Related
I want to find all the places where values from one tensor show up in another tensor. The output should be a Boolean tensor the same shape as the main tensor.
import numpy as np
import tensorflow as tf
values = np.random.randint(0, 32, (3, 32))
check_vals = np.random.choice(values.flatten(), 2, False)
main_tensor = tf.convert_to_tensor(values, dtype=tf.int32)
check_tensor = tf.convert_to_tensor(check_vals, dtype=tf.int32)
#In numpy I can just do this
np_res = np.isin(values, check_vals)
#and verify it worked by doing:
print (check_vals)
print (values[np_res])
#How to do it in tensorflow??
res = tf.equal(main_tensor, check_tensor)
This isn't as straight forward as it should be but this is what I got to work.
import numpy as np
import tensorflow as tf
values = np.random.randint(0, 32, (3, 32))
check_vals = np.random.choice(values.flatten(), 2, False)
main_tensor = tf.convert_to_tensor(values, dtype=tf.int32)
check_tensor = tf.convert_to_tensor(check_vals, dtype=tf.int32)
#In numpy I can just do this
np_res = np.isin(values, check_vals)
#Loop over the check_tensor using tf.map_fn. Have to set output since
#input and output dtypes are different
checks = tf.map_fn(lambda x: tf.equal(main_tensor, x), check_tensor, fn_output_signature=tf.bool)
#Now we do a reduce_any operation to combine the results from
#each entry in check_tensor
result = tf.reduce_any(checks, axis=0)
print (np.all(result.numpy() == np_res))
If you got a small enough tensor you can do this without map() using broadcasting. It can easily explode in memory if your inputs are large so please be mindful.
values = tf.constant(np.random.randint(0, 32, (3, 5)))
check_vals = tf.constant(np.random.choice(values.numpy().flatten(), 2, False))
res = tf.reduce_any(values[:, :, tf.newaxis]==check_vals[tf.newaxis, tf.newaxis, :], axis=-1)
I'm starting off with a numpy array of an image.
In[1]:img = cv2.imread('test.jpg')
The shape is what you might expect for a 640x480 RGB image.
In[2]:img.shape
Out[2]: (480, 640, 3)
However, this image that I have is a frame of a video, which is 100 frames long. Ideally, I would like to have a single array that contains all the data from this video such that img.shape returns (480, 640, 3, 100).
What is the best way to add the next frame -- that is, the next set of image data, another 480 x 640 x 3 array -- to my initial array?
A dimension can be added to a numpy array as follows:
image = image[..., np.newaxis]
Alternatively to
image = image[..., np.newaxis]
in #dbliss' answer, you can also use numpy.expand_dims like
image = np.expand_dims(image, <your desired dimension>)
For example (taken from the link above):
x = np.array([1, 2])
print(x.shape) # prints (2,)
Then
y = np.expand_dims(x, axis=0)
yields
array([[1, 2]])
and
y.shape
gives
(1, 2)
You could just create an array of the correct size up-front and fill it:
frames = np.empty((480, 640, 3, 100))
for k in xrange(nframes):
frames[:,:,:,k] = cv2.imread('frame_{}.jpg'.format(k))
if the frames were individual jpg file that were named in some particular way (in the example, frame_0.jpg, frame_1.jpg, etc).
Just a note, you might consider using a (nframes, 480,640,3) shaped array, instead.
Pythonic
X = X[:, :, None]
which is equivalent to
X = X[:, :, numpy.newaxis] and
X = numpy.expand_dims(X, axis=-1)
But as you are explicitly asking about stacking images,
I would recommend going for stacking the list of images np.stack([X1, X2, X3]) that you may have collected in a loop.
If you do not like the order of the dimensions you can rearrange with np.transpose()
You can use np.concatenate() use the axis parameter to specify the dimension that should be concatenated. If the arrays being concatenated do not have this dimension, you can use np.newaxis to indicate where the new dimension should be added:
import numpy as np
movie = np.concatenate((img1[:,np.newaxis], img2[:,np.newaxis]), axis=3)
If you are reading from many files:
import glob
movie = np.concatenate([cv2.imread(p)[:,np.newaxis] for p in glob.glob('*.jpg')], axis=3)
Consider Approach 1 with reshape method and Approach 2 with np.newaxis method that produce the same outcome:
#Lets suppose, we have:
x = [1,2,3,4,5,6,7,8,9]
print('I. x',x)
xNpArr = np.array(x)
print('II. xNpArr',xNpArr)
print('III. xNpArr', xNpArr.shape)
xNpArr_3x3 = xNpArr.reshape((3,3))
print('IV. xNpArr_3x3.shape', xNpArr_3x3.shape)
print('V. xNpArr_3x3', xNpArr_3x3)
#Approach 1 with reshape method
xNpArrRs_1x3x3x1 = xNpArr_3x3.reshape((1,3,3,1))
print('VI. xNpArrRs_1x3x3x1.shape', xNpArrRs_1x3x3x1.shape)
print('VII. xNpArrRs_1x3x3x1', xNpArrRs_1x3x3x1)
#Approach 2 with np.newaxis method
xNpArrNa_1x3x3x1 = xNpArr_3x3[np.newaxis, ..., np.newaxis]
print('VIII. xNpArrNa_1x3x3x1.shape', xNpArrNa_1x3x3x1.shape)
print('IX. xNpArrNa_1x3x3x1', xNpArrNa_1x3x3x1)
We have as outcome:
I. x [1, 2, 3, 4, 5, 6, 7, 8, 9]
II. xNpArr [1 2 3 4 5 6 7 8 9]
III. xNpArr (9,)
IV. xNpArr_3x3.shape (3, 3)
V. xNpArr_3x3 [[1 2 3]
[4 5 6]
[7 8 9]]
VI. xNpArrRs_1x3x3x1.shape (1, 3, 3, 1)
VII. xNpArrRs_1x3x3x1 [[[[1]
[2]
[3]]
[[4]
[5]
[6]]
[[7]
[8]
[9]]]]
VIII. xNpArrNa_1x3x3x1.shape (1, 3, 3, 1)
IX. xNpArrNa_1x3x3x1 [[[[1]
[2]
[3]]
[[4]
[5]
[6]]
[[7]
[8]
[9]]]]
a = np.expand_dims(a, axis=-1)
or
a = a[:, np.newaxis]
or
a = a.reshape(a.shape + (1,))
There is no structure in numpy that allows you to append more data later.
Instead, numpy puts all of your data into a contiguous chunk of numbers (basically; a C array), and any resize requires allocating a new chunk of memory to hold it. Numpy's speed comes from being able to keep all the data in a numpy array in the same chunk of memory; e.g. mathematical operations can be parallelized for speed and you get less cache misses.
So you will have two kinds of solutions:
Pre-allocate the memory for the numpy array and fill in the values, like in JoshAdel's answer, or
Keep your data in a normal python list until it's actually needed to put them all together (see below)
images = []
for i in range(100):
new_image = # pull image from somewhere
images.append(new_image)
images = np.stack(images, axis=3)
Note that there is no need to expand the dimensions of the individual image arrays first, nor do you need to know how many images you expect ahead of time.
You can use stack with the axis parameter:
img.shape # h,w,3
imgs = np.stack([img1,img2,img3,img4], axis=-1) # -1 = new axis is last
imgs.shape # h,w,3,nimages
For example: to convert grayscale to color:
>>> d = np.zeros((5,4), dtype=int) # 5x4
>>> d[2,3] = 1
>>> d3.shape
Out[30]: (5, 4, 3)
>>> d3 = np.stack([d,d,d], axis=-2) # 5x4x3 -1=as last axis
>>> d3[2,3]
Out[32]: array([1, 1, 1])
I followed this approach:
import numpy as np
import cv2
ls = []
for image in image_paths:
ls.append(cv2.imread('test.jpg'))
img_np = np.array(ls) # shape (100, 480, 640, 3)
img_np = np.rollaxis(img_np, 0, 4) # shape (480, 640, 3, 100).
This worked for me:
image = image[..., None]
This will help you add axis anywhere you want
import numpy as np
signal = np.array([[0.3394572666491664, 0.3089068053925853, 0.3516359279582483], [0.33932706934615525, 0.3094755563319447, 0.3511973743219001], [0.3394407172182317, 0.30889042266755573, 0.35166886011421256], [0.3394407172182317, 0.30889042266755573, 0.35166886011421256]])
print(signal.shape)
#(4,3)
print(signal[...,np.newaxis].shape) or signal[...:none]
#(4, 3, 1)
print(signal[:, np.newaxis, :].shape) or signal[:,none, :]
#(4, 1, 3)
there is three-way for adding new dimensions to ndarray .
first: using "np.newaxis" (something like #dbliss answer)
np.newaxis is just given an alias to None for making it easier to
understand. If you replace np.newaxis with None, it works the same
way. but it's better to use np.newaxis for being more explicit.
import numpy as np
my_arr = np.array([2, 3])
new_arr = my_arr[..., np.newaxis]
print("old shape", my_arr.shape)
print("new shape", new_arr.shape)
>>> old shape (2,)
>>> new shape (2, 1)
second: using "np.expand_dims()"
Specify the original ndarray in the first argument and the position
to add the dimension in the second argument axis.
my_arr = np.array([2, 3])
new_arr = np.expand_dims(my_arr, -1)
print("old shape", my_arr.shape)
print("new shape", new_arr.shape)
>>> old shape (2,)
>>> new shape (2, 1)
third: using "reshape()"
my_arr = np.array([2, 3])
new_arr = my_arr.reshape(*my_arr.shape, 1)
print("old shape", my_arr.shape)
print("new shape", new_arr.shape)
>>> old shape (2,)
>>> new shape (2, 1)
lets assume we have a tensor representing an image of the shape (910, 270, 1) which assigned a number (some index) to each pixel with width=910 and height=270.
We also have a numpy array of size (N, 3) which maps a 3-tuple to an index.
I now want to create a new numpy array of shape (920, 270, 3) which has a 3-tuple based on the original tensor index and the mapping-3-tuple-numpy array. How do I do this assignment without for loops and other consuming iterations?
This would look simething like:
color_image = np.zeros((self._w, self._h, 3), dtype=np.int32)
self._colors = np.array(N,3) # this is already present
indexed_image = torch.tensor(920,270,1) # this is already present
#how do I assign it to this numpy array?
color_image[indexed_image.w, indexed_image.h] = self._colors[indexed_image.flatten()]
Assuming you have _colors, and indexed_image. Something that ressembles to:
>>> indexed_image = torch.randint(0, 10, (920, 270, 1))
>>> _colors = np.random.randint(0, 255, (N, 3))
A common way of converting a dense map to a RGB map is to loop over the label set:
>>> _colors = torch.FloatTensor(_colors)
>>> rgb = torch.zeros(indexed_image.shape[:-1] + (3,))
>>> for lbl in range(N):
... rgb[lbl == indexed_image[...,0]] = _colors[lbl]
I'm starting off with a numpy array of an image.
In[1]:img = cv2.imread('test.jpg')
The shape is what you might expect for a 640x480 RGB image.
In[2]:img.shape
Out[2]: (480, 640, 3)
However, this image that I have is a frame of a video, which is 100 frames long. Ideally, I would like to have a single array that contains all the data from this video such that img.shape returns (480, 640, 3, 100).
What is the best way to add the next frame -- that is, the next set of image data, another 480 x 640 x 3 array -- to my initial array?
A dimension can be added to a numpy array as follows:
image = image[..., np.newaxis]
Alternatively to
image = image[..., np.newaxis]
in #dbliss' answer, you can also use numpy.expand_dims like
image = np.expand_dims(image, <your desired dimension>)
For example (taken from the link above):
x = np.array([1, 2])
print(x.shape) # prints (2,)
Then
y = np.expand_dims(x, axis=0)
yields
array([[1, 2]])
and
y.shape
gives
(1, 2)
You could just create an array of the correct size up-front and fill it:
frames = np.empty((480, 640, 3, 100))
for k in xrange(nframes):
frames[:,:,:,k] = cv2.imread('frame_{}.jpg'.format(k))
if the frames were individual jpg file that were named in some particular way (in the example, frame_0.jpg, frame_1.jpg, etc).
Just a note, you might consider using a (nframes, 480,640,3) shaped array, instead.
Pythonic
X = X[:, :, None]
which is equivalent to
X = X[:, :, numpy.newaxis] and
X = numpy.expand_dims(X, axis=-1)
But as you are explicitly asking about stacking images,
I would recommend going for stacking the list of images np.stack([X1, X2, X3]) that you may have collected in a loop.
If you do not like the order of the dimensions you can rearrange with np.transpose()
You can use np.concatenate() use the axis parameter to specify the dimension that should be concatenated. If the arrays being concatenated do not have this dimension, you can use np.newaxis to indicate where the new dimension should be added:
import numpy as np
movie = np.concatenate((img1[:,np.newaxis], img2[:,np.newaxis]), axis=3)
If you are reading from many files:
import glob
movie = np.concatenate([cv2.imread(p)[:,np.newaxis] for p in glob.glob('*.jpg')], axis=3)
Consider Approach 1 with reshape method and Approach 2 with np.newaxis method that produce the same outcome:
#Lets suppose, we have:
x = [1,2,3,4,5,6,7,8,9]
print('I. x',x)
xNpArr = np.array(x)
print('II. xNpArr',xNpArr)
print('III. xNpArr', xNpArr.shape)
xNpArr_3x3 = xNpArr.reshape((3,3))
print('IV. xNpArr_3x3.shape', xNpArr_3x3.shape)
print('V. xNpArr_3x3', xNpArr_3x3)
#Approach 1 with reshape method
xNpArrRs_1x3x3x1 = xNpArr_3x3.reshape((1,3,3,1))
print('VI. xNpArrRs_1x3x3x1.shape', xNpArrRs_1x3x3x1.shape)
print('VII. xNpArrRs_1x3x3x1', xNpArrRs_1x3x3x1)
#Approach 2 with np.newaxis method
xNpArrNa_1x3x3x1 = xNpArr_3x3[np.newaxis, ..., np.newaxis]
print('VIII. xNpArrNa_1x3x3x1.shape', xNpArrNa_1x3x3x1.shape)
print('IX. xNpArrNa_1x3x3x1', xNpArrNa_1x3x3x1)
We have as outcome:
I. x [1, 2, 3, 4, 5, 6, 7, 8, 9]
II. xNpArr [1 2 3 4 5 6 7 8 9]
III. xNpArr (9,)
IV. xNpArr_3x3.shape (3, 3)
V. xNpArr_3x3 [[1 2 3]
[4 5 6]
[7 8 9]]
VI. xNpArrRs_1x3x3x1.shape (1, 3, 3, 1)
VII. xNpArrRs_1x3x3x1 [[[[1]
[2]
[3]]
[[4]
[5]
[6]]
[[7]
[8]
[9]]]]
VIII. xNpArrNa_1x3x3x1.shape (1, 3, 3, 1)
IX. xNpArrNa_1x3x3x1 [[[[1]
[2]
[3]]
[[4]
[5]
[6]]
[[7]
[8]
[9]]]]
a = np.expand_dims(a, axis=-1)
or
a = a[:, np.newaxis]
or
a = a.reshape(a.shape + (1,))
There is no structure in numpy that allows you to append more data later.
Instead, numpy puts all of your data into a contiguous chunk of numbers (basically; a C array), and any resize requires allocating a new chunk of memory to hold it. Numpy's speed comes from being able to keep all the data in a numpy array in the same chunk of memory; e.g. mathematical operations can be parallelized for speed and you get less cache misses.
So you will have two kinds of solutions:
Pre-allocate the memory for the numpy array and fill in the values, like in JoshAdel's answer, or
Keep your data in a normal python list until it's actually needed to put them all together (see below)
images = []
for i in range(100):
new_image = # pull image from somewhere
images.append(new_image)
images = np.stack(images, axis=3)
Note that there is no need to expand the dimensions of the individual image arrays first, nor do you need to know how many images you expect ahead of time.
You can use stack with the axis parameter:
img.shape # h,w,3
imgs = np.stack([img1,img2,img3,img4], axis=-1) # -1 = new axis is last
imgs.shape # h,w,3,nimages
For example: to convert grayscale to color:
>>> d = np.zeros((5,4), dtype=int) # 5x4
>>> d[2,3] = 1
>>> d3.shape
Out[30]: (5, 4, 3)
>>> d3 = np.stack([d,d,d], axis=-2) # 5x4x3 -1=as last axis
>>> d3[2,3]
Out[32]: array([1, 1, 1])
I followed this approach:
import numpy as np
import cv2
ls = []
for image in image_paths:
ls.append(cv2.imread('test.jpg'))
img_np = np.array(ls) # shape (100, 480, 640, 3)
img_np = np.rollaxis(img_np, 0, 4) # shape (480, 640, 3, 100).
This worked for me:
image = image[..., None]
This will help you add axis anywhere you want
import numpy as np
signal = np.array([[0.3394572666491664, 0.3089068053925853, 0.3516359279582483], [0.33932706934615525, 0.3094755563319447, 0.3511973743219001], [0.3394407172182317, 0.30889042266755573, 0.35166886011421256], [0.3394407172182317, 0.30889042266755573, 0.35166886011421256]])
print(signal.shape)
#(4,3)
print(signal[...,np.newaxis].shape) or signal[...:none]
#(4, 3, 1)
print(signal[:, np.newaxis, :].shape) or signal[:,none, :]
#(4, 1, 3)
there is three-way for adding new dimensions to ndarray .
first: using "np.newaxis" (something like #dbliss answer)
np.newaxis is just given an alias to None for making it easier to
understand. If you replace np.newaxis with None, it works the same
way. but it's better to use np.newaxis for being more explicit.
import numpy as np
my_arr = np.array([2, 3])
new_arr = my_arr[..., np.newaxis]
print("old shape", my_arr.shape)
print("new shape", new_arr.shape)
>>> old shape (2,)
>>> new shape (2, 1)
second: using "np.expand_dims()"
Specify the original ndarray in the first argument and the position
to add the dimension in the second argument axis.
my_arr = np.array([2, 3])
new_arr = np.expand_dims(my_arr, -1)
print("old shape", my_arr.shape)
print("new shape", new_arr.shape)
>>> old shape (2,)
>>> new shape (2, 1)
third: using "reshape()"
my_arr = np.array([2, 3])
new_arr = my_arr.reshape(*my_arr.shape, 1)
print("old shape", my_arr.shape)
print("new shape", new_arr.shape)
>>> old shape (2,)
>>> new shape (2, 1)
First things first: I'm relatively new to TensorFlow.
I'm trying to implement a custom layer in tensorflow.keras and I'm having relatively hard time when I try to achieve the following:
I've got 3 Tensors (x,y,z) of shape (?,49,3,3,32) [where ? is the batch size]
On each Tensor I compute the sum over the 3rd and 4th axes [thus I end up with 3 Tensors of shape (?,49,32)]
By doing an argmax (A)on the above 3 Tensors (?,49,32) I get a single (?,49,32) Tensor
Now I want to use this tensor to select slices from the initial x,y,z Tensors in the following form:
Each element in the last dimension of A corresponds to the selected Tensor.
(aka: 0 = X, 1 = Y, 2 = Z)
The index of the last dimension of A corresponds to the slice that I would like to extract from the Tensor last dimension.
I've tried to achieve the above using tf.gather but I had no luck. Then I tried using a series of tf.map_fn, which is ugly and computationally costly.
To simplify the above:
let's say we've got an A array of shape (3,3,3,32). Then the numpy equivalent of what I try to achieve is this:
import numpy as np
x = np.random.rand(3,3,32)
y = np.random.rand(3,3,32)
z = np.random.rand(3,3,32)
x_sums = np.sum(np.sum(x,axis=0),0);
y_sums = np.sum(np.sum(y,axis=0),0);
z_sums = np.sum(np.sum(z,axis=0),0);
max_sums = np.argmax([x_sums,y_sums,z_sums],0)
A = np.array([x,y,z])
tmp = []
for i in range(0,len(max_sums)):
tmp.append(A[max_sums[i],:,:,i)
output = np.transpose(np.stack(tmp))
Any suggestions?
ps: I tried tf.gather_nd but I had no luck
This is how you can do something like that with tf.gather_nd:
import tensorflow as tf
# Make example data
tf.random.set_seed(0)
b = 10 # Batch size
x = tf.random.uniform((b, 49, 3, 3, 32))
y = tf.random.uniform((b, 49, 3, 3, 32))
z = tf.random.uniform((b, 49, 3, 3, 32))
# Stack tensors together
data = tf.stack([x, y, z], axis=2)
# Put reduction axes last
data_t = tf.transpose(data, (0, 1, 5, 2, 3, 4))
# Reduce
s = tf.reduce_sum(data_t, axis=(4, 5))
# Find largest sums
idx = tf.argmax(s, 3)
# Make gather indices
data_shape = tf.shape(data_t, idx.dtype)
bb, ii, jj = tf.meshgrid(*(tf.range(data_shape[i]) for i in range(3)), indexing='ij')
# Gather result
output_t = tf.gather_nd(data_t, tf.stack([bb, ii, jj, idx], axis=-1))
# Reorder axes
output = tf.transpose(output_t, (0, 1, 3, 4, 2))
print(output.shape)
# TensorShape([10, 49, 3, 3, 32])