I am trying to normalize a bunch of images which I have scaled to 32x32 pixel size. I was initially wanting to use x-median/std for normalization, but I found some code to use MINMAX instead so I am trying that. I need to get the image into the 0 to 1 range, so I assume that dtype 32F would do that, so I think this is where the problem lies. When I run the code, the normalized image is completely black. Any advice on how to solve that?
Here is the code:
import cv2
import numpy as np
from PIL import Image
image = cv2.imread("image.png", cv2.IMREAD_UNCHANGED) # uint8 image
norm_image = np.zeros((32, 32))
norm_image = cv2.normalize(image, norm_image, alpha=0, beta=1, norm_type = cv2.NORM_MINMAX, dtype=cv2.CV_32F)
im = Image.fromarray(norm_image)
if im != 'RGB':
im = im.convert('RGB')
im.save("image_norm.png")
cv2.waitKey(0)
cv2.destroyAllWindows()
Sample image
Related
Why this code plot different images?
from PIL import Image
import numpy as np
x = (np.random.random((32,32))*255).astype(np.int16)
img1 = Image.fromarray(x, mode='L')
img2 = Image.fromarray(x)
plt.imshow(img1, cmap='gray')
plt.imshow(img2, cmap='gray')
see images:
PIL requires L mode images to be 8-bit, see here. So, if you pass in your 16-bit image, where every high byte is zero, every second pixel will be black.
Today I was trying to compress the image below, using sklearn's PCA algorithm in Python.
Because the image is RGB (3 channels), I first reshaped the image, so that it becomes 2D. Then, I applied the PCA algorithm on the data to compress the image. After the image was compressed, I inversed the PCA transformation and reshaped the approximated (decompressed) image back to its original shape.
However, when I tried to display the approximated image I got this weird result here:
While the image is stored correctly with the cv2.imwrite function, OpenCV fails to display the image correctly using cv2.imshow. Do You have any idea why this might be happening?
My code is below:
from sklearn.decomposition import PCA
import cv2
import numpy as np
image_filepath = 'baby_yoda_image.jpg'
# Loading image from disk.
input_image = cv2.imread(image_filepath)
height = input_image.shape[0]
width = input_image.shape[1]
channels = input_image.shape[2]
# Reshaping image to perform PCA.
print('Input image shape:', input_image.shape)
#--- OUT: (533, 800, 3)
reshaped_image = np.reshape(input_image, (height, width*channels))
print('Reshaped Image:', reshaped_image.shape)
#--- OUT: (533, 2400)
# Applying PCA transformation to image. No whitening is applied to prevent further data loss.
n_components = 64
whitening = False
pca = PCA(n_components, whitening)
compressed_image = pca.fit_transform(reshaped_image)
print('PCA Compressed Image Shape:', compressed_image.shape)
#--- OUT: (533, 64)
print('Compression achieved:', np.around(np.sum(pca.explained_variance_ratio_), 2)*100, '%')
#--- OUT: 97.0 %
# Plotting images.
approximated_image = pca.inverse_transform(compressed_image)
approximated_original_shape_image = np.reshape(approximated_image, (height, width, channels))
cv2.imshow('Input Image', input_image)
cv2.imshow('Compressed Image', approximated_original_shape_image)
cv2.waitKey()
Thanks in advance.
Finally, I found a solution to this problem, thanks to #fmw42 . After the transformation, there were negative values in the pixels and also values that exceeded 255.
Luckily, OpenCV does take care of this problem with this line of code:
approximated_uint8_image = cv2.convertScaleAbs(approximated_original_shape_image)
I am trying to implement the wiener filter on the CIFAR10 dataset which consists of RGB images.
But this filter can only be used for Gray-scaled images.
I tried to implement it on each R/G/B channel and then combine them, but the resulting RGB image was not even close to the initial image.
Any ideas?
(I am using scipy.signal.signaltools.wiener)
Thanks in advance
Ok, how about skimage (scikit-image)? Have a look here:
https://scikit-image.org/docs/dev/api/skimage.restoration.html#skimage.restoration.wiener
The example given on an rgb image is the following:
from skimage import color, data, restoration
img = color.rgb2gray(data.astronaut())
from scipy.signal import convolve2d
psf = np.ones((5, 5)) / 25
img = convolve2d(img, psf, 'same')
img += 0.1 * img.std() * np.random.standard_normal(img.shape)
deconvolved_img = restoration.wiener(img, psf, 1100)
Working with a deep learning project and I have a lot of images, that don't need to have colors. I saved them doing:
import matplotlib.pyplot as plt
plt.imsave('image.png', image, format='png', cmap='gray')
However later when I checked the shape of the image the result is:
import cv2
img_rgb = cv2.imread('image.png')
print(img_rgb.shape)
(196,256,3)
So even though the image I view is in grayscale, I still have 3 color channels. I realized I had to do some algebric operations in order to convert those 3 channels into 1 single channel.
I have tried the methods described on the thread "How can I convert an RGB image into grayscale in Python?" but I'm confused.
For example, when to do the conversion using:
from skimage import color
from skimage import io
img_gray = color.rgb2gray(io.imread('image.png'))
plt.imsave('image_gray.png', img_gray, format='png')
However when I load the new image and check its shape:
img_gr = cv2.imread('image_gray.png')
print(img_gr.shape)
(196,256,3)
I tried the other methods on that thread but the results are the same. My goal is to have images with a (196,256,1) shape, given how much less computationally intensive it will be for a Convolutional Neural Network.
Any help would be appreciated.
Your first code block:
import matplotlib.pyplot as plt
plt.imsave('image.png', image, format='png', cmap='gray')
This is saving the image as RGB, because cmap='gray' is ignored when supplying RGB data to imsave (see pyplot docs).
You can convert your data into grayscale by taking the average of the three bands, either using color.rgb2gray as you have, or I tend to use numpy:
import numpy as np
from matplotlib import pyplot as plt
import cv2
img_rgb = np.random.rand(196,256,3)
print('RGB image shape:', img_rgb.shape)
img_gray = np.mean(img_rgb, axis=2)
print('Grayscale image shape:', img_gray.shape)
Output:
RGB image shape: (196, 256, 3)
Grayscale image shape: (196, 256)
img_gray is now the correct shape, however if you save it using plt.imsave, it will still write three bands, with R == G == B for each pixel. This is because, I believe, a PNG file requires three (or four) bands. Warning: I am not sure about this: I expect to be corrected.
plt.imsave('image_gray.png', img_gray, format='png')
new_img = cv2.imread('image_gray.png')
print('Loaded image shape:', new_img.shape)
Output:
Loaded image shape: (196, 256, 3)
One way to avoid this is to save the images as numpy files, or indeed to save a batch of images as numpy files:
np.save('np_image.npy', img_gray)
new_np = np.load('np_image.npy')
print('new_np shape:', new_np.shape)
Output:
new_np shape: (196, 256)
The other thing you could do is save the grayscale png (using imsave) but then only read in the first band:
finalimg = cv2.imread('image_gray.png',0)
print('finalimg image shape:', finalimg.shape)
Output:
finalimg image shape: (196, 256)
As it turns out, Keras, the deep-learning library I'm using has its own method of converting images to a single color channel (grayscale) in its image pre-processing step.
When using the ImageDataGenerator class the flow_from_directory method takes the color_mode argument. Setting color_mode = "grayscale" will automatically convert the PNG into a single color channel!
https://keras.io/preprocessing/image/#imagedatagenerator-methods
Hope this helps someone in the future.
if you want to just add extra channels that have the same value as the graysacale , maybe to use a specific model that requires 3 channel input_shape .
lets say your pictures are 28 X 28 and so you have a shape of (28 , 28 , 1)
def add_extra_channels_to_pic(pic):
if pic.shape == (28 , 28 , 1):
pic = pic.reshape(28,28)
pic = np.array([pic , pic , pic])
# to make the channel axis in the end
pic = np.moveaxis(pic , 0 , -1)
return pic
Try this method
import imageio
new_data = imageio.imread("file_path", as_gray =True)
imageio.imsave("file_path", new_data)
The optional argument "as_gray = True" in line 2 of the code does the actual conversion.
I'm trying to run the canny edge detector on this image:
With this code:
def edges(img):
from skimage import feature
img = Image.open(img)
img.convert('L')
array = np.array(img)
out = feature.canny(array, sigma=1, )
return Image.fromarray(out,'L')
edges('Q_3.jpg').save('Q_3_edges.jpg')
But I'm just getting a black image back. Any ideas what I could be doing wrong? I tried sigma of 1 and of 3.
I have the same situation and this helps for me. Before use the Canny filter, just convert your elements of image array to float32 type:
array = np.array(img)
array = array.astype('float32')
out = feature.canny(array, sigma=1, )
Your images need to be in the correct range for the relevant dtype, as discussed in the user manual here: http://scikit-image.org/docs/stable/user_guide/data_types.html
This should be automatically handled if you use the scikit-image image I/O functions:
from skimage import io
img = io.imread('Q_3.jpg')
So the issue was with the canny function returning and array of type boolean.
Oddly, setting the Image.fromarray mode to '1' didn't help. Instead this was the only way I could get it working; converting the output array to grayscale:
def edges(img):
from skimage import feature
img = Image.open(img)
img.convert('L')
array = np.array(img)
out = np.uint8(feature.canny(array, sigma=1, ) * 255)
return Image.fromarray(out,mode='L')
The problem happens when the image is loaded as float (i.e. in the range 0-1). The loader does that for some types of images. You can check the type of the loaded image by:
print(img.dtype)
If the output is something like float64 (i.e. not uint8), then your image is in the range 0-1.
Canny expects an image in the range 0-255. Therefore, the solution is as easy as:
from skimage import img_as_ubyte
img = io.imread("an_image.jpg")
img = img_as_ubyte(img)
Hope this helps,
The problem happens when the image is saved. You can save image with other library like matplotlib:
import numpy as np
import matplotlib.pyplot as plt
from skimage import feature
from skimage import io
def edges(img):
img = io.imread(img)
array = np.array(img)
out = feature.canny(array, sigma=1, )
return out
plt.imsave("canny.jpg", edges("input.jpg"), cmap="Greys")