Failed to Import External Dependency in Spark - python

I have a python script which is dependent on another file, which is also essential for other scripts, so i have zipped it and shipped it to run as a spark-submit job, but unfortunately it seems not to be working, here is my code snippet and the error i'm getting all the time
from pyspark import SparkConf, SparkContext
from pyspark.sql.session import SparkSession
def main(spark):
employee = spark.read.json("/storage/hadoop/hadoop-3.0.0/bin/employees.json")
# employee = spark.read.json("/storage/hadoop/hadoop-3.0.0/bin/employee.json")
employee.printSchema()
employee.show()
people = spark.read.json("/storage/hadoop/hadoop-3.0.0/bin/people.json")
people.printSchema()
people.show()
employee.createOrReplaceTempView("employee")
people.createOrReplaceTempView("people")
newDataFrame = employee.join(people,(employee.name==people.name),how="inner")
newDataFrame.distinct().show()
return "Hello I'm Done Processing the Operation"
which is the external dependencies called by other modules as well, and here is another script which is trying to execute the file
from pyspark import SparkConf, SparkContext
from pyspark.sql.session import SparkSession
def sampleTest(output):
print output
if __name__ == "__main__":
#Application Name for the Spark RDD using Python
# APP_NAME = "Spark Application"
spark = SparkSession \
.builder \
.appName("Spark Application") \
.config("spark.master", "spark://192.168.2.3:7077") \
.getOrCreate()
# .config() \
import SparkFileMerge
abc = SparkFileMerge.main(spark)
sampleTest(abc)
now when i'm executing the command
./spark-submit --py-files /home/varun/SparkPythonJob.zip /home/varun/main.py
it is giving me the following error.
Traceback (most recent call last):
File "/home/varun/main.py", line 18, in <module>
from SparkFileMerge import SparkFileMerge
ImportError: No module named SparkFileMerge
any help will be highly appreciated.

What composes SparkPythonJob.zip ?
First, you should check that the first code snippet is actually in a file called SparkFileMerge.py.

Related

[Python]Failed to find data source: kafka

I want to read the data sent by the kafka producer, but I encountered the following problem:
pyspark.sql.utils.AnalysisException: Failed to find data source: kafka. Please deploy the application as per the deployment section of "Structured Streaming + Kafka Integration Guide".
Then, according to the error message, I tried to search the official documentation and this website,Then I found something error like me:link1
However, through these methods I found that I still can't solve this problem, so want to ask if there is any better way to help me solve it
Attached below is my error code and version information
My error code:
from kafka import KafkaProducer
from pyspark.python.pyspark.shell import spark
from pyspark.streaming import StreamingContext
from pyspark import SparkConf, SparkContext
import json
import sys
import os
import findspark
os.environ['PYSPARK_SUBMIT_ARGS'] = '--packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.1'
findspark.init()
def ReadingDataToKafka():
spark_conf = SparkConf().setAppName("KafkaWordCount")
sc = SparkContext.getOrCreate(conf=spark_conf)
sc.setLogLevel("ERROR")
ssc = StreamingContext(sc, 1)
ssc.checkpoint("file:///tmp/ZHYCargeProject")
topics = 'sex'
topicAry = topics.split(",")
topicMap = {}
for topic in topicAry:
topicMap[topic] = 1
df = spark.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "bigdataweb01:9092") \
.option("subscribe", "sex") \
.load()
The error message is as follows:
Traceback (most recent call last):
File "/tmp/ZHYCargeProject/demo3/kafka_text.py", line 94, in <module>
ReadingDataToKafka()
File "/tmp/ZHYCargeProject/demo3/kafka_text.py", line 23, in ReadingDataToKafka
df = spark.readStream \
File "/home/ubuntu/anaconda3/envs/pyspark/lib/python3.8/site-packages/pyspark/sql/streaming.py", line 482, in load
return self._df(self._jreader.load())
File "/home/ubuntu/anaconda3/envs/pyspark/lib/python3.8/site-packages/py4j/java_gateway.py", line 1309, in __call__
return_value = get_return_value(
File "/home/ubuntu/anaconda3/envs/pyspark/lib/python3.8/site-packages/pyspark/sql/utils.py", line 117, in deco
raise converted from None
pyspark.sql.utils.AnalysisException: Failed to find data source: kafka. Please deploy the application as per the deployment section of "Structured Streaming + Kafka Integration Guide".
Related version information:
python== 3.8.13
java==1.8.0_312
Spark==3.2.1
kafka==2.12-3.20
scala==2.12.15
kafka-python==2.0.2
pyspark==3.1.2

Import Function from a different Python Module into Apache Spark

I'm trying to do a basic task of Python Dict transformation with Spark. The sample code is as shown below.
from pyspark import SparkContext, SparkConf
import sys
sys.path.insert(0, 'path_to_myModule')
from spark_test import make_generic #the function that transforms the Dict
data = [{'a':1, 'b':2}, {'a':4, 'b':5}]
conf = (SparkConf()
.setMaster("local")
.setAppName("My app")
.set("spark.executor.memory", "1g"))
sc = SparkContext(conf = conf)
def testing(data):
data['a'] = data['a'] + 1
data['b'] = data['b'] + 2
return data
rdd1 = sc.parallelize(data)
rdd2 = rdd1.map(lambda x: testing(x))
print(rdd2.collect())
rdd3 = rdd1.map(lambda x: make_generic(x)) #does similar task as testing()
print(rdd3.collect())
The path to the module is getting inserted to sys. Yet, I get the below error.
Traceback (most recent call last):
File "/home/roshan/sample_spark.py", line 5, in <module>
from spark_test import make_generic
ImportError: No module named 'spark_test'
Also, the make_generic() function needs a few packages that are installed in a virtualenv.
All in all, I need help in:
1. I need Spark to be able to import the module successfully
2. Be able to use the virtualenv to run the Spark-Submit job.

mleap AttributeError: 'Pipeline' object has no attribute 'serializeToBundle'

I am having problems executing the example code from the mleap repository. I wish to run the code in a script instead of a jupyter notebook (which is how the example is run). My script is as follows:
##################################################################################
# start a local spark session
# https://spark.apache.org/docs/0.9.0/python-programming-guide.html
##################################################################################
from pyspark import SparkContext, SparkConf
conf = SparkConf()
#set app name
conf.set("spark.app.name", "train classifier")
#Run Spark locally with as many worker threads as logical cores on your machine (cores X threads).
conf.set("spark.master", "local[*]")
#number of cores to use for the driver process (only in cluster mode)
conf.set("spark.driver.cores", "1")
#Limit of total size of serialized results of all partitions for each Spark action (e.g. collect)
conf.set("spark.driver.maxResultSize", "1g")
#Amount of memory to use for the driver process
conf.set("spark.driver.memory", "1g")
#Amount of memory to use per executor process (e.g. 2g, 8g).
conf.set("spark.executor.memory", "2g")
#pass configuration to the spark context object along with code dependencies
sc = SparkContext(conf=conf)
from pyspark.sql.session import SparkSession
spark = SparkSession(sc)
##################################################################################
import mleap.pyspark
# # Imports MLeap serialization functionality for PySpark
from mleap.pyspark.spark_support import SimpleSparkSerializer
# Import standard PySpark Transformers and packages
from pyspark.ml.feature import VectorAssembler, StandardScaler, OneHotEncoder, StringIndexer
from pyspark.ml import Pipeline, PipelineModel
from pyspark.sql import Row
# Create a test data frame
l = [('Alice', 1), ('Bob', 2)]
rdd = sc.parallelize(l)
Person = Row('name', 'age')
person = rdd.map(lambda r: Person(*r))
df2 = spark.createDataFrame(person)
df2.collect()
# Build a very simple pipeline using two transformers
string_indexer = StringIndexer(inputCol='name', outputCol='name_string_index')
feature_assembler = VectorAssembler(
inputCols=[string_indexer.getOutputCol()], outputCol="features")
feature_pipeline = [string_indexer, feature_assembler]
featurePipeline = Pipeline(stages=feature_pipeline)
featurePipeline.fit(df2)
featurePipeline.serializeToBundle("jar:file:/tmp/pyspark.example.zip")
On executing spark-submit script.py I get the following error:
17/09/18 13:26:43 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Traceback (most recent call last):
File "/Users/opringle/Documents/Repos/finn/Magellan/src/no_spark_predict.py", line 58, in <module>
featurePipeline.serializeToBundle("jar:file:/tmp/pyspark.example.zip")
AttributeError: 'Pipeline' object has no attribute 'serializeToBundle'
Any help would be much appreciated! I have installed mleap from pypy.
See Here
It seems MLeap isn't ready for Spark 2.3 yet. If you happen to be running Spark 2.3, try downgrading to 2.2 and retry. Hopefully, that helps!
I have solved the issue by attaching the following jar file when running:
spark-submit --packages ml.combust.mleap:mleap-spark_2.11:0.8.1 script.py
It seems you didn't follow the steps correctly, here http://mleap-docs.combust.ml/getting-started/py-spark.html it says that
Note: the import of mleap.pyspark needs to happen before any other PySpark libraries are imported.
Hence try importing your SparkContext after mleap

Pyspark writing data into hive

Below is my code to write data into Hive
from pyspark import since,SparkContext as sc
from pyspark.sql import SparkSession
from pyspark.sql.functions import _functions , isnan
from pyspark.sql import SQLContext
from pyspark.sql.types import *
from pyspark import HiveContext as hc
spark = SparkSession.builder.appName("example-spark").config("spark.sql.crossJoin.enabled","true").config('spark.sql.warehouse.dir',"file:///C:/spark-2.0.0-bin-hadoop2.7/bin/metastore_db/spark-warehouse").config('spark.rpc.message.maxSize','1536').getOrCreate()
Name= spark.read.csv("file:///D:/valid.csv", header="true",inferSchema =
True,sep=',')
join_df=join_df.where("LastName != ''").show()
join_df.registerTempTable("test")
hc.sql("CREATE TABLE dev_party_tgt_repl STORED AS PARQUETFILE AS SELECT * from dev_party_tgt")
After executing the above code I get below error
Traceback (most recent call last):
File "D:\01 Delivery Support\01
easyJet\SparkEclipseWorkspace\SparkTestPrograms\src\NameValidation.py", line
22, in <module>
join_df.registerTempTable("test")
AttributeError: 'NoneType' object has no attribute 'test'
My System Environment details:
OS:Windows
Eclipse Neon
Spark Version :2.0.0
Try this:
join_df.where("LastName != ''").write.saveAsTable("dev_party_tgt_repl")

spark, cassandra, streaming, python, error, database, kafka

im trying to save my streaming data from spark to cassandra, spark is conected to kafka and its working ok, but saving to cassandra its making me become crazy. Im using spark 2.0.2, kafka 0.10 and cassandra 2.23,
this is how im submiting to spark
spark-submit --verbose --packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.0.0 --jars /tmp/pyspark-cassandra-0.3.5.jar --driver-class-path /tmp/pyspark-cassandra-0.3.5.jar --py-files /tmp/pyspark-cassandra-0.3.5.jar --conf spark.cassandra.connection.host=localhost /tmp/direct_kafka_wordcount5.py localhost:9092 testing
and this is my code it just a little modification from the spark examples, its works but i cant save this data to cassandra....
and this what im trying to do but just with the count result
http://rustyrazorblade.com/2015/05/spark-streaming-with-python-and-kafka/
from __future__ import print_function
import sys
import os
import time
import pyspark_cassandra
import pyspark_cassandra.streaming
from pyspark_cassandra import CassandraSparkContext
import urllib
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
from pyspark.sql import SQLContext
from pyspark.sql import Row
from pyspark.sql.types import IntegerType
from pyspark.sql.functions import udf
from pyspark.sql.functions import from_unixtime, unix_timestamp, min, max
from pyspark.sql.types import FloatType
from pyspark.sql.functions import explode
from pyspark.sql.functions import split
if __name__ == "__main__":
if len(sys.argv) != 3:
print("Usage: direct_kafka_wordcount.py <broker_list> <topic>", file=sys.stderr)
exit(-1)
sc = SparkContext(appName="PythonStreamingDirectKafkaWordCount")
ssc = StreamingContext(sc, 1)
sqlContext = SQLContext(sc)
brokers, topic = sys.argv[1:]
kvs = KafkaUtils.createDirectStream(ssc, [topic], {"metadata.broker.list": brokers})
lines = kvs.map(lambda x: x[1])
counts=lines.count()
counts.saveToCassandra("spark", "count")
counts.pprint()
ssc.start()
ssc.awaitTermination()
i got this error,
Traceback (most recent call last):
File "/tmp/direct_kafka_wordcount5.py", line 88, in
counts.saveToCassandra("spark", "count")
Pyspark Casasndra stopped being updated a while ago and the latest version only supports up to Spark 1.6
https://github.com/TargetHolding/pyspark-cassandra
Additionally
counts=lines.count() // Returns data to the driver (not an RDD)
counts is now an Integer. This means the function saveToCassandra doesn't apply since that is a function for RDDs

Categories

Resources