1] = L + s[0], u[N-1] = s[N] - R, u[N] = s[N]. The you will have a linear system "A u = b", and matrix A has rows like
0, ..., 0, 1, -4, (6 + 1/λ), -4, 1, 0, ..., 0.
Finally, solve the linear system to find the smoothed signal u. You could use numpy.linalg.solve to do this if N is not too large, or if N is large, try an iterative method like conjugate gradients.
you can apply a simple smoothing method and plot the smooth curves with different smoothness values to see which one works best.
def smoothing(data, smoothness=0.5):
last = data[0]
new_data = [data[0]]
for datum in data[1:]:
new_value = smoothness * last + (1 - smoothness) * datum
new_data.append(new_value)
last = datum
return new_data
You can plot this curve for multiple values of smoothness and pick the curve which suits your needs. You can also apply this method only on a range of values in the actual curve by defining start and end

Fit a curve for data made up of two distinct regimes

I'm looking for a way to plot a curve through some experimental data. The data shows a small linear regime with a shallow gradient, followed by a steep linear regime after a threshold value.
My data is here: http://pastebin.com/H4NSbxqr
I could fit the data with two lines relatively easily, but I'd like to fit with a continuous line ideally - which should look like two lines with a smooth curve joining them around the threshold (~5000 in the data, shown above).
I attempted this using scipy.optimize curve_fit and trying a function which included the sum of a straight line and an exponential:
y = a*x + b + c*np.exp((x-d)/e)
although despite numerous attempts, it didn't find a solution.
If anyone has any suggestions please, either on the choice of fitting distribution / method or the curve_fit implementation, they would be greatly appreciated.
If you don't have a particular reason to believe that linear + exponential is the true underlying cause of your data, then I think a fit to two lines makes the most sense. You can do this by making your fitting function the maximum of two lines, for example:
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def two_lines(x, a, b, c, d):
one = a*x + b
two = c*x + d
return np.maximum(one, two)
Then,
x, y = np.genfromtxt('tmp.txt', unpack=True, delimiter=',')
pw0 = (.02, 30, .2, -2000) # a guess for slope, intercept, slope, intercept
pw, cov = curve_fit(two_lines, x, y, pw0)
crossover = (pw[3] - pw[1]) / (pw[0] - pw[2])
plt.plot(x, y, 'o', x, two_lines(x, *pw), '-')
If you really want a continuous and differentiable solution, it occurred to me that a hyperbola has a sharp bend to it, but it has to be rotated. It was a bit difficult to implement (maybe there's an easier way), but here's a go:
def hyperbola(x, a, b, c, d, e):
""" hyperbola(x) with parameters
a/b = asymptotic slope
c = curvature at vertex
d = offset to vertex
e = vertical offset
"""
return a*np.sqrt((b*c)**2 + (x-d)**2)/b + e
def rot_hyperbola(x, a, b, c, d, e, th):
pars = a, b, c, 0, 0 # do the shifting after rotation
xd = x - d
hsin = hyperbola(xd, *pars)*np.sin(th)
xcos = xd*np.cos(th)
return e + hyperbola(xcos - hsin, *pars)*np.cos(th) + xcos - hsin
Run it as
h0 = 1.1, 1, 0, 5000, 100, .5
h, hcov = curve_fit(rot_hyperbola, x, y, h0)
plt.plot(x, y, 'o', x, two_lines(x, *pw), '-', x, rot_hyperbola(x, *h), '-')
plt.legend(['data', 'piecewise linear', 'rotated hyperbola'], loc='upper left')
plt.show()
I was also able to get the line + exponential to converge, but it looks terrible. This is because it's not a good descriptor of your data, which is linear and an exponential is very far from linear!
def line_exp(x, a, b, c, d, e):
return a*x + b + c*np.exp((x-d)/e)
e0 = .1, 20., .01, 1000., 2000.
e, ecov = curve_fit(line_exp, x, y, e0)
If you want to keep it simple, there's always a polynomial or spline (piecewise polynomials)
from scipy.interpolate import UnivariateSpline
s = UnivariateSpline(x, y, s=x.size) #larger s-value has fewer "knots"
plt.plot(x, s(x))
I researched this a little, Applied Linear Regression by Sanford, and the Correlation and Regression lecture by Steiger had some good info on it. They all however lack the right model, the piecewise function should be
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import lmfit
dfseg = pd.read_csv('segreg.csv')
def err(w):
th0 = w['th0'].value
th1 = w['th1'].value
th2 = w['th2'].value
gamma = w['gamma'].value
fit = th0 + th1*dfseg.Temp + th2*np.maximum(0,dfseg.Temp-gamma)
return fit-dfseg.C
p = lmfit.Parameters()
p.add_many(('th0', 0.), ('th1', 0.0),('th2', 0.0),('gamma', 40.))
mi = lmfit.minimize(err, p)
lmfit.printfuncs.report_fit(mi.params)
b0 = mi.params['th0']; b1=mi.params['th1'];b2=mi.params['th2']
gamma = int(mi.params['gamma'].value)
import statsmodels.formula.api as smf
reslin = smf.ols('C ~ 1 + Temp + I((Temp-%d)*(Temp>%d))' % (gamma,gamma), data=dfseg).fit()
print reslin.summary()
x0 = np.array(range(0,gamma,1))
x1 = np.array(range(0,80-gamma,1))
y0 = b0 + b1*x0
y1 = (b0 + b1 * float(gamma) + (b1 + b2)* x1)
plt.scatter(dfseg.Temp, dfseg.C)
plt.hold(True)
plt.plot(x0,y0)
plt.plot(x1+gamma,y1)
plt.show()
Result
[[Variables]]
th0: 78.6554456 +/- 3.966238 (5.04%) (init= 0)
th1: -0.15728297 +/- 0.148250 (94.26%) (init= 0)
th2: 0.72471237 +/- 0.179052 (24.71%) (init= 0)
gamma: 38.3110177 +/- 4.845767 (12.65%) (init= 40)
The data
"","Temp","C"
"1",8.5536,86.2143
"2",10.6613,72.3871
"3",12.4516,74.0968
"4",16.9032,68.2258
"5",20.5161,72.3548
"6",21.1613,76.4839
"7",24.3929,83.6429
"8",26.4839,74.1935
"9",26.5645,71.2581
"10",27.9828,78.2069
"11",32.6833,79.0667
"12",33.0806,71.0968
"13",33.7097,76.6452
"14",34.2903,74.4516
"15",36,56.9677
"16",37.4167,79.8333
"17",43.9516,79.7097
"18",45.2667,76.9667
"19",47,76
"20",47.1129,78.0323
"21",47.3833,79.8333
"22",48.0968,73.9032
"23",49.05,78.1667
"24",57.5,81.7097
"25",59.2,80.3
"26",61.3226,75
"27",61.9194,87.0323
"28",62.3833,89.8
"29",64.3667,96.4
"30",65.371,88.9677
"31",68.35,91.3333
"32",70.7581,91.8387
"33",71.129,90.9355
"34",72.2419,93.4516
"35",72.85,97.8333
"36",73.9194,92.4839
"37",74.4167,96.1333
"38",76.3871,89.8387
"39",78.0484,89.4516
Graph
I used #user423805 's answer (found via google groups thread: https://groups.google.com/forum/#!topic/lmfit-py/7I2zv2WwFLU ) but noticed it had some limitations when trying to use three or more segments.
Instead of applying np.maximum in the minimizer error function or adding (b1 + b2) in #user423805 's answer, I used the same linear spline calculation for both the minimizer and end-usage:
# least_splines_calc works like this for an example with three segments
# (four threshold params, three gamma params):
#
# for 0 < x < gamma0 : y = th0 + (th1 * x)
# for gamma0 < x < gamma1 : y = th0 + (th1 * x) + (th2 * (x - gamma0))
# for gamma1 < x : y = th0 + (th1 * x) + (th2 * (x - gamma0)) + (th3 * (x - gamma1))
#
def least_splines_calc(x, thresholds, gammas):
if(len(thresholds) < 2):
print("Error: expected at least two thresholds")
return None
applicable_gammas = filter(lambda gamma: x > gamma , gammas)
#base result
y = thresholds[0] + (thresholds[1] * x)
#additional factors calculated depending on x value
for i in range(0, len(applicable_gammas)):
y = y + ( thresholds[i + 2] * ( x - applicable_gammas[i] ) )
return y
def least_splines_calc_array(x_array, thresholds, gammas):
y_array = map(lambda x: least_splines_calc(x, thresholds, gammas), x_array)
return y_array
def err(params, x, data):
th0 = params['th0'].value
th1 = params['th1'].value
th2 = params['th2'].value
th3 = params['th3'].value
gamma1 = params['gamma1'].value
gamma2 = params['gamma2'].value
thresholds = np.array([th0, th1, th2, th3])
gammas = np.array([gamma1, gamma2])
fit = least_splines_calc_array(x, thresholds, gammas)
return np.array(fit)-np.array(data)
p = lmfit.Parameters()
p.add_many(('th0', 0.), ('th1', 0.0),('th2', 0.0),('th3', 0.0),('gamma1', 9.),('gamma2', 9.3)) #NOTE: the 9. / 9.3 were guesses specific to my data, you will need to change these
mi = lmfit.minimize(err_alt, p, args=(np.array(dfseg.Temp), np.array(dfseg.C)))
After minimization, convert the params found by the minimizer into an array of thresholds and gammas to re-use linear_splines_calc to plot the linear splines regression.
Reference: While there's various places that explain least splines (I think #user423805 used http://www.statpower.net/Content/313/Lecture%20Notes/Splines.pdf , which has the (b1 + b2) addition I disagree with in its sample code despite similar equations) , the one that made the most sense to me was this one (by Rob Schapire / Zia Khan at Princeton) : https://www.cs.princeton.edu/courses/archive/spring07/cos424/scribe_notes/0403.pdf - section 2.2 goes into linear splines. Excerpt below:
If you're looking to join what appears to be two straight lines with a hyperbola having a variable radius at/near the intersection of the two lines (which are its asymptotes), I urge you to look hard at Using an Hyperbola as a Transition Model to Fit Two-Regime Straight-Line Data, by Donald G. Watts and David W. Bacon, Technometrics, Vol. 16, No. 3 (Aug., 1974), pp. 369-373.
The formula is drop dead simple, nicely adjustable, and works like a charm. From their paper (in case you can't access it):
As a more useful alternative form we consider an hyperbola for which:
(i) the dependent variable y is a single valued function of the independent variable x,
(ii) the left asymptote has slope theta_1,
(iii) the right asymptote has slope theta_2,
(iv) the asymptotes intersect at the point (x_o, beta_o),
(v) the radius of curvature at x = x_o is proportional to a quantity delta. Such an hyperbola can be written y = beta_o + beta_1*(x - x_o) + beta_2* SQRT[(x - x_o)^2 + delta^2/4], where beta_1 = (theta_1 + theta_2)/2 and beta_2 = (theta_2 - theta_1)/2.
delta is the adjustable parameter that allows you to either closely follow the lines right to the intersection point or smoothly merge from one line to the other.
Just solve for the intersection point (x_o, beta_o), and plug into the formula above.
BTW, in general, if line 1 is y_1 = b_1 + m_1 *x and line 2 is y_2 = b_2 + m_2 * x, then they intersect at x* = (b_2 - b_1) / (m_1 - m_2) and y* = b_1 + m_1 * x*. So, to connect with the formalism above, x_o = x*, beta_o = y* and the two m_*'s are the two thetas.
There is a straightforward method (not iterative, no initial guess) pp.12-13 in https://fr.scribd.com/document/380941024/Regression-par-morceaux-Piecewise-Regression-pdf
The data comes from the scanning of the figure published by IanRoberts in his question. Scanning for the coordinates of the pixels in not accurate. So, don't be surprised by additional deviation.
Note that the abscisses and ordinates scales have been devised by 1000.
The equations of the two segments are
The approximate values of the five parameters are written on the above figure.

Failure of non linear fit to sine curve

I've been trying to fit the amplitude, frequency and phase of a sine curve given some generated two dimensional toy data. (Code at the end)
To get estimates for the three parameters, I first perform an FFT. I use the values from the FFT as initial guesses for the actual frequency and phase and then fit for them (row by row). I wrote my code such that I input which bin of the FFT I want the frequency to be in, so I can check if the fitting is working well. But there's some pretty strange behaviour. If my input bin is say 3.1 (a non integral bin, so the FFT won't give me the right frequency) then the fit works wonderfully. But if the input bin is 3 (so the FFT outputs the exact frequency) then my fit fails, and I'm trying to understand why.
Here's the output when I give the input bins (in the X and Y direction) as 3.0 and 2.1 respectively:
(The plot on the right is data - fit)
Here's the output when I give the input bins as 3.0 and 2.0:
Question: Why does the non linear fit fail when I input the exact frequency of the curve?
Code:
#! /usr/bin/python
# For the purposes of this code, it's easier to think of the X-Y axes as transposed,
# so the X axis is vertical and the Y axis is horizontal
import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize as optimize
import itertools
import sys
PI = np.pi
# Function which accepts paramters to define a sin curve
# Used for the non linear fit
def sineFit(t, a, f, p):
return a * np.sin(2.0 * PI * f*t + p)
xSize = 18
ySize = 60
npt = xSize * ySize
# Get frequency bin from user input
xFreq = float(sys.argv[1])
yFreq = float(sys.argv[2])
xPeriod = xSize/xFreq
yPeriod = ySize/yFreq
# arrays should be defined here
# Generate the 2D sine curve
for jj in range (0, xSize):
for ii in range(0, ySize):
sineGen[jj, ii] = np.cos(2.0*PI*(ii/xPeriod + jj/yPeriod))
# Compute 2dim FFT as well as freq bins along each axis
fftData = np.fft.fft2(sineGen)
fftMean = np.mean(fftData)
fftRMS = np.std(fftData)
xFreqArr = np.fft.fftfreq(fftData.shape[1]) # Frequency bins along x
yFreqArr = np.fft.fftfreq(fftData.shape[0]) # Frequency bins along y
# Find peak of FFT, and position of peak
maxVal = np.amax(np.abs(fftData))
maxPos = np.where(np.abs(fftData) == maxVal)
# Iterate through peaks in the FFT
# For this example, number of loops will always be only one
prevPhase = -1000
for col, row in itertools.izip(maxPos[0], maxPos[1]):
# Initial guesses for fit parameters from FFT
init_phase = np.angle(fftData[col,row])
init_amp = 2.0 * maxVal/npt
init_freqY = yFreqArr[col]
init_freqX = xFreqArr[row]
cntr = 0
if prevPhase == -1000:
prevPhase = init_phase
guess = [init_amp, init_freqX, prevPhase]
# Fit each row of the 2D sine curve independently
for rr in sineGen:
(amp, freq, phs), pcov = optimize.curve_fit(sineFit, xDat, rr, guess)
# xDat is an linspace array, containing a list of numbers from 0 to xSize-1
# Subtract fit from original data and plot
fitData = sineFit(xDat, amp, freq, phs)
sub1 = rr - fitData
# Plot
fig1 = plt.figure()
ax1 = fig1.add_subplot(121)
p1, = ax1.plot(rr, 'g')
p2, = ax1.plot(fitData, 'b')
plt.legend([p1,p2], ["data", "fit"])
ax2 = fig1.add_subplot(122)
p3, = ax2.plot(sub1)
plt.legend([p3], ['residual1'])
fig1.tight_layout()
plt.show()
cntr += 1
prevPhase = phs # Update guess for phase of sine curve
I've tried to distill the important parts of your question into this answer.
First of all, try fitting a single block of data, not an array. Once you are confident that your model is sufficient you can move on.
Your fit is only going to be as good as your model, if you move on to something not "sine"-like you'll need to adjust accordingly.
Fitting is an "art", in that the initial conditions can greatly change the convergence of the error function. In addition there may be more than one minima in your fits, so you often have to worry about the uniqueness of your proposed solution.
While you were on the right track with your FFT idea, I think your implementation wasn't quite correct. The code below should be a great toy system. It generates random data of the type f(x) = a0*sin(a1*x+a2). Sometimes a random initial guess will work, sometimes it will fail spectacularly. However, using the FFT guess for the frequency the convergence should always work for this system. An example output:
import numpy as np
import pylab as plt
import scipy.optimize as optimize
# This is your target function
def sineFit(t, (a, f, p)):
return a * np.sin(2.0*np.pi*f*t + p)
# This is our "error" function
def err_func(p0, X, Y, target_function):
err = ((Y - target_function(X, p0))**2).sum()
return err
# Try out different parameters, sometimes the random guess works
# sometimes it fails. The FFT solution should always work for this problem
inital_args = np.random.random(3)
X = np.linspace(0, 10, 1000)
Y = sineFit(X, inital_args)
# Use a random inital guess
inital_guess = np.random.random(3)
# Fit
sol = optimize.fmin(err_func, inital_guess, args=(X,Y,sineFit))
# Plot the fit
Y2 = sineFit(X, sol)
plt.figure(figsize=(15,10))
plt.subplot(211)
plt.title("Random Inital Guess: Final Parameters: %s"%sol)
plt.plot(X,Y)
plt.plot(X,Y2,'r',alpha=.5,lw=10)
# Use an improved "fft" guess for the frequency
# this will be the max in k-space
timestep = X[1]-X[0]
guess_k = np.argmax( np.fft.rfft(Y) )
guess_f = np.fft.fftfreq(X.size, timestep)[guess_k]
inital_guess[1] = guess_f
# Guess the amplitiude by taking the max of the absolute values
inital_guess[0] = np.abs(Y).max()
sol = optimize.fmin(err_func, inital_guess, args=(X,Y,sineFit))
Y2 = sineFit(X, sol)
plt.subplot(212)
plt.title("FFT Guess : Final Parameters: %s"%sol)
plt.plot(X,Y)
plt.plot(X,Y2,'r',alpha=.5,lw=10)
plt.show()
The problem is due to a bad initial guess of the phase, not the frequency. While cycling through the rows of genSine (inner loop) you use the fit result of the previous line as initial guess for the next row which does not work always. If you determine the phase from an fft of the current row and use that as initial guess the fit will succeed.
You could change the inner loop as follows:
for n,rr in enumerate(sineGen):
fftx = np.fft.fft(rr)
fftx = fftx[:len(fftx)/2]
idx = np.argmax(np.abs(fftx))
init_phase = np.angle(fftx[idx])
print fftx[idx], init_phase
...
Also you need to change
def sineFit(t, a, f, p):
return a * np.sin(2.0 * np.pi * f*t + p)
to
def sineFit(t, a, f, p):
return a * np.cos(2.0 * np.pi * f*t + p)
since phase=0 means that the imaginary part of the fft is zero and thus the function is cosine like.
Btw. your sample above is still lacking definitions of sineGen and xDat.
Without understanding much of your code, according to http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html:
(amp2, freq2, phs2), pcov = optimize.curve_fit(sineFit, tDat,
sub1, guess2)
should become:
(amp2, freq2, phs2), pcov = optimize.curve_fit(sineFit, tDat,
sub1, p0=guess2)
Assuming that tDat and sub1 are x and y, that should do the trick. But, once again, it is quite difficult to understand such a complex code with so many interlinked variables and no comments at all. A code should always be build from bottom up, meaning that you don't do a loop of fits when a single one is not working, you don't add noise until the code works to fit the non-noisy examples... Good luck!
By "nothing fancy" I meant something like removing EVERYTHING that is not related with the fit, and doing a simplified mock example such as:
import numpy as np
import scipy.optimize as optimize
def sineFit(t, a, f, p):
return a * np.sin(2.0 * np.pi * f*t + p)
# Create array of x and y with given parameters
x = np.asarray(range(100))
y = sineFit(x, 1, 0.05, 0)
# Give a guess and fit, printing result of the fitted values
guess = [1., 0.05, 0.]
print optimize.curve_fit(sineFit, x, y, guess)[0]
The result of this is exactly the answer:
[1. 0.05 0.]
But if you change guess not too much, just enough:
# Give a guess and fit, printing result of the fitted values
guess = [1., 0.06, 0.]
print optimize.curve_fit(sineFit, x, y, guess)[0]
the result gives absurdly wrong numbers:
[ 0.00823701 0.06391323 -1.20382787]
Can you explain this behavior?
You can use curve_fit with a series of trigonometric functions, usually very robust and ajustable to the precision that you need just by increasing the number of terms... here is an example:
from scipy import sin, cos, linspace
def f(x, a0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,
c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12):
return a0 + s1*sin(1*x) + c1*cos(1*x) \
+ s2*sin(2*x) + c2*cos(2*x) \
+ s3*sin(3*x) + c3*cos(3*x) \
+ s4*sin(4*x) + c4*cos(4*x) \
+ s5*sin(5*x) + c5*cos(5*x) \
+ s6*sin(6*x) + c6*cos(6*x) \
+ s7*sin(7*x) + c7*cos(7*x) \
+ s8*sin(8*x) + c8*cos(8*x) \
+ s9*sin(9*x) + c9*cos(9*x) \
+ s10*sin(9*x) + c10*cos(9*x) \
+ s11*sin(9*x) + c11*cos(9*x) \
+ s12*sin(9*x) + c12*cos(9*x)
from scipy.optimize import curve_fit
pi/2. / (x.max() - x.min())
x_norm *= norm_factor
popt, pcov = curve_fit(f, x_norm, y)
x_fit = linspace(x_norm.min(), x_norm.max(), 1000)
y_fit = f(x_fit, *popt)
plt.plot( x_fit/x_norm, y_fit )

python optimize.leastsq: fitting a circle to 3d set of points

I am trying to use circle fitting code for 3D data set. I have modified it for 3D points just adding z-coordinate where necessary. My modification works fine for one set of points and works bad for another. Please look at the code, if it has some errors.
import trig_items
import numpy as np
from trig_items import *
from numpy import *
from matplotlib import pyplot as p
from scipy import optimize
# Coordinates of the 3D points
##x = r_[36, 36, 19, 18, 33, 26]
##y = r_[14, 10, 28, 31, 18, 26]
##z = r_[0, 1, 2, 3, 4, 5]
x = r_[ 2144.18908574, 2144.26880854, 2144.05552972, 2143.90303742, 2143.62520676,
2143.43628579, 2143.14005775, 2142.79919654, 2142.51436023, 2142.11240866,
2141.68564346, 2141.29333828, 2140.92596405, 2140.3475612, 2139.90848046,
2139.24661021, 2138.67384709, 2138.03313547, 2137.40301734, 2137.40908256,
2137.06611224, 2136.50943781, 2136.0553113, 2135.50313189, 2135.07049922,
2134.62098139, 2134.10459535, 2133.50838433, 2130.6600465, 2130.03537342,
2130.04047644, 2128.83522468, 2127.79827542, 2126.43513385, 2125.36700593,
2124.00350543, 2122.68564431, 2121.20709478, 2119.79047011, 2118.38417647,
2116.90063343, 2115.52685778, 2113.82246629, 2112.21159431, 2110.63180117,
2109.00713198, 2108.94434529, 2106.82777156, 2100.62343757, 2098.5090226,
2096.28787738, 2093.91550703, 2091.66075061, 2089.15316429, 2086.69753869,
2084.3002414, 2081.87590579, 2079.19141866, 2076.5394574, 2073.89128676,
2071.18786213]
y = r_[ 725.74913818, 724.43874065, 723.15226506, 720.45950581, 717.77827954,
715.07048092, 712.39633862, 709.73267688, 707.06039438, 704.43405908,
701.80074596, 699.15371526, 696.5309022, 693.96109921, 691.35585501,
688.83496327, 686.32148661, 683.80286662, 681.30705568, 681.30530975,
679.66483676, 678.01922321, 676.32721779, 674.6667554, 672.9658024,
671.23686095, 669.52021535, 667.84999077, 659.19757984, 657.46179949,
657.45700508, 654.46901086, 651.38177517, 648.41739432, 645.32356976,
642.39034578, 639.42628453, 636.51107198, 633.57732055, 630.63825133,
627.75308356, 624.80162215, 622.01980232, 619.18814892, 616.37688894,
613.57400131, 613.61535723, 610.4724493, 600.98277781, 597.84782844,
594.75983001, 591.77946964, 588.74874068, 585.84525834, 582.92311166,
579.99564481, 577.06666417, 574.30782762, 571.54115037, 568.79760614,
566.08551098]
z = r_[ 339.77146775, 339.60021095, 339.47645894, 339.47130963, 339.37216218,
339.4126132, 339.67942046, 339.40917728, 339.39500353, 339.15041461,
339.38959195, 339.3358209, 339.47764895, 339.17854867, 339.14624071,
339.16403926, 339.02308811, 339.27011082, 338.97684183, 338.95087698,
338.97321177, 339.02175448, 339.02543922, 338.88725411, 339.06942374,
339.0557553, 339.04414618, 338.89234303, 338.95572249, 339.00880416,
339.00413073, 338.91080374, 338.98214758, 339.01135789, 338.96393537,
338.73446188, 338.62784913, 338.72443217, 338.74880562, 338.69090173,
338.50765186, 338.49056867, 338.57353355, 338.6196255, 338.43754399,
338.27218569, 338.10587265, 338.43880881, 338.28962141, 338.14338705,
338.25784154, 338.49792568, 338.15572139, 338.52967693, 338.4594245,
338.1511823, 338.03711207, 338.19144663, 338.22022045, 338.29032321,
337.8623197 ]
# coordinates of the barycenter
xm = mean(x)
ym = mean(y)
zm = mean(z)
### Basic usage of optimize.leastsq
def calc_R(xc, yc, zc):
""" calculate the distance of each 3D points from the center (xc, yc, zc) """
return sqrt((x - xc) ** 2 + (y - yc) ** 2 + (z - zc) ** 2)
def func(c):
""" calculate the algebraic distance between the 3D points and the mean circle centered at c=(xc, yc, zc) """
Ri = calc_R(*c)
return Ri - Ri.mean()
center_estimate = xm, ym, zm
center, ier = optimize.leastsq(func, center_estimate)
##print center
xc, yc, zc = center
Ri = calc_R(xc, yc, zc)
R = Ri.mean()
residu = sum((Ri - R)**2)
print 'R =', R
So, for the first set of x, y, z (commented in the code) it works well: the output is R = 39.0097846735. If I run the code with the second set of points (uncommented) the resulting radius is R = 108576.859834, which is almost straight line. I plotted the last one.
The blue points is a given data set, the red ones is the arc of the resulting radius R = 108576.859834. It is obvious that the given data set has much smaller radius than the result.
Here is another set of points.
It is clear that the least squares does not work correctly.
Please help me solving this issue.
UPDATE
Here is my solution:
### fit 3D arc into a set of 3D points ###
### output is the centre and the radius of the arc ###
def fitArc3d(arr, eps = 0.0001):
# Coordinates of the 3D points
x = numpy.array([arr[k][0] for k in range(len(arr))])
y = numpy.array([arr[k][4] for k in range(len(arr))])
z = numpy.array([arr[k][5] for k in range(len(arr))])
# coordinates of the barycenter
xm = mean(x)
ym = mean(y)
zm = mean(z)
### gradient descent minimisation method ###
pnts = [[x[k], y[k], z[k]] for k in range(len(x))]
meanP = Point(xm, ym, zm) # mean point
Ri = [Point(*meanP).distance(Point(*pnts[k])) for k in range(len(pnts))] # radii to the points
Rm = math.fsum(Ri) / len(Ri) # mean radius
dR = Rm + 10 # difference between mean radii
alpha = 0.1
c = meanP
cArr = []
while dR > eps:
cArr.append(c)
Jx = math.fsum([2 * (x[k] - c[0]) * (Ri[k] - Rm) / Ri[k] for k in range(len(Ri))])
Jy = math.fsum([2 * (y[k] - c[1]) * (Ri[k] - Rm) / Ri[k] for k in range(len(Ri))])
Jz = math.fsum([2 * (z[k] - c[2]) * (Ri[k] - Rm) / Ri[k] for k in range(len(Ri))])
gradJ = [Jx, Jy, Jz] # find gradient
c = [c[k] + alpha * gradJ[k] for k in range(len(c)) if len(c) == len(gradJ)] # find new centre point
Ri = [Point(*c).distance(Point(*pnts[k])) for k in range(len(pnts))] # calculate new radii
RmOld = Rm
Rm = math.fsum(Ri) / len(Ri) # calculate new mean radius
dR = abs(Rm - RmOld) # new difference between mean radii
return Point(*c), Rm
It is not very optimal code (I do not have time to fine tune it) but it works.
I guess the problem is the data and the corresponding algorithm. The least square method works fine if it produces a local parabolic minimum, such that a simple gradient method goes approximately direction minimum. Unfortunately, this is not necessarily the case for your data. You can check this by keeping some rough estimates for xc and yc fixed and plotting the sum of the squared residuals as a function of zc and R. I get a boomerang shaped minimum. Depending on your starting parameters you might end in one of the branches going away from the real minimum. Once in the valley this can be very flat such that you exceed the number of max iterations or get something that is accepted within the tolerance of the algorithm. As always, thinks are better the better your starting parameters. Unfortunately you have only a small arc of the circle, so that it is difficult to get better. I am not a specialist in Python, but I think that leastsq allows you to play with the Jacobian and Gradient Methods. Try to play with the tolerance as well.
In short: the code looks basically fine to me, but your data is pathological and you have to adapt the code to that kind of data.
There is a non-iterative solution in 2D from Karimäki, maybe you can adapt
this method to 3D. You can also look at this. Sure you will find more literature.
I just checked the data using a Simplex-Algorithm. The minimum is, as I said, not well behaved. See here some cuts of the residual function. Only in the xy-plane you get some reasonable behavior. The properties of the zr- and xr- plane make the finding process very difficult.
So in the beginning the simplex algorithm finds several almost stable solutions. You can see them as flat steps in the graph below (blue x, purple y, yellow z, green R). At the end the algorithm has to walk down the almost flat but very stretched out valley, resulting in the final conversion of z and R. Nevertheless, I expect many regions that look like a solution if the tolerance is insufficient. With the standard tolerance of 10^-5 the algoritm stopped after approx 350 iterations. I had to set it to 10^-10 to get this solution, i.e. [1899.32, 741.874, 298.696, 248.956], which seems quite ok.
Update
As mentioned earlier, the solution depends on the working precision and requested accuracy. So your hand made gradient method works probably better as these values are different compared to the build-in least square fit. Nevertheless, this is my version making a two step fit. First I fit a plane to the data. In a next step I fit a circle within this plane. Both steps use the least square method. This time it works, as each step avoids critically shaped minima. (Naturally, the plane fit runs into problems if the arc segment becomes small and the data lies virtually on a straight line. But this will happen for all algorithms)
from math import *
from matplotlib import pyplot as plt
from scipy import optimize
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import pprint as pp
dataTupel=zip(xs,ys,zs) #your data from above
# Fitting a plane first
# let the affine plane be defined by two vectors,
# the zero point P0 and the plane normal n0
# a point p is member of the plane if (p-p0).n0 = 0
def distanceToPlane(p0,n0,p):
return np.dot(np.array(n0),np.array(p)-np.array(p0))
def residualsPlane(parameters,dataPoint):
px,py,pz,theta,phi = parameters
nx,ny,nz =sin(theta)*cos(phi),sin(theta)*sin(phi),cos(theta)
distances = [distanceToPlane([px,py,pz],[nx,ny,nz],[x,y,z]) for x,y,z in dataPoint]
return distances
estimate = [1900, 700, 335,0,0] # px,py,pz and zeta, phi
#you may automize this by using the center of mass data
# note that the normal vector is given in polar coordinates
bestFitValues, ier = optimize.leastsq(residualsPlane, estimate, args=(dataTupel))
xF,yF,zF,tF,pF = bestFitValues
point = [xF,yF,zF]
normal = [sin(tF)*cos(pF),sin(tF)*sin(pF),cos(tF)]
# Fitting a circle inside the plane
#creating two inplane vectors
sArr=np.cross(np.array([1,0,0]),np.array(normal))#assuming that normal not parallel x!
sArr=sArr/np.linalg.norm(sArr)
rArr=np.cross(sArr,np.array(normal))
rArr=rArr/np.linalg.norm(rArr)#should be normalized already, but anyhow
def residualsCircle(parameters,dataPoint):
r,s,Ri = parameters
planePointArr = s*sArr + r*rArr + np.array(point)
distance = [ np.linalg.norm( planePointArr-np.array([x,y,z])) for x,y,z in dataPoint]
res = [(Ri-dist) for dist in distance]
return res
estimateCircle = [0, 0, 335] # px,py,pz and zeta, phi
bestCircleFitValues, ier = optimize.leastsq(residualsCircle, estimateCircle,args=(dataTupel))
rF,sF,RiF = bestCircleFitValues
print bestCircleFitValues
# Synthetic Data
centerPointArr=sF*sArr + rF*rArr + np.array(point)
synthetic=[list(centerPointArr+ RiF*cos(phi)*rArr+RiF*sin(phi)*sArr) for phi in np.linspace(0, 2*pi,50)]
[cxTupel,cyTupel,czTupel]=[ x for x in zip(*synthetic)]
### Plotting
d = -np.dot(np.array(point),np.array(normal))# dot product
# create x,y mesh
xx, yy = np.meshgrid(np.linspace(2000,2200,10), np.linspace(540,740,10))
# calculate corresponding z
# Note: does not work if normal vector is without z-component
z = (-normal[0]*xx - normal[1]*yy - d)/normal[2]
# plot the surface, data, and synthetic circle
fig = plt.figure()
ax = fig.add_subplot(211, projection='3d')
ax.scatter(xs, ys, zs, c='b', marker='o')
ax.plot_wireframe(xx,yy,z)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
bx = fig.add_subplot(212, projection='3d')
bx.scatter(xs, ys, zs, c='b', marker='o')
bx.scatter(cxTupel,cyTupel,czTupel, c='r', marker='o')
bx.set_xlabel('X Label')
bx.set_ylabel('Y Label')
bx.set_zlabel('Z Label')
plt.show()
which give a radius of 245. This is close to what the other approach gave (249). So within error margins I get the same.
The plotted result looks reasonable.
Hope this helps.
Feel like you missed some constraints in your 1st version code. The implementation could be explained as fitting a sphere to 3d points. So that's why the 2nd radius for 2nd data list is almost straight line. It's thinking like you are giving it a small circle on a large sphere.

Categories

Resources