Does adding images in pyplot lowers their resolution? - python

The following code
from PyQt5.QtWidgets import *
from PyQt5.QtCore import *
from PyQt5.QtGui import *
import sys
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.figure import Figure
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
import matplotlib.pyplot as plt
import numpy as np
class View(QGraphicsView):
def __init__(self):
super(View, self).__init__()
self.initScene(5)
def initScene(self,h):
self.scene = QGraphicsScene()
self.figure = plt.figure()
self.canvas = FigureCanvas(self.figure)
self.figure.subplots_adjust(left=0.03,right=1,bottom=.1,top=1,wspace=0, hspace=0)
ax = self.figure.add_subplot(111)
ax.set_xlim([0,1000])
data = np.random.rand(1000)
ax.plot(data, '-')
arr_img = plt.imread('sampleimage.jpg',format='jpg')
im = OffsetImage(arr_img,zoom=.9)
ab = AnnotationBbox(im, (.5, .5), xycoords='axes fraction')
ax.add_artist(ab)
self.canvas.draw()
self.setScene(self.scene)
self.scene.addWidget(self.canvas)
class MainWindow(QMainWindow):
def __init__(self):
super(MainWindow,self).__init__()
#self.setGeometry(150, 150, 700, 550)
self.view = View()
self.setCentralWidget(self.view)
app = QApplication(sys.argv)
window = MainWindow()
window.show()
app.exec_()
produces the output seen below on the left. On the right, is the original image ('sampleimage.jpg') which I imported in the code.
The difference in resolution is apparent. Is there a way to add images to plots, whilst retaining their quality?

In the code from the question the OffsetImage is given an argument zoom=0.9. This means that each pixel of the original image takes 0.9/0.72=1.25 pixels on screen. Hence 5 pixels of the original image needs to squeezed into 4 pixels on screen. This inevitably leads to some artifacts as observed in the output of the code.
If the requirement is to show the image in the exact resolution of the original image, you need to make sure to use exactly one pixel per pixel for the OffsetImage. This would be accomplished by setting the zoom to the ppi of 72. divided by the figure dpi (100 by default).
OffsetImage(arr_img, zoom=72./self.figure.dpi)
As a result, the image shown would indeed have the same dimensions in the matplotlib plot as the original image.

Related

Python qt5 matplotlb canvas animation with manual blit

So I'd like to integrate a matplotlib canvas in qt5 with manual blit.
I've found this thread:
Fast Live Plotting in Matplotlib / PyPlot
and the voted answer seems pretty nice however I need it in a qt5 window...
So I have tried to mash the code above together with the matplotlib qt5 tutorial into one script. https://matplotlib.org/gallery/user_interfaces/embedding_in_qt5_sgskip.html
It kinda works, however the animation only works when using the pan/zoom and the background is black :D and if blit is set to false it doesnt even draw...
If somebody could help me that would be amazing :) Its hilariously broken
from __future__ import unicode_literals
import random
import time
import matplotlib
from PyQt5.QtWidgets import QSizePolicy, QApplication, QWidget, QVBoxLayout
from matplotlib import pyplot as plt
import sys
import matplotlib
matplotlib.use('Qt5Agg')
from matplotlib.animation import FuncAnimation
from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
import numpy as np
class MyMplCanvas(FigureCanvas):
# Ultimately, this is a QWidget (as well as a FigureCanvasAgg, etc.).
def __init__(self, parent=None, width=5, height=4, dpi=100):
self.fig = plt.figure()
FigureCanvas.__init__(self, self.fig)
self.setParent(parent)
FigureCanvas.setSizePolicy(self,
QSizePolicy.Expanding,
QSizePolicy.Expanding)
FigureCanvas.updateGeometry(self)
self.x = np.linspace(0, 50., num=100)
self.X, self.Y = np.meshgrid(self.x, self.x)
# self.fig = plt.figure()
self.ax1 = self.fig.add_subplot(2, 1, 1)
self.ax2 = self.fig.add_subplot(2, 1, 2)
self.img = self.ax1.imshow(self.X, vmin=-1, vmax=1, interpolation="None", cmap="RdBu")
self.line, = self.ax2.plot([], lw=3)
self.text = self.ax2.text(0.8, 0.5, "")
self.ax2.set_xlim(self.x.min(), self.x.max())
self.ax2.set_ylim([-1.1, 1.1])
self.t_start = time.time()
self.k = 0.
#self.fig.canvas.draw() # note that the first draw comes before setting data
#self.update(blit=False)
anim = FuncAnimation(self.fig, self.update, interval=20)
def update(self, blit=True):
if blit:
# cache the background
self.axbackground = self.fig.canvas.copy_from_bbox(self.ax1.bbox)
self.ax2background = self.fig.canvas.copy_from_bbox(self.ax2.bbox)
self.img.set_data(np.sin(self.X / 3. + self.k) * np.cos(self.Y / 3. + self.k))
self.line.set_data(self.x, np.sin(self.x / 3. + self.k))
self.k += 0.11
if blit:
# restore background
self.fig.canvas.restore_region(self.axbackground)
self.fig.canvas.restore_region(self.ax2background)
# redraw just the points
self.ax1.draw_artist(self.img)
self.ax2.draw_artist(self.line)
self.ax2.draw_artist(self.text)
# fill in the axes rectangle
self.fig.canvas.blit(self.ax1.bbox)
self.fig.canvas.blit(self.ax2.bbox)
# in this post http://bastibe.de/2013-05-30-speeding-up-matplotlib.html
# it is mentionned that blit causes strong memory leakage.
# however, I did not observe that.
else:
# redraw everything
self.fig.canvas.draw()
# self.fig.canvas.flush_events()
# alternatively you could use
# plt.pause(0.000000000001)
# however plt.pause calls canvas.draw(), as can be read here:
# http://bastibe.de/2013-05-30-speeding-up-matplotlib.html
class PlotDialog(QWidget):
def __init__(self):
QWidget.__init__(self)
self.plot_layout = QVBoxLayout(self)
self.plot_canvas = MyMplCanvas(self, width=5, height=4, dpi=100)
self.navi_toolbar = NavigationToolbar(self.plot_canvas, self)
self.plot_layout.addWidget(self.plot_canvas)
self.plot_layout.addWidget(self.navi_toolbar)
if __name__ == "__main__":
app = QApplication(sys.argv)
dialog0 = PlotDialog()
dialog0.show()
sys.exit(app.exec_())

matplotlib.widgets.TextBox interaction is slow when figure contains several subplots

Below is python code to demonstrate the problem.
If there are 2 rows and 2 columns of images, for example, typing/erasing in the textbox is reasonably fast. However, if there are 5 rows and 5 columns, typing/erasing in the textbox is quite slow. If the xticks and yticks are drawn, interaction is even slower. So, it seems as if the entire figure is redrawn after every keystroke.
Is there a solution for this (apart from putting the textbox on a separate figure)?
(My development platform is MacOS Mojave, Python 3.7.5.)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib.widgets import TextBox
class Textbox_Demo(object):
def __init__(self):
self.fig = plt.figure(figsize=(8,8))
self.string = 'label'
self.rows = 5 # reducing rows speeds up textbox interaction
self.cols = 5 # reducing cols speeds up textbox interaction
self.plot_count = self.rows * self.cols
self.gs = gridspec.GridSpec(self.rows, self.cols,
left=0.05, right=1-0.02, top=1-.02, bottom=0.10, wspace=0.3, hspace=0.4)
for k in range(self.plot_count):
ax = self.fig.add_subplot(self.gs[k])
#ax.set_xticks([]) # showing axes slows textbox interaction
#ax.set_yticks([]) # showing axes slows textbox interaction
data = np.atleast_2d(np.sin(np.linspace(1,255,255) * 50))
ax.imshow(data, aspect="auto", cmap='ocean')
# this is the user-input textbox
tb_axis = plt.axes([0.125, 0.02, 0.8, 0.05])
self.tb = TextBox(tb_axis, 'Enter label:', initial=self.string, label_pad=0.01)
self.tb.on_submit(self.on_submit)
plt.show()
def on_submit(self, text):
pass
if __name__ == "__main__":
Textbox_Demo()
Matplotlib's TextBox is inherently slow, because it uses the drawing tools provided by matplotlib itself and hence redraws the complete figure upon changes.
I would propose to use a text box of a GUI kit instead. For example for PyQt this might look like:
import numpy as np
import sys
from matplotlib.backends.backend_qt5agg import (
FigureCanvas, NavigationToolbar2QT as NavigationToolbar)
from matplotlib.backends.qt_compat import QtCore, QtWidgets
import matplotlib.gridspec as gridspec
from matplotlib.figure import Figure
class Textbox_Demo(QtWidgets.QMainWindow):
def __init__(self):
super().__init__()
self._main = QtWidgets.QWidget()
self.setCentralWidget(self._main)
layout = QtWidgets.QVBoxLayout(self._main)
layout.setContentsMargins(0,0,0,0)
layout.setSpacing(0)
self.fig = Figure(figsize=(8,8))
self.canvas = FigureCanvas(self.fig)
layout.addWidget(self.canvas)
self.addToolBar(NavigationToolbar(self.canvas, self))
self._textwidget = QtWidgets.QWidget()
textlayout = QtWidgets.QHBoxLayout(self._textwidget)
self.textbox = QtWidgets.QLineEdit(self)
self.textbox.editingFinished.connect(self.on_submit)
# or, if wanting to have changed apply directly:
# self.textbox.textEdited.connect(self.on_submit)
textlayout.addWidget(QtWidgets.QLabel("Enter Text: "))
textlayout.addWidget(self.textbox)
layout.addWidget(self._textwidget)
self.fill_figure()
def fill_figure(self):
self.string = 'label'
self.rows = 5 # reducing rows speeds up textbox interaction
self.cols = 5 # reducing cols speeds up textbox interaction
self.plot_count = self.rows * self.cols
self.gs = gridspec.GridSpec(self.rows, self.cols,
left=0.05, right=1-0.02, top=1-.02, bottom=0.10, wspace=0.3, hspace=0.4)
for k in range(self.plot_count):
ax = self.fig.add_subplot(self.gs[k])
#ax.set_xticks([]) # showing axes slows textbox interaction
#ax.set_yticks([]) # showing axes slows textbox interaction
data = np.atleast_2d(np.sin(np.linspace(1,255,255) * 50))
ax.imshow(data, aspect="auto", cmap='ocean')
def on_submit(self):
text = self.textbox.text()
print(text)
pass
if __name__ == "__main__":
qapp = QtWidgets.QApplication(sys.argv)
app = Textbox_Demo()
app.show()
qapp.exec_()

How to effectively redraw multiple matplotlib plots with blit

I'm using matplotlib with pyqt5 to draw data into 3 axes, and than user can make selection in one plot that will be shown in other two plots too. Since I'm working with big data (up to 10 millions of points), drawing selection could be slow, especially when I need to draw to scatterplot.
I am trying to use matplotlib blit function, but have some issues with result. Here is minimum simple example.
import matplotlib
matplotlib.use('Qt5Agg')
import numpy as np
import sys
from matplotlib.backends.qt_compat import QtCore, QtWidgets
from matplotlib.backends.backend_qt5agg import (FigureCanvas, NavigationToolbar2QT as NavigationToolbar)
from matplotlib.figure import Figure
class ApplicationWindow(QtWidgets.QMainWindow):
def __init__(self):
super().__init__()
self._main = QtWidgets.QWidget()
self.setCentralWidget(self._main)
layout = QtWidgets.QVBoxLayout(self._main)
self.static_canvas = FigureCanvas(Figure(figsize=(10, 10)))
layout.addWidget(self.static_canvas)
layout.addWidget(NavigationToolbar(self.static_canvas, self))
axes = self.static_canvas.figure.subplots(2, 1)
self.ax1 = axes[0]
self.ax2 = axes[1]
self.ax1.cla()
self.ax2.cla()
button = QtWidgets.QPushButton('Click me!')
button.clicked.connect(self.update_canvas_blit)
layout.addWidget(button)
# Fixing random state for reproducibility
np.random.seed(19680801)
# Create random data
N = 50000
x = np.random.rand(N)
y = np.random.rand(N)
self.ax1.scatter(x, y)
self.points = self.ax1.scatter([],[], s=5, color='red')
x = np.linspace(0, 1000, 100000)
self.ax2.plot(x, np.sin(x))
self.lines, = self.ax2.plot([],[], color='red')
self.static_canvas.draw()
self.background1 = self.static_canvas.copy_from_bbox(self.ax1.bbox)
self.background2 = self.static_canvas.copy_from_bbox(self.ax2.bbox)
def update_canvas_blit(self):
N = 50
x = np.random.rand(N)
y = np.random.rand(N)
self.static_canvas.restore_region(self.background1)
self.points.set_offsets(np.c_[x,y])
self.ax1.draw_artist(self.points)
self.ax1.figure.canvas.blit(self.ax1.bbox)
self.static_canvas.restore_region(self.background2)
x = np.linspace(0, np.random.randint(500,1000), 1000)
self.lines.set_data(x, np.sin(x))
self.ax2.draw_artist(self.lines)
self.ax2.figure.canvas.blit(self.ax2.bbox)
if __name__ == "__main__":
qapp = QtWidgets.QApplication(sys.argv)
app = ApplicationWindow()
app.show()
qapp.exec_()
When clicking button, expected output should be still same background with random points/lines redrawing. In a way it is happening but there are some strange artifacts that looks like somehow axes are drawn to each other. But when I try to save it to .png, it will restore to good state.
The problem is that the snapshot of the background is taken at a moment in time where the figure has not yet been shown on screen. At that point the figure is 10 by 10 inches large. Later, it is shown inside the QMainWindow and resized to fit into the widget.
Only once that has happened, it makes sense to take the background snapshot.
One option is to use a timer of 1 second and only then copy the background. This would look as follows.
import numpy as np
import sys
from matplotlib.backends.qt_compat import QtCore, QtWidgets
from matplotlib.backends.backend_qt5agg import (FigureCanvas, NavigationToolbar2QT as NavigationToolbar)
from matplotlib.figure import Figure
class ApplicationWindow(QtWidgets.QMainWindow):
def __init__(self):
super().__init__()
self._main = QtWidgets.QWidget()
self.setCentralWidget(self._main)
layout = QtWidgets.QVBoxLayout(self._main)
self.static_canvas = FigureCanvas(Figure(figsize=(10, 10)))
layout.addWidget(self.static_canvas)
layout.addWidget(NavigationToolbar(self.static_canvas, self))
axes = self.static_canvas.figure.subplots(2, 1)
self.ax1 = axes[0]
self.ax2 = axes[1]
self.ax1.cla()
self.ax2.cla()
button = QtWidgets.QPushButton('Click me!')
button.clicked.connect(self.update_canvas_blit)
layout.addWidget(button)
# Fixing random state for reproducibility
np.random.seed(19680801)
# Create random data
N = 50000
x = np.random.rand(N)
y = np.random.rand(N)
self.ax1.scatter(x, y)
self.points = self.ax1.scatter([],[], s=5, color='red')
x = np.linspace(0, 1000, 100000)
self.ax2.plot(x, np.sin(x))
self.lines, = self.ax2.plot([],[], color='red')
self.static_canvas.draw()
self._later()
def _later(self, evt=None):
self.timer = self.static_canvas.new_timer(interval=1000)
self.timer.single_shot = True
self.timer.add_callback(self.update_background)
self.timer.start()
def update_background(self, evt=None):
self.background1 = self.static_canvas.copy_from_bbox(self.ax1.bbox)
self.background2 = self.static_canvas.copy_from_bbox(self.ax2.bbox)
def update_canvas_blit(self):
N = 50
x = np.random.rand(N)
y = np.random.rand(N)
self.static_canvas.restore_region(self.background1)
self.points.set_offsets(np.c_[x,y])
self.ax1.draw_artist(self.points)
self.ax1.figure.canvas.blit(self.ax1.bbox)
self.static_canvas.restore_region(self.background2)
x = np.linspace(0, np.random.randint(500,1000), 1000)
self.lines.set_data(x, np.sin(x))
self.ax2.draw_artist(self.lines)
self.ax2.figure.canvas.blit(self.ax2.bbox)
if __name__ == "__main__":
qapp = QtWidgets.QApplication(sys.argv)
app = ApplicationWindow()
app.show()
qapp.exec_()

How can I improve scrolling speed in matplotlib when a figure contains many axes?

I have a matplotlib figure with many axes, and the scrolling/zooming becomes unusably slow. Is there anyway to speed it up?
As an example, try scrolling one of the axes produced with this code:
import matplotlib.pyplot as plt
fig,plts = plt.subplots(10,10)
plt.show()
(I am on a Mac, using the macosx backend. The QT4Agg backend seemed similarly sluggish.)
I think the slowdown comes from matplotlib redrawing the entire figure, rather than just the subplot you want to zoom. I have found that you can speed things up by creating multiple figures and embedding them in a PyQt widget.
Here's a quick proof of concept using 'figure_enter_event' and a bit of ugly hackery to allow the use of a single navigation toolbar across all figures. Note that I have only attempted to make the pan and zoom features work properly. By peeking at the source of NavigationToolbar2 in backend_bases.py some more I'm sure you could adapt it to your needs.
import sys
from PyQt5 import QtCore, QtWidgets
from PyQt5.QtCore import pyqtSlot
import matplotlib
matplotlib.use('Qt5Agg')
matplotlib.rcParams['backend.qt5'] = 'PyQt5'
matplotlib.rcParams.update({'figure.autolayout': True})
from matplotlib.figure import Figure
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar
import numpy as np
class MainWindow(QtWidgets.QMainWindow):
def __init__(self, **kwargs):
super(MainWindow, self).__init__(**kwargs)
# Construct the plots
playout = QtWidgets.QGridLayout()
playout.setContentsMargins(0, 0, 0, 0)
for row in range(0, 10):
for col in range(0, 10):
fig = Figure()
ax = fig.add_subplot(111)
canvas = FigureCanvas(fig)
canvas.mpl_connect('figure_enter_event', self.enterFigure)
playout.addWidget(canvas, row, col, 1, 1)
t = np.arange(-2*np.pi, 2*np.pi, step=0.01)
ax.plot(t, np.sin(row*t) + np.cos(col*t))
# Assign toolbar to first plot
self.navbar = NavigationToolbar(playout.itemAtPosition(0, 0).widget(), self)
cwidget = QtWidgets.QWidget()
layout = QtWidgets.QVBoxLayout(cwidget)
layout.setContentsMargins(0, 0, 0, 0)
layout.addWidget(self.navbar)
layout.addLayout(playout)
self.setCentralWidget(cwidget)
def enterFigure(self, event):
self.navbar.canvas = event.canvas
event.canvas.toolbar = self.navbar
self.navbar._idDrag = event.canvas.mpl_connect('motion_notify_event', self.navbar.mouse_move)
# Toggle control off and then on again for the current canvas
if self.navbar._active:
if self.navbar._active == 'PAN':
self.navbar.pan()
self.navbar.pan()
elif self.navbar._active == 'ZOOM':
self.navbar.zoom()
self.navbar.zoom()
app = QtWidgets.QApplication(sys.argv)
win = MainWindow()
win.show()
app.exec_()

PyQt4 + matplotlib in a QScrollWidget

I have matplotlib embedded in a PyQt4 app that I'm working on. The problem is when I dynamically add a subplot to the figure, the figures compress with every added subplot. I thought I could solve this by setting the figure to a QScrollArea but that doesn't work (as far as I can tell). Here's an example of what I thought would work
import os
os.environ['QT_API'] = 'pyside'
from PySide.QtGui import *
from PySide.QtCore import *
import matplotlib
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg
from matplotlib.figure import Figure
class Canvas(FigureCanvasQTAgg):
def __init__(self, parent=None):
self.figure = Figure()
super(Canvas, self).__init__(self.figure)
ax = self.figure.add_subplot(1,1,1)
ax.plot([1,2,3])
self.draw()
def add_subplot(self, data=[]):
rows = len(self.figure.axes) + 1
for index, axes in enumerate(self.figure.axes, start=1):
axes.change_geometry(rows, 1, index)
ax = self.figure.add_subplot(rows, 1, index+1)
ax.plot(data)
self.draw()
class Main(QWidget):
def __init__(self, parent=None):
super(Main, self).__init__(parent)
self.canvas = QScrollArea(self)
self.canvas.setWidget(Canvas(self))
self.canvas.setWidgetResizable(True)
for x in range(5):
self.canvas.widget().add_subplot()
layout = QVBoxLayout(self)
layout.addWidget(self.canvas)
app = QApplication([])
main = Main()
main.show()
app.exec_()
Notice how all the graphs are smashed together to show then in the same visible space? I wan't have to scroll to see the other graphs. I'm not sure how to do this exactly.
Anyone know how to do this or another way of doing this?
Two steps to sketch an idea to solve this:
Unset the resizing of the ScollArea to display scroll bars. Change the line:
self.canvas.setWidgetResizable(True)
to
self.canvas.setWidgetResizable(False)
Then when adding a subplot change the figure height, because the canvas will determine it's height by checking the size of the figure:
def add_subplot(self, data=[]):
rows = len(self.figure.axes) + 1
for index, axes in enumerate(self.figure.axes, start=1):
axes.change_geometry(rows, 1, index)
ax = self.figure.add_subplot(rows, 1, index+1)
ax.plot(data)
self.figure.set_figheight(self.figure.get_figheight()*1.25)
self.draw()
In the Main you have to let PySide know, that the it has to resize the widget in the scroll area:
for x in range(5):
self.canvas.widget().add_subplot()
self.canvas.widget().adjustSize()

Categories

Resources