How to plot cross-sections of imshow? - python

I am doing numerical simulations in python 3.6 and trying to inspect cross-sections of 2d imshow. I made the horizontal inspection and would like to have vertical, but got into some difficulties. The blue inspection lines correspond to 'bottom' (horizontal) and 'left' (vertical) subplots. Example code (I haven't been allowed to attach a matplotlib image):
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.pyplot as plt
import numpy as np
Array = np.random.rand(100, 100)
grid_points = 100
fig_mpl, ax = plt.subplots(figsize = (10, 10), facecolor = 'white')
line = ax.imshow(Array, cmap = 'hot')
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size = "5%", pad = 0.05)
caxb = divider.append_axes("bottom", size = "10%", pad = 0.05)
caxl = divider.append_axes("left", size = "10%", pad = 0.05)
bar = fig_mpl.colorbar(line, cax = cax, orientation = 'vertical')
ax.axhline(grid_points/2)
ax.axvline(grid_points/2)
X = np.linspace(0, grid_points - 1, grid_points)
projb, = caxb.plot(X, Array[int(grid_points/2)], color = 'red')
projl, = caxl.plot(X, Array[:, int(grid_points/2)], color = 'red')
caxb.set_ylim(-0.1*np.max(Array), 1.1*np.max(Array))
caxb.set_xlim(0, grid_points - 1)
caxl.set_xlim(-0.1*np.max(Array), 1.1*np.max(Array))
caxl.set_ylim(0, grid_points - 1)
ax.set_xticks([])
ax.set_yticks([])
caxb.set_xticks([])
caxl.set_yticks([])
caxb.set_yticks([np.min(Array), np.max(Array)])
caxl.set_xticks([np.min(Array), np.max(Array)])
caxb.yaxis.tick_right()
for tick in caxl.get_xticklabels():
tick.set_rotation(-90)
caxb.grid(color = 'black', marker = 8)
caxl.grid(color = 'black', marker = 8)
fig_mpl.subplots_adjust(wspace = 0)
fig_mpl.tight_layout()
I want projl to plot the cross-section of Array in vertical caxl.
Is there any proper way to do the thing?

Instead of
projl, = caxl.plot(X, Array[:, int(grid_points/2)], color = 'red')
you need
projl, = caxl.plot(Array[:, int(grid_points/2)], X, color = 'red')
because the amplitude should be shown along the horizontal (x-) axis and the grid index (X) along the vertical (y-) axis.

Related

How do I make the text appear after 3barplot in Matplotlib

Why doesn't zorder work in this case? I've tried using it but the text still ends up being covered by the bar plot towers.
import numpy as np
from matplotlib import pyplot as plt
Percentage_Differences_1 = np.array([ [7.94*(10**-10),7.94*(10**-9),7.94*(10**-8),7.94*(10**-7),7.94*(10**-6),7.94*(10**-5)],
[7.92*(10**-12),7.92*(10**-11),7.92*(10**-10),7.92*(10**-9),7.92*(10**-8),7.92*(10**-7)],
[7.72*(10**-14),7.72*(10**-13),7.72*(10**-12),7.72*(10**-11),7.72*(10**-10),7.72*(10**-9)],
[5.66*(10**-16),5.66*(10**-15),5.66*(10**-14),5.66*(10**-13),5.66*(10**-12),5.66*(10**-11)],
[1.49*(10**-17),1.49*(10**-16),1.49*(10**-15),1.49*(10**-14),1.49*(10**-13),1.49*(10**-12)],
[2.21*(10**-18),2.21*(10**-17),2.21*(10**-16),2.21*(10**-15),2.21*(10**-14),2.21*(10**-13)] ]) # Layer 1, 12
fig1 = plt.figure(dpi = 120, tight_layout = True)
fig1.set_size_inches(10, 7)
ax1 = fig1.add_subplot(111, projection='3d')
width = depth = 0.3
column_names = ['$10^{-6} m$','$10^{-5} m$','$10^{-4} m$','$10^{-3} m$','$10^{-2} m$','$10^{-1} m$']
row_names = ['$10^{-6} g$','$10^{-5} g$','$10^{-4} g$','$10^{-3} g$','$10^{-2} g$','$10^{-1} g$']
height_names = ['$10^{-2}$','$10^{-4}$','$10^{-6}$','$10^{-8}$','$10^{-10}$','$10^{-12}$','$10^{-14}$','$10^{-16}$','$10^{-18}$']
for x in range(0,6):
for y in range(0,6):
plot1 = ax1.bar3d(x, y, 0, width, depth, np.log10(Percentage_Differences_1[x][y]), color = "#0040bf", alpha=0.3, zorder = 1)
txt1 = ax1.text(x,y,1.15*np.log10(Percentage_Differences_1[x][y]),'{:.2e}'.format(Percentage_Differences_1[y][x]), verticalalignment='top', bbox=dict(facecolor='grey', alpha=0.5), zorder = 2)
ax1.view_init(-140, -30)
ax1.set_xticks(np.linspace(0, 6, num = 6))
ax1.set_yticks(np.linspace(0, 6, num = 6))
ax1.set_xticklabels(column_names)
ax1.set_yticklabels(row_names)
ax1.set_zticklabels(height_names)
ax1.set_xlabel("Mass", labelpad = 13, rotation = 45)
ax1.set_ylabel("Radius", labelpad = 10, rotation = 45)
ax1.set_zlabel("Deviation $\Delta$")
ax1.set_title("1st Initial Condition: $r(0)$ and $r'(0)$ of $\Theta(12) = 2.18 \\times 10^{7} m$", pad = 40)
plt.show()
I've tried using both set_zorder and zorder but the plot still ends up covering the majority of the text labels.
Change your zorder for a number larger than the number of bar objects, 100 for example:

Can you force the wspace and hspace of figure subplots to a fixed value in matplotlib regardless of figure size

I am trying to build a function to plot multiple images in a grid with a single colorbar and histogram. I would like the spacing between all the plots to be a fixed value and for the colorbar to span the height of a all images and histogram to span the width of the images/colorbar. I have some code that works, but it requires the figure size being set to a specific aspect ratio for it to work. This is not ideal because I want to use the function for images with varying aspect ratios and for a varying number of images 2x1, 1x2, 2x2, etc.
This code outputs 3 figures of varying aspect ratio. I would like if any excess dimension would be applied to the border spacing rather than the subplot wspace, hspace spacing.
fig wide: https://i.stack.imgur.com/BB1Cz.png
fig tall: https://i.stack.imgur.com/G5C34.png
fig nice: https://i.stack.imgur.com/AVX6C.png
Here is the code:
import math
import numpy as np
import matplotlib as mpl
from matplotlib import pyplot as plt
def compare_frames(frames, columns, bins=256, alpha=.5, vmin=None, vmax=None, fig=None):
if vmin is None:
vmin = min([f.min() for f in frames])
if vmax is None:
vmax = max([f.max() for f in frames])
if fig == None:
fig = plt.figure()
color_cycle = plt.get_cmap('tab10')
rows = math.ceil(len(frames)/columns)
width_ratios = [1 for col in range(columns)] + [.05]
gs = mpl.gridspec.GridSpec(rows + 1, columns + 1, figure=fig, width_ratios=width_ratios)
images = []
for row in range(rows):
for col in range(columns):
idx = row*columns + col
if idx < len(frames):
ax = fig.add_subplot(gs[row, col])
ax.get_xaxis().set_ticks([])
ax.get_yaxis().set_ticks([])
for spine in ['bottom', 'top', 'left', 'right']:
ax.spines[spine].set_color(color_cycle(idx))
ax.spines[spine].set_linewidth(3)
images.append(ax.imshow(frames[idx], vmin=vmin, vmax=vmax))
cax = fig.add_subplot(gs[0:-1, -1])
plt.colorbar(images[0], cax=cax)
hax = fig.add_subplot(gs[-1, :])
for i, frame in enumerate(frames):
hax.hist(frame.ravel(), bins=256, range=(vmin, vmax), color=color_cycle(i), alpha=alpha)
fig.subplots_adjust(wspace=.05, hspace=.05)
if __name__ == '__main__':
x_size = 640
y_size = 512
frames = []
for i in range(4):
frames.append(np.random.normal(i + 1, np.sqrt(i + 1), size=(y_size, x_size)))
fig_wide = plt.figure(figsize=(12, 8))
compare_frames(frames, 2, fig=fig_wide)
fig_tall = plt.figure(figsize=(6, 8))
compare_frames(frames, 2, fig=fig_tall)
fig_nice = plt.figure(figsize=(6.9, 8))
compare_frames(frames, 2, fig=fig_nice)
plt.show()
I've gathered that I should probably be using matplotlib axes_grid1 from mpl_toolkits. They have a built-in ImageGrid class which does a lot of what I would like to do (fixed spacing for images and colorbar):
def compare_frames(frames, columns, bins=256, alpha=.5, vmin=None, vmax=None, fig=None):
if vmin is None:
vmin = min([f.min() for f in frames])
if vmax is None:
vmax = max([f.max() for f in frames])
if fig == None:
fig = plt.figure()
color_cycle = plt.get_cmap('tab10')
rows = math.ceil(len(frames)/columns)
im_grid = axes_grid1.ImageGrid(fig, 111, nrows_ncols=(rows, columns), axes_pad=.1,
cbar_mode='single', cbar_pad=.1, cbar_size=.3)
for i, ax in enumerate(im_grid):
im = ax.imshow(frames[i], vmin=vmin, vmax=vmax)
ax.get_xaxis().set_ticks([])
ax.get_yaxis().set_ticks([])
for spine in ['bottom', 'top', 'left', 'right']:
ax.spines[spine].set_color(color_cycle(i))
ax.spines[spine].set_linewidth(3)
cbar = fig.colorbar(im, cax=im_grid.cbar_axes[0])
This is great, and I would love to figure out a way to use this ImageGrid class to do most of the work, and then add another axis at the bottom for the histogram. I haven't been able to crack how to do this however since all of the examples I've found use "append_axes()" on a Divider class. ImageGrid forms a SubplotDivider however, which doesn't have an append_axes function.

Align colorbar with GeoAxes subplot edges

I have a figure with 3 subplots, two of which share a colorbar and the third has has it's own colorbar.
I would like the colorbars to align with the vertical limits of their respective plots, and for the top two plots to have the same vertical limits.
Googling, I have found ways to do this with a single plot, but am stuck trying to make it work for my fig. My figure currently looks like this:
The code for which is as follows:
import cartopy.io.shapereader as shpreader
import cartopy.crs as ccrs
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
shpfilename = shpreader.natural_earth(resolution='50m',
category='cultural',
name='admin_0_countries')
reader = shpreader.Reader(shpfilename)
countries = reader.records()
projection = ccrs.PlateCarree()
fig = plt.figure()
axs = [plt.subplot(2, 2, x + 1, projection = projection) for x in range(2)]\
+ [plt.subplot(2, 2, (3, 4), projection = projection)]
def cmap_seg(cmap, value, k):
cmaplist = [cmap(i) for i in range(cmap.N)]
cmap = mpl.colors.LinearSegmentedColormap.from_list(
'Custom cmap', cmaplist, cmap.N)
bounds = np.linspace(0, k, k + 1)
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
color = cmap(norm(value))
return color, cmap
for country in countries:
c_name = country.attributes["SOVEREIGNT"]
country_dat = df.loc[c_name]
cmap = matplotlib.cm.get_cmap("plasma")
cmap_blues = matplotlib.cm.get_cmap("Blues")
ax_extent = [-170, 180, -65, 85]
alpha = 1.0
edgecolor = "k"
linewidth = 0.5
ax = axs[0]
value = country_dat.loc["wgi_bin"]
ax.add_geometries([country.geometry],
projection,
facecolor = cmap_seg(cmap, value, 5)[0],
alpha = alpha,
edgecolor = edgecolor,
linewidth = linewidth)
ax.set_xlabel("WGI group")
ax.set_extent(ax_extent)
ax = axs[1]
value = country_dat.loc["epi_bin"]
ax.add_geometries([country.geometry],
projection,
facecolor = cmap_seg(cmap, value, 5)[0],
alpha = alpha,
edgecolor = edgecolor,
linewidth = linewidth)
ax.set_xlabel("EPI group")
ax.set_extent(ax_extent)
ax = axs[2]
value = country_dat.loc["diff"]
ax.add_geometries([country.geometry],
projection,
facecolor = cmap_seg(cmap_blues, value, 4)[0],
alpha = alpha,
edgecolor = edgecolor,
linewidth = linewidth)
ax.set_xlabel("difference")
ax.set_extent(ax_extent)
subplot_labels = ["WGI group", "EPI group", "Metric difference"]
for i, ax in enumerate(axs):
ax.text(0.5, -0.07, subplot_labels[i], va='bottom', ha='center',
rotation='horizontal', rotation_mode='anchor',
transform=ax.transAxes)
sm = plt.cm.ScalarMappable(cmap=cmap_seg(cmap, 5, 5)[1], norm = plt.Normalize(0, 5))
sm._A = []
cb = plt.colorbar(sm, ax = axs[1], values = [1,2,3,4, 5], ticks = [1,2,3,4,5])
sm2 = plt.cm.ScalarMappable(cmap=cmap_seg(cmap_blues, 5, 4)[1], norm = plt.Normalize(0, 4))
sm2._A = []
cb2 = plt.colorbar(sm2, ax = axs[2], values = [0,1,2,3], ticks = [0,1,2,3])
Try this:
# update your code for this specific line (added shrink option)
cb = plt.colorbar(sm, ax=axs[1], values=[1,2,3,4,5], ticks=[1,2,3,4,5], shrink=0.6)
And add these lines of code towards the end:
p00 = axs[0].get_position()
p01 = axs[1].get_position()
p00_new = [p00.x0, p01.y0, p00.width, p01.height]
axs[0].set_position(p00_new)
The plot should be similar to this:

How can I add images to bars in axes (matplotlib)

I want to add flag images such as below to my bar chart:
I have tried AnnotationBbox but that shows with a square outline. Can anyone tell how to achieve this exactly as above image?
Edit:
Below is my code
ax.barh(y = y, width = values, color = r, height = 0.8)
height = 0.8
for i, (value, url) in enumerate(zip(values, image_urls)):
response = requests.get(url)
img = Image.open(BytesIO(response.content))
width, height = img.size
left = 10
top = 10
right = width-10
bottom = height-10
im1 = img.crop((left, top, right, bottom))
print(im1.size)
im1
ax.imshow(im1, extent = [value - 6, value, i - height / 2, i + height / 2], aspect = 'auto', zorder = 2)
Edit 2:
height = 0.8
for j, (value, url) in enumerate(zip(ww, image_urls)):
response = requests.get(url)
img = Image.open(BytesIO(response.content))
ax.imshow(img, extent = [value - 6, value - 2, j - height / 2, j + height / 2], aspect = 'auto', zorder = 2)
ax.set_xlim(0, max(ww)*1.05)
ax.set_ylim(-0.5, len(yy) - 0.5)
plt.tight_layout()
You need the images in a .png format with a transparent background. (Software such as Gimp or ImageMagick could help in case the images don't already have the desired background.)
With such an image, plt.imshow() can place it in the plot. The location is given via extent=[x0, x1, y0, y1]. To prevent imshow to force an equal aspect ratio, add aspect='auto'. zorder=2 helps to get the image on top of the bars. Afterwards, the plt.xlim and plt.ylim need to be set explicitly (also because imshow messes with them.)
The example code below used 'ada.png' as that comes standard with matplotlib, so the code can be tested standalone. Now it is loading flags from countryflags.io, following this post.
Note that the image gets placed into a box in data coordinates (6 wide and 0.9 high in this case). This box will get stretched, for example when the plot gets resized. You might want to change the 6 to another value, depending on the x-scale and on the figure size.
import numpy as np
import matplotlib.pyplot as plt
# import matplotlib.cbook as cbook
import requests
from io import BytesIO
labels = ['CW', 'CV', 'GW', 'SX', 'DO']
colors = ['crimson', 'dodgerblue', 'teal', 'limegreen', 'gold']
values = 30 + np.random.randint(5, 20, len(labels)).cumsum()
height = 0.9
plt.barh(y=labels, width=values, height=height, color=colors, align='center')
for i, (label, value) in enumerate(zip(labels, values)):
# load the image corresponding to label into img
# with cbook.get_sample_data('ada.png') as image_file:
# img = plt.imread(image_file)
response = requests.get(f'https://www.countryflags.io/{label}/flat/64.png')
img = plt.imread(BytesIO(response.content))
plt.imshow(img, extent=[value - 8, value - 2, i - height / 2, i + height / 2], aspect='auto', zorder=2)
plt.xlim(0, max(values) * 1.05)
plt.ylim(-0.5, len(labels) - 0.5)
plt.tight_layout()
plt.show()
PS: As explained by Ernest in the comments and in this post, using OffsetImage the aspect ratio of the image stays intact. (Also, the xlim and ylim stay intact.) The image will not shrink when there are more bars, so you might need to experiment with the factor in OffsetImage(img, zoom=0.65) and the x-offset in AnnotationBbox(..., xybox=(-25, 0)).
An extra option could place the flags outside the bar for bars that are too short. Or at the left of the y-axis.
The code adapted for horizontal bars could look like:
import numpy as np
import requests
from io import BytesIO
import matplotlib.pyplot as plt
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
def offset_image(x, y, label, bar_is_too_short, ax):
response = requests.get(f'https://www.countryflags.io/{label}/flat/64.png')
img = plt.imread(BytesIO(response.content))
im = OffsetImage(img, zoom=0.65)
im.image.axes = ax
x_offset = -25
if bar_is_too_short:
x = 0
ab = AnnotationBbox(im, (x, y), xybox=(x_offset, 0), frameon=False,
xycoords='data', boxcoords="offset points", pad=0)
ax.add_artist(ab)
labels = ['CW', 'CV', 'GW', 'SX', 'DO']
colors = ['crimson', 'dodgerblue', 'teal', 'limegreen', 'gold']
values = 2 ** np.random.randint(2, 10, len(labels))
height = 0.9
plt.barh(y=labels, width=values, height=height, color=colors, align='center', alpha=0.8)
max_value = values.max()
for i, (label, value) in enumerate(zip(labels, values)):
offset_image(value, i, label, bar_is_too_short=value < max_value / 10, ax=plt.gca())
plt.subplots_adjust(left=0.15)
plt.show()
To complete #johanC answer, it's possible to use flags from iso-flags-png under GNU/linux and the iso3166 python package:
import matplotlib.pyplot as plt
from iso3166 import countries
import matplotlib.image as mpimg
def pos_image(x, y, pays, haut):
pays = countries.get(pays).alpha2.lower()
fichier = "/usr/share/iso-flags-png-320x240"
fichier += f"/{pays}.png"
im = mpimg.imread(fichier)
ratio = 4 / 3
w = ratio * haut
ax.imshow(im,
extent=(x - w, x, y, y + haut),
zorder=2)
plt.style.use('seaborn')
fig, ax = plt.subplots()
liste_pays = [('France', 10), ('USA', 9), ('Spain', 5), ('Italy', 5)]
X = [p[1] for p in liste_pays]
Y = [p[0] for p in liste_pays]
haut = .8
r = ax.barh(y=Y, width=X, height=haut, zorder=1)
y_bar = [rectangle.get_y() for rectangle in r]
for pays, y in zip(liste_pays, y_bar):
pos_image(pays[1], y, pays[0], haut)
plt.show()
which gives:

How to efficiently animate multiple patches from a list of lists

I am trying to animate multiple patches as efficiently as possible when reading data from a list?
The code below displays an animation of the scatter plot but not the patches. Each point in scatter plot contains various sizes of circles. This example would require 6 different circles to be animated at 2 subjects each time point. But what if there were 20 subjects that each had 3 circles around them.
What is the most efficient way to animate all 60 circles for each frame?
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib as mpl
x_data = np.random.randint(80, size=(400, 4))
y_data = np.random.randint(80, size=(400, 4))
fig, ax = plt.subplots(figsize = (8,6))
ax.set_xlim(0,80)
ax.set_ylim(0,80)
scatter = ax.scatter(x_data[0], y_data[0], zorder = 5) #Scatter plot
Player_1 = x_data[0][0], y_data[0][0]
Player_2 = x_data[0][1], y_data[0][1]
Player_1_IR = mpl.patches.Circle(Player_1, radius = 2, color = 'black', lw = 1, alpha = 0.8, zorder = 4)
Player_1_MR = mpl.patches.Circle(Player_1, radius = 4, color = 'gray', lw = 1, alpha = 0.8, zorder = 3)
Player_1_OR = mpl.patches.Circle(Player_1, radius = 6, color = 'lightgrey', lw = 1, alpha = 0.8, zorder = 2)
Player_2_IR = mpl.patches.Circle(Player_2, radius = 2, color = 'black', lw = 1, alpha = 0.8, zorder = 4)
Player_2_MR = mpl.patches.Circle(Player_2, radius = 4, color = 'gray', lw = 1, alpha = 0.8, zorder = 3)
Player_2_OR = mpl.patches.Circle(Player_2, radius = 6, color = 'lightgrey', lw = 1, alpha = 0.8, zorder = 2)
ax.add_patch(Player_1_IR)
ax.add_patch(Player_1_MR)
ax.add_patch(Player_1_OR)
ax.add_patch(Player_2_IR)
ax.add_patch(Player_2_MR)
ax.add_patch(Player_2_OR)
def animate(i) :
scatter.set_offsets(np.c_[x_data[i,:], y_data[i,:]])
ani = animation.FuncAnimation(fig, animate, frames=len(x_data),
interval = 700, blit = False)
plt.show()
You can store all patches that you want to update in a list through which you then iterate through every iteration step. Note that the size of the Circle patches is in data units/coordinates while the scatter plot points are in points (one point = 1/72 inch), which means that the relative size between scatter points and circles depends on the figure size and axes limits and will change when you re-scale the figure.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib as mpl
x_data = np.random.randint(80, size=(400, 20))
y_data = np.random.randint(80, size=(400, 20))
fig, ax = plt.subplots(figsize = (8,6))
ax.set_xlim(0,80)
ax.set_ylim(0,80)
scatter = ax.scatter(x_data[0], y_data[0], zorder = 5) #Scatter plot
##creating list of patches
players = []
for n in range(10):
##as there are always 3 circles, append all three patches as a list at once
players.append([
mpl.patches.Circle((x_data[0,n],y_data[0,n]), radius = 2, color = 'black', lw = 1, alpha = 0.8, zorder = 4),
mpl.patches.Circle((x_data[0,n],y_data[0,n]), radius = 4, color = 'gray', lw = 1, alpha = 0.8, zorder = 3),
mpl.patches.Circle((x_data[0,n],y_data[0,n]), radius = 6, color = 'lightgrey', lw = 1, alpha = 0.8, zorder = 2)
])
##adding patches to axes
for player in players:
for circle in player:
ax.add_patch(circle)
def animate(i):
scatter.set_offsets(np.c_[x_data[i,:], y_data[i,:]])
##updating players:
for n,player in enumerate(players):
for circle in player:
circle.center = (x_data[i,n],y_data[i,n])
ani = animation.FuncAnimation(fig, animate, frames=len(x_data),
interval = 700, blit = False)
plt.show()
Old Answer (slightly different visual effect, but could be tuned to look the same):
If you really just want circles around your scatter points, you can actually forget about the Circle patches and just overlay several scatter plots with different marker sizes.
In the example below I only mark part of the scatter points with circles by slicing the array of random numbers. Also remember that in scatter plots the marker size is given as points square, so if you want to increase the circle radius from, say, 5 to 6, the given marker size should change from 25 to 36.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib as mpl
x_data = np.random.randint(80, size=(400, 20))
y_data = np.random.randint(80, size=(400, 20))
fig, ax = plt.subplots(figsize = (8,6))
ax.set_xlim(0,80)
ax.set_ylim(0,80)
scatter = ax.scatter(x_data[0], y_data[0], zorder = 5) #Scatter plot
scatter_IR = ax.scatter(
x_data[0,:10], y_data[0,:10], zorder = 4,
facecolor='black', edgecolor = 'black',
alpha = 0.8, s = 100
)
scatter_MR = ax.scatter(
x_data[0,:10], y_data[0,:10], zorder = 3,
facecolor='grey', edgecolor = 'grey',
alpha = 0.8, s = 225
)
scatter_OR = ax.scatter(
x_data[0,:10], y_data[0,:10], zorder = 2,
facecolor='lightgrey', edgecolor = 'lightgrey',
alpha = 0.8, s = 400
)
def animate(i) :
scatter.set_offsets(np.c_[x_data[i,:], y_data[i,:]])
scatter_IR.set_offsets(np.c_[x_data[i,:10], y_data[i,:10]])
scatter_MR.set_offsets(np.c_[x_data[i,:10], y_data[i,:10]])
scatter_OR.set_offsets(np.c_[x_data[i,:10], y_data[i,:10]])
ani = animation.FuncAnimation(fig, animate, frames=len(x_data),
interval = 700, blit = False)
plt.show()

Categories

Resources