Keras redefine input shape - python

Let's say I want to train a GRU and because I need stateful=true the batch-size has to be known beforehand.
Using the functional API I would have an Input as follows:
input_1 = Input(batch_shape=(batch_size, None, features))
But when I evaluate the model I don't want to pass my test data in batches (batch_size = 1; predictions for one observation) with fixed timesteps. My
solution at the moment is to load the saved model and rebuild it with:
input_1 = Input(shape=(None, num_input_dim))
To do that though I need a method that goes through every layer of the model and then
set the weights afterwards.
input_1 = Input(shape=(None, num_input_dim))
x1 = input_1
weights = []
for l in range(0, len(layers)):
if isinstance(layers[l], keras.layers.GRU):
x1 = GRU(layers[l].output_shape[-1], return_sequences=True)(x1)
weights.append(layers[l].get_weights())
elif isinstance(layers[l], keras.layers.Dense):
x1 = Dense(layers[l].output_shape[-1], activation='tanh')(x1)
weights.append(layers[l].get_weights())
else:
continue
(This is just an example and I find this solution very unelegant.)
There must be a better way to redefine the input shape. Can somebody help me out here
please.

Since you're not using a stateful=True model for evaluating, then you do need to redefine the model.
You can make a function to create the model taking the options as input:
def createModel(stateful, weights=None):
#input
if (stateful==True):
batch = batch_size
else:
batch = None
#You don't need fixed timesteps, even if the model is stateful
input_1 = Input(batch_shape=(batch_size, None, num_input_dim))
#layer creation as you did with your first model
...
out = LSTM(...., stateful=stateful)(someInput)
...
model = Model(input_1,out)
if weights is not None:
model.set_weights(weights)
return model
Work sequence:
#create the training model
trainModel = createModel(True,None)
#train
...
#create the other model
newModel = createModel(False,trainModel.get_weights())

Related

Adding a list of layers to a keras model computation graph (functional API)

EDIT: More clarification -
I have a pre-trained model file which I can load and pull model.layers and model.weights from. This model may have a complex set of interconnected layers.
I want to be able to use the model.layers or the model() file directly to append it to a layer in another neural network.
#Dummy model - this function is not available to me; only the model file
def model1():
inp = layers.Input((3,))
x = layers.Dense(4, activation='relu')(inp)
out = layers.Dense(2, activation='softmax')(x)
model = Model(inp, out)
return model
pretrained_model = model1() #I have THIS only!
L = pretrained_model.layers
print(L)
[<tensorflow.python.keras.engine.input_layer.InputLayer at 0x7f915d6778b0>,
<tensorflow.python.keras.layers.core.Dense at 0x7f915d643790>,
<tensorflow.python.keras.layers.core.Dense at 0x7f915e124e50>]
I want to take the Dense layers L[1:] and add them to another architecture (Not the weights, just the layers). Something like below as #Anton has described in his solution.
inp = layers.Input((3,))
x = Dense(3, activation='relu')(inp)
m0 = get_layers(pretrained_model)(x) #<---
out = layers.Dense(2)(m0)
This should give me a model.summary() with 5 layers - inp, x, L[1], L[2], out
But I am unable to use the list of layers directly.
I can come up with a function that recreates a partial computation graph based on these layers but I am looking for something simpler.
I have already tried modifying the model1() function to work for me as below, which serves my purpose but assuming I only get a model file and with a massive number of layers, this will not be possible.
def model1(layer):
#inp = layers.Input((3,))
x = layers.Dense(4, activation='relu')(layer)
out = layers.Dense(2, activation='softmax')(x)
model = Model(inp, out)
return model.output
How can I use a model generator inside another model
We can use the generate model1() and replace
inp = layers.Input((3,))
x = Dense(3, activation='relu')(inp)
m0 = get_layers(pretrained_model)(x) # <---
out = layers.Dense(2)(m0)
with
inp = layers.Input((3,))
x = layers.Dense(3, activation='relu')(inp)
m0 = pretrained_model(x) # <---
out = layers.Dense(2)(m0)
and if we want a new model generator model2() that does that as a function
def model2(pretrained_model):
inp = layers.Input((3,), name='model2_input')
x = layers.Dense(3, activation='relu', name='model2_x')(inp)
m0 = pretrained_model(x)
out = layers.Dense(2, name='model2_out')(m0)
model = Model(inp, out, name='model2')
return model
second_model = model2()
If we look at the graph of second_model we can see that indeed it contains the layers of model1
We can generate the above image using
tf.keras.utils.plot_model(second_model, show_shapes=True, expand_nested=True)

Extracting the dropout mask from a keras dropout layer?

I would like to extract and store the dropout mask [array of 1/0s] from a dropout layer in a Sequential Keras model at each batch while training. I was wondering if there was a straight forward way way to do this within Keras or if I would need to switch over to tensorflow (How to get the dropout mask in Tensorflow).
Would appreciate any help! I'm quite new to TensorFlow and Keras.
There are a couple of functions (dropout_layer.get_output_mask(), dropout_layer.get_input_mask()) for the dropout layer that I tried using but got None after calling on the previous layer.
model = tf.keras.Sequential()
model.add(tf.keras.layers.Flatten(name="flat", input_shape=(28, 28, 1)))
model.add(tf.keras.layers.Dense(
512,
activation='relu',
name = 'dense_1',
kernel_initializer=tf.keras.initializers.GlorotUniform(seed=123),
bias_initializer='zeros'))
dropout = tf.keras.layers.Dropout(0.2, name = 'dropout') #want this layer's mask
model.add(dropout)
x = dropout.output_mask
y = dropout.input_mask
model.add(tf.keras.layers.Dense(
10,
activation='softmax',
name='dense_2',
kernel_initializer=tf.keras.initializers.GlorotUniform(seed=123),
bias_initializer='zeros'))
model.compile(...)
model.fit(...)
It's not easily exposed in Keras. It goes deep until it calls the Tensorflow dropout.
So, although you're using Keras, it's will also be a tensor in the graph that can be gotten by name (finding it's name: In Tensorflow, get the names of all the Tensors in a graph).
This option, of course will lack some keras information, you should probably have to do that inside a Lambda layer so Keras adds certain information to the tensor. And you must take extra care because the tensor will exist even when not training (where the mask is skipped)
Now, you can also use a less hacky way, that may consume a little processing:
def getMask(x):
boolMask = tf.not_equal(x, 0)
floatMask = tf.cast(boolMask, tf.float32) #or tf.float64
return floatMask
Use a Lambda(getMasc)(output_of_dropout_layer)
But instead of using a Sequential model, you will need a functional API Model.
inputs = tf.keras.layers.Input((28, 28, 1))
outputs = tf.keras.layers.Flatten(name="flat")(inputs)
outputs = tf.keras.layers.Dense(
512,
# activation='relu', #relu will be a problem here
name = 'dense_1',
kernel_initializer=tf.keras.initializers.GlorotUniform(seed=123),
bias_initializer='zeros')(outputs)
outputs = tf.keras.layers.Dropout(0.2, name = 'dropout')(outputs)
mask = Lambda(getMask)(outputs)
#there isn't "input_mask"
#add the missing relu:
outputs = tf.keras.layers.Activation('relu')(outputs)
outputs = tf.keras.layers.Dense(
10,
activation='softmax',
name='dense_2',
kernel_initializer=tf.keras.initializers.GlorotUniform(seed=123),
bias_initializer='zeros')(outputs)
model = Model(inputs, outputs)
model.compile(...)
model.fit(...)
Training and predicting
Since you can't train the masks (it doesn't make any sense), it should not be an output of the model for training.
Now, we could try this:
trainingModel = Model(inputs, outputs)
predictingModel = Model(inputs, [output, mask])
But masks don't exist in prediction, because dropout is only applied in training. So this doesn't bring us anything good in the end.
The only way for training is then using a dummy loss and dummy targets:
def dummyLoss(y_true, y_pred):
return y_true #but this might evoke a "None" gradient problem since it's not trainable, there is no connection to any weights, etc.
model.compile(loss=[loss_for_main_output, dummyLoss], ....)
model.fit(x_train, [y_train, np.zeros((len(y_Train),) + mask_shape), ...)
It's not guaranteed that these will work.
I found a very hacky way to do this by trivially extending the provided dropout layer. (Almost all code from TF.)
class MyDR(tf.keras.layers.Layer):
def __init__(self,rate,**kwargs):
super(MyDR, self).__init__(**kwargs)
self.noise_shape = None
self.rate = rate
def _get_noise_shape(self,x, noise_shape=None):
# If noise_shape is none return immediately.
if noise_shape is None:
return array_ops.shape(x)
try:
# Best effort to figure out the intended shape.
# If not possible, let the op to handle it.
# In eager mode exception will show up.
noise_shape_ = tensor_shape.as_shape(noise_shape)
except (TypeError, ValueError):
return noise_shape
if x.shape.dims is not None and len(x.shape.dims) == len(noise_shape_.dims):
new_dims = []
for i, dim in enumerate(x.shape.dims):
if noise_shape_.dims[i].value is None and dim.value is not None:
new_dims.append(dim.value)
else:
new_dims.append(noise_shape_.dims[i].value)
return tensor_shape.TensorShape(new_dims)
return noise_shape
def build(self, input_shape):
self.noise_shape = input_shape
print(self.noise_shape)
super(MyDR,self).build(input_shape)
#tf.function
def call(self,input):
self.noise_shape = self._get_noise_shape(input)
random_tensor = tf.random.uniform(self.noise_shape, seed=1235, dtype=input.dtype)
keep_prob = 1 - self.rate
scale = 1 / keep_prob
# NOTE: if (1.0 + rate) - 1 is equal to rate, then we want to consider that
# float to be selected, hence we use a >= comparison.
self.keep_mask = random_tensor >= self.rate
#NOTE: here is where I save the binary masks.
#the file grows quite big!
tf.print(self.keep_mask,output_stream="file://temp/droput_mask.txt")
ret = input * scale * math_ops.cast(self.keep_mask, input.dtype)
return ret

Find input that maximises output of a neural network using Keras and TensorFlow

I have used Keras and TensorFlow to classify the Fashion MNIST following this tutorial .
It uses the AdamOptimizer to find the value for model parameters that minimize the loss function of the network. The input for the network is a 2-D tensor with shape [28, 28], and output is a 1-D tensor with shape [10] which is the result of a softmax function.
Once the network has been trained, I want to use the optimizer for another task: find an input that maximizes one of the elements of the output tensor. How can this be done? Is it possible to do so using Keras or one have to use a lower level API?
Since the input is not unique for a given output, it would be even better if we could impose some constraints on the values the input can take.
The trained model has the following format
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
I feel you would want to backprop with respect to the input freezing all the weights to your model. What you could do is:
Add a dense layer after the input layer with the same dimensions as input and set it as trainable
Freeze all the other layers of your model. (except the one you added)
As an input, feed an identity matrix and train your model based on whatever output you desire.
This article and this post might be able to help you if you want to backprop based on the input instead. It's a bit like what you are aiming for but you can get the intuition.
It would be very similar to the way that filters of a Convolutional Network is visualized: we would do gradient ascent optimization in input space to maximize the response of a particular filter.
Here is how to do it: after training is finished, first we need to specify the output and define a loss function that we want to maximize:
from keras import backend as K
output_class = 0 # the index of the output class we want to maximize
output = model.layers[-1].output
loss = K.mean(output[:,output_class]) # get the average activation of our desired class over the batch
Next, we need to take the gradient of the loss we have defined above with respect to the input layer:
grads = K.gradients(loss, model.input)[0] # the output of `gradients` is a list, just take the first (and only) element
grads = K.l2_normalize(grads) # normalize the gradients to help having an smooth optimization process
Next, we need to define a backend function that takes the initial input image and gives the values of loss and gradients as outputs, so that we can use it in the next step to implement the optimization process:
func = K.function([model.input], [loss, grads])
Finally, we implement the gradient ascent optimization process:
import numpy as np
input_img = np.random.random((1, 28, 28)) # define an initial random image
lr = 1. # learning rate used for gradient updates
max_iter = 50 # number of gradient updates iterations
for i in range(max_iter):
loss_val, grads_val = func([input_img])
input_img += grads_val * lr # update the image based on gradients
Note that, after this process is finished, to display the image you may need to make sure that all the values in the image are in the range [0, 255] (or [0,1]).
After the hints Saket Kumar Singh gave in his answer, I wrote the following that seems to solve the question.
I create two custom layers. Maybe Keras offers already some classes that are equivalent to them.
The first on is a trainable input:
class MyInputLayer(keras.layers.Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(MyInputLayer, self).__init__(**kwargs)
def build(self, input_shape):
self.kernel = self.add_weight(name='kernel',
shape=self.output_dim,
initializer='uniform',
trainable=True)
super(MyInputLayer, self).build(input_shape)
def call(self, x):
return self.kernel
def compute_output_shape(self, input_shape):
return self.output_dim
The second one gets the probability of the label of interest:
class MySelectionLayer(keras.layers.Layer):
def __init__(self, position, **kwargs):
self.position = position
self.output_dim = 1
super(MySelectionLayer, self).__init__(**kwargs)
def build(self, input_shape):
super(MySelectionLayer, self).build(input_shape)
def call(self, x):
mask = np.array([False]*x.shape[-1])
mask[self.position] = True
return tf.boolean_mask(x, mask,axis=1)
def compute_output_shape(self, input_shape):
return self.output_dim
I used them in this way:
# Build the model
layer_flatten = keras.layers.Flatten(input_shape=(28, 28))
layerDense1 = keras.layers.Dense(128, activation=tf.nn.relu)
layerDense2 = keras.layers.Dense(10, activation=tf.nn.softmax)
model = keras.Sequential([
layer_flatten,
layerDense1,
layerDense2
])
# Compile the model
model.compile(optimizer=tf.train.AdamOptimizer(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# Train the model
# ...
# Freeze the model
layerDense1.trainable = False
layerDense2.trainable = False
# Build another model
class_index = 7
layerInput = MyInputLayer((1,784))
layerSelection = MySelectionLayer(class_index)
model_extended = keras.Sequential([
layerInput,
layerDense1,
layerDense2,
layerSelection
])
# Compile it
model_extended.compile(optimizer=tf.train.AdamOptimizer(),
loss='mean_absolute_error')
# Train it
dummyInput = np.ones((1,1))
target = np.ones((1,1))
model_extended.fit(dummyInput, target,epochs=300)
# Retrieve the weights of layerInput
layerInput.get_weights()[0]
Interesting. Maybe a solution would be to feed all your data to the network and for each sample save the output_layer after softmax.
This way, for 3 classes, where you want to find the best input for class 1, you are looking for outputs where the first component is high. For example: [1 0 0]
Indeed the output means the probability, or the confidence of the network, for the sample being one of the classes.
Funny coincident I was just working on the same "problem". I'm interested in the direction of adversarial training etc. What I did was to insert a LocallyConnected2D Layer after the input and then train with data which is all one and has as targets the class of interest.
As model I use
batch_size = 64
num_classes = 10
epochs = 20
input_shape = (28, 28, 1)
inp = tf.keras.layers.Input(shape=input_shape)
conv1 = tf.keras.layers.Conv2D(32, kernel_size=(3, 3),activation='relu',kernel_initializer='he_normal')(inp)
pool1 = tf.keras.layers.MaxPool2D((2, 2))(conv1)
drop1 = tf.keras.layers.Dropout(0.20)(pool1)
flat = tf.keras.layers.Flatten()(drop1)
fc1 = tf.keras.layers.Dense(128, activation='relu')(flat)
norm1 = tf.keras.layers.BatchNormalization()(fc1)
dropfc1 = tf.keras.layers.Dropout(0.25)(norm1)
out = tf.keras.layers.Dense(num_classes, activation='softmax')(dropfc1)
model = tf.keras.models.Model(inputs = inp , outputs = out)
model.compile(loss=tf.keras.losses.categorical_crossentropy,
optimizer=tf.keras.optimizers.RMSprop(),
metrics=['accuracy'])
model.summary()
after training I insert the new layer
def insert_intermediate_layer_in_keras(model,position, before_layer_id):
layers = [l for l in model.layers]
if(before_layer_id==0) :
x = new_layer
else:
x = layers[0].output
for i in range(1, len(layers)):
if i == before_layer_id:
x = new_layer(x)
x = layers[i](x)
else:
x = layers[i](x)
new_model = tf.keras.models.Model(inputs=layers[0].input, outputs=x)
return new_model
def fix_model(model):
for l in model.layers:
l.trainable=False
fix_model(model)
new_layer = tf.keras.layers.LocallyConnected2D(1, kernel_size=(1, 1),
activation='linear',
kernel_initializer='he_normal',
use_bias=False)
new_model = insert_intermediate_layer_in_keras(model,new_layer,1)
new_model.compile(loss=tf.keras.losses.categorical_crossentropy,
optimizer=tf.keras.optimizers.RMSprop(),
metrics=['accuracy'])
and finally rerun training with my fake data.
X_fake = np.ones((60000,28,28,1))
print(Y_test.shape)
y_fake = np.ones((60000))
Y_fake = tf.keras.utils.to_categorical(y_fake, num_classes)
new_model.fit(X_fake, Y_fake, epochs=100)
weights = new_layer.get_weights()[0]
imshow(weights.reshape(28,28))
plt.show()
Results are not yet satisfying but I'm confident of the approach and guess I need to play around with the optimiser.

Combine to Keras functional models

I am trying to mimic this keras blog about fine tuning image classifiers. I would like to use the Inceptionv3 found on a fchollet repo.
Inception is a Model (functional API), so I can't just do model.add(top_model) which is reserved for Sequential.
How can I add combine two functional Models? Let's say I have
inputs = Input(shape=input_shape)
x = Flatten()(inputs)
predictions = Dense(4, name='final1')(x)
model1 = Model(input=inputs, output=predictions)
for the first model and
inputs_2 = Input(shape=(4,))
y = Dense(5)(l_inputs)
y = Dense(2, name='final2')(y)
predictions_2 = Dense(29)(y)
model2 = Model(input=inputs2, output=predictions2)
for the second. I now want an end-to-end that goes from inputs to predicions_2 and links predictions to inputs_2.
I tried using model1.get_layer('final1').output but I had a mismatch with types and I couldn't make it work.
I haven't tried this but according to the documentation functional models are callable, so you can do something like:
y = model2(model1(x))
where x is the data that goes to inputs and y is the result of predictions_2
I ran into this problem as well while fine tuning VGG16. Here's what worked for me and I imagine a similar approach can be taken for Inception V3. Tested on Keras 2.0.5 with Tensorflow 1.2 backend.
# NOTE: define the following variables
# top_model_weights_path
# num_classes
# dense_layer_1 = 4096
# dense_layer_2 = 4096
vgg16 = applications.VGG16(
include_top=False,
weights='imagenet',
input_shape=(224, 224, 3))
# Inspect the model
vgg16.summary()
# This shape has to match the last layer in VGG16 (without top)
dense_input = Input(shape=(7, 7, 512))
dense_output = Flatten(name='flatten')(dense_input)
dense_output = Dense(dense_layer_1, activation='relu', name='fc1')(dense_output)
dense_output = Dense(dense_layer_2, activation='relu', name='fc2')(dense_output)
dense_output = Dense(num_classes, activation='softmax', name='predictions')(dense_output)
top_model = Model(inputs=dense_input, outputs=dense_output, name='top_model')
# from: https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
# note that it is necessary to start with a fully-trained
# classifier, including the top classifier,
# in order to successfully do fine-tuning
top_model.load_weights(top_model_weights_path)
block5_pool = vgg16.get_layer('block5_pool').output
# Now combine the two models
full_output = top_model(block5_pool)
full_model = Model(inputs=vgg16.input, outputs=full_output)
# set the first 15 layers (up to the last conv block)
# to non-trainable (weights will not be updated)
# WARNING: this may not be applicable for Inception V3
for layer in full_model.layers[:15]:
layer.trainable = False
# Verify things look as expected
full_model.summary()
# compile the model with a SGD/momentum optimizer
# and a very slow learning rate.
full_model.compile(
loss='binary_crossentropy',
optimizer=optimizers.SGD(lr=5e-5, momentum=0.9),
metrics=['accuracy'])
# Train the model...
I think there are 2 options depending on what you need:
(a) predictions_1 and predictions_2 matter for you. In this case, you can train a network with 2 outputs. Here an example derived from your post:
input_shape = [3, 20]
inputs = Input(shape=input_shape)
x = Flatten()(inputs)
predictions_1 = Dense(4, name='predictions_1')(x)
# here the predictions_1 just corresponds to your next layer's input
y = Dense(5)(predictions_1)
y = Dense(2)(y)
predictions_2 = Dense(29, name='predictions_2')(y)
# you specify here that you have 2 outputs
model = Model(input=inputs, output=[predictions_1, predictions_2])
For the .fit and .predict, you can find a lot of details in https://keras.io/getting-started/functional-api-guide/, section: Multi-input and multi-output models.
(b) you are only interested in predictions_2. In this case, you can just do:
input_shape = [3, 20]
inputs = Input(shape=input_shape)
x = Flatten()(inputs)
predictions_1 = Dense(4, name='predictions_1')(x)
# here the predictions_1 just corresponds to your next layer's input
y = Dense(5)(predictions_1)
y = Dense(2)(y)
predictions_2 = Dense(29, name='predictions_2')(y)
# you specify here that your only output is predictions_2
model = Model(input=inputs, output=predictions_2)
Now as regards inception_v3. You can define by yourself the architecture and modify the deep layers inside according to your needs (giving to these layers specific names in order to avoid keras naming them automatically).
After that, compile your model and loads weights (as in https://keras.io/models/about-keras-models/ see function load_weights(..., by_name=True))
# you can load weights for only the part that corresponds to the true
# inception_v3 architecture. The other part will be initialized
# randomly
model.load_weights("inception_v3.hdf5", by_name=True)
This should solve your problem. By the way, you can find extra information here: https://www.gradientzoo.com. The doc. explains several saving / loading / fine-tuning routines ;)
Update: if you do not want to redefine your model from scratch you can do the following:
input_shape = [3, 20]
# define model1 and model2 as you want
inputs1 = Input(shape=input_shape)
x = Flatten()(inputs1)
predictions_1 = Dense(4, name='predictions_1')(x)
model1 = Model(input=inputs1, output=predictions_1)
inputs2 = Input(shape=(4,))
y = Dense(5)(inputs2)
y = Dense(2)(y)
predictions_2 = Dense(29, name='predictions_2')(y)
model2 = Model(input=inputs2, output=predictions_2)
# then define functions returning the image of an input through model1 or model2
def give_model1():
def f(x):
return model1(x)
return f
def give_model2():
def g(x):
return model2(x)
return g
# now you can create a global model as follows:
inputs = Input(shape=input_shape)
x = model1(inputs)
predictions = model2(x)
model = Model(input=inputs, output=predictions)
Drawing from filitchp's answer above, assuming the output dimensions of model1 match the input dimensions of model2, this worked for me:
model12 = Model(inputs=inputs, outputs=model2(model1.output))

TensorFlow: Remember LSTM state for next batch (stateful LSTM)

Given a trained LSTM model I want to perform inference for single timesteps, i.e. seq_length = 1 in the example below. After each timestep the internal LSTM (memory and hidden) states need to be remembered for the next 'batch'. For the very beginning of the inference the internal LSTM states init_c, init_h are computed given the input. These are then stored in a LSTMStateTuple object which is passed to the LSTM. During training this state is updated every timestep. However for inference I want the state to be saved in between batches, i.e. the initial states only need to be computed at the very beginning and after that the LSTM states should be saved after each 'batch' (n=1).
I found this related StackOverflow question: Tensorflow, best way to save state in RNNs?. However this only works if state_is_tuple=False, but this behavior is soon to be deprecated by TensorFlow (see rnn_cell.py). Keras seems to have a nice wrapper to make stateful LSTMs possible but I don't know the best way to achieve this in TensorFlow. This issue on the TensorFlow GitHub is also related to my question: https://github.com/tensorflow/tensorflow/issues/2838
Anyone good suggestions for building a stateful LSTM model?
inputs = tf.placeholder(tf.float32, shape=[None, seq_length, 84, 84], name="inputs")
targets = tf.placeholder(tf.float32, shape=[None, seq_length], name="targets")
num_lstm_layers = 2
with tf.variable_scope("LSTM") as scope:
lstm_cell = tf.nn.rnn_cell.LSTMCell(512, initializer=initializer, state_is_tuple=True)
self.lstm = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * num_lstm_layers, state_is_tuple=True)
init_c = # compute initial LSTM memory state using contents in placeholder 'inputs'
init_h = # compute initial LSTM hidden state using contents in placeholder 'inputs'
self.state = [tf.nn.rnn_cell.LSTMStateTuple(init_c, init_h)] * num_lstm_layers
outputs = []
for step in range(seq_length):
if step != 0:
scope.reuse_variables()
# CNN features, as input for LSTM
x_t = # ...
# LSTM step through time
output, self.state = self.lstm(x_t, self.state)
outputs.append(output)
I found out it was easiest to save the whole state for all layers in a placeholder.
init_state = np.zeros((num_layers, 2, batch_size, state_size))
...
state_placeholder = tf.placeholder(tf.float32, [num_layers, 2, batch_size, state_size])
Then unpack it and create a tuple of LSTMStateTuples before using the native tensorflow RNN Api.
l = tf.unpack(state_placeholder, axis=0)
rnn_tuple_state = tuple(
[tf.nn.rnn_cell.LSTMStateTuple(l[idx][0], l[idx][1])
for idx in range(num_layers)]
)
RNN passes in the API:
cell = tf.nn.rnn_cell.LSTMCell(state_size, state_is_tuple=True)
cell = tf.nn.rnn_cell.MultiRNNCell([cell]*num_layers, state_is_tuple=True)
outputs, state = tf.nn.dynamic_rnn(cell, x_input_batch, initial_state=rnn_tuple_state)
The state - variable will then be feeded to the next batch as a placeholder.
Tensorflow, best way to save state in RNNs? was actually my original question. The code bellow is how I use the state tuples.
with tf.variable_scope('decoder') as scope:
rnn_cell = tf.nn.rnn_cell.MultiRNNCell \
([
tf.nn.rnn_cell.LSTMCell(512, num_proj = 256, state_is_tuple = True),
tf.nn.rnn_cell.LSTMCell(512, num_proj = WORD_VEC_SIZE, state_is_tuple = True)
], state_is_tuple = True)
state = [[tf.zeros((BATCH_SIZE, sz)) for sz in sz_outer] for sz_outer in rnn_cell.state_size]
for t in range(TIME_STEPS):
if t:
last = y_[t - 1] if TRAINING else y[t - 1]
else:
last = tf.zeros((BATCH_SIZE, WORD_VEC_SIZE))
y[t] = tf.concat(1, (y[t], last))
y[t], state = rnn_cell(y[t], state)
scope.reuse_variables()
Rather than using tf.nn.rnn_cell.LSTMStateTuple I just create a lists of lists which works fine. In this example I am not saving the state. However you could easily have made state out of variables and just used assign to save the values.

Categories

Resources