Bokeh: tools='reset' makes the graph fixed - python

I wanted to put only reset toolbar on by the graph, so I was trying to like
logo=None, tools='reset'
The reset button is actually placed but instead the graph is fixed and cannot move from original position.
How can I improve it?

To move the plot you just need to add the PanTool. Check this minimal example:
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure
from bokeh.io import curdoc
plot = figure(
width=300,
height=300,
tools='pan,reset',
logo=None,
)
x = [1, 2, 3, 4]
y = [4, 3, 2, 1]
source = ColumnDataSource(data=dict(x=x, y=y))
plot.circle(
x='x',
y='y',
source=source,
size=5,
fill_alpha=1.0,
fill_color='green',
line_color=None,
)
curdoc().add_root(plot)
Run this with bokeh serve --show example.py

Related

Bokeh highlight values in second plot and show data table

I have two plots and a data table. I want to select a value in plot 1 and then the corresponding value of plot two should be highlighted in plot 2. In addition I would like to show a data table under both plots with the selected values. Here is what I have so far:
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource
from bokeh.io import show
import numpy as np
import pandas as pd
from bokeh.layouts import row
from bokeh.models.widgets import DataTable, TableColumn
df2 = pd.DataFrame(np.array([[1, 3.280, 3.3925], [2, 3.3012, 3.4303], [3, 3.5972, 3.8696]]),
columns=['abspos', 'val1', 'val1_q'])
source = ColumnDataSource(data=df2)
p1 = figure(title="Plot1",
plot_width=1500,
plot_height=900,
x_range=[0, 5],
y_range=[0, 5])
p1.circle('abspos', 'val1', source=source, line_color=None, color='red', size=6)
pq1 = figure(title="Plot2",plot_width=900, plot_height=900)
pq1.circle('val1_q', 'val1', source=source, line_color=None, size=6)
columns = [
TableColumn(field="abspos", title="abspos"),
TableColumn(field="val1", title="val1"),
TableColumn(field="val1_q", title="val1_q")
]
data_table = DataTable(source=source, columns=columns, width=300, height=280)
def plot_both(plot1, plot2):
show(row(plot1, plot2))
plot_both(p1, pq1)
If I select the data point [2, 3.3012] in plot 1, the data point [3.3012, 3.4303] should be highlighted in plot 2. The data table underneath should show [2, 3.3012, 3.4303].
Question 1: How to achieve a highlight in plot 2 according to selected point in plot 1 (and vice versa).
Question 2: How to display a Table under both plots which shows the data of the selected data points.
The simplest way would be to use the tap tool (code below works for Bokeh v2.1.1)
from bokeh.plotting import show, figure
from bokeh.models import ColumnDataSource, Row, Column, CustomJS, DataTable, TableColumn
import numpy as np
import pandas as pd
df2 = pd.DataFrame(np.array([[1, 3.280, 3.3925], [2, 3.3012, 3.4303], [3, 3.5972, 3.8696]]),
columns=['abspos', 'val1', 'val1_q'])
source = ColumnDataSource(data=df2)
p1 = figure(title="Plot1",plot_width=900, plot_height=500, tools="tap,pan,box_zoom,wheel_zoom,save,reset")
p1.circle('abspos', 'val1', source=source, line_color=None, color='blue', size=10)
p2 = figure(title="Plot2",plot_width=900, plot_height=500, tools="tap,pan,box_zoom,wheel_zoom,save,reset")
p2.circle('val1_q', 'val1', source=source, line_color=None, color='blue', size=10)
columns = [
TableColumn(field="abspos", title="abspos"),
TableColumn(field="val1", title="val1"),
TableColumn(field="val1_q", title="val1_q")
]
dt1 = DataTable(source=source, columns=columns, width=900, height=300)
dt2 = DataTable(source=source, columns=columns, width=900, height=300)
show(Column(Row(p1, p2), Row(dt1, dt2)))
If you need more functionality you would need to add a JS callback like p1.js_on_event('tap', CustomJS(args={...}, code="..."))

Setting absolute screen position of Bokeh Charts in Web App

I am trying to set the absolute position of a Bokeh Chart inside a Layout so that one of the plots is shown on top of another plot. Right now when I am plotting something like this:
from bokeh.io import curdoc
from bokeh.plotting import figure
from bokeh.layouts import layout
import numpy as np
x = np.arange(1,10.1,0.1)
y = [i**2 for i in x]
categories = ['A', 'B']
values = [1000, 1500]
fig1 = figure(width=600,plot_height=600, title="First Plot")
fig1.line(x=x, y=y)
fig2 = figure(width=200,plot_height=250,x_range=categories,
title="Second Plot") fig2.vbar(x=categories, top=values, width=0.2)
l = layout([[fig1,fig2]])
curdoc().add_root(l)
The result will be this:
What I am searching for is some way to make it look like that:
How can this result be achieved?
Thank you!
This is what I came up with (works for Bokeh v1.0.4). You need to move your mouse over the plot to get the other one jump inside but you could also copy the JS code from the callback and manually add it to the HTML generated by Bokeh so you achieve the same result.
from bokeh.plotting import figure, show
from bokeh.layouts import Row
from bokeh.models import ColumnDataSource, CDSView, BooleanFilter, CustomJS, BoxSelectTool, HoverTool
import pandas as pd
plot = figure(tools = 'hover', tooltips = [("x", "#x"), ("y", "#y")])
circles = plot.circle('x', 'y', size = 20, source = ColumnDataSource({'x': [1, 2, 3], 'y':[1, 2, 3]}))
inner_plot = figure(name = 'inner_plot', plot_width = 200, plot_height = 200)
lines = inner_plot.line('x', 'y', source = ColumnDataSource({'x': [8, 9, 10], 'y':[8, 6, 8]}))
code = """ div = document.getElementsByClassName('bk-root')[0];
tooltip_plot = div.children[0].children[1]
tooltip_plot.style = "position:absolute; left: 340px; top: 350px;"; """
callback = CustomJS(code = code)
plot.js_on_event('mousemove', callback)
show(Row(plot, inner_plot))
Result:

Bokeh line 'disappearing' when using hover_line_alpha

I'm using the Bokeh package to plot a line chart.
I want a given line to bolden (alpha to increase) when I hover over it.
I added a hover tool and then added "hover_line_alpha = 0.6" in my line chart.
However when I hover over points on a given line, the line disappears altogether!
Can you help me fix this?
Code below so you can see my logic.
Thanks,
Ross
# Code in Question
from bokeh.io import output_notebook, show, output_file
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, HoverTool
output_notebook()
# set out axes
x = 'time_rnd'
y = 'count'
# set colour palette
col_brew = ['#8dd3c7','#ffffb3','#bebada','#fb8072','#80b1d3','#fdb462','#b3de69','#fccde5','#d9d9d9','#bc80bd','#ccebc5','#ffed6f']
# map out figure
plot = figure(tools='box_select, lasso_select, save' ,x_axis_type='datetime')
# add HoverTool
hover_info = [('time', '#hover_time'),
('word', '#word'),
('count', '#count')]
hover = HoverTool(names=['use'],tooltips=hover_info,
mode='mouse',
show_arrow=True
)
plot.add_tools(hover)
### FOR LOOP OF PLOT [THIS IS WHERE THE ISSUE MANIFESTS]
for i in top_wds_test:
df_eng_word = df_eng_timeline[df_eng_timeline['word']==i]
source = ColumnDataSource(df_eng_word)
plot.line(x, y, line_width = 3,
line_alpha = 0.1, line_color=col_brew[top_wds.index(i)],
hover_line_alpha = 0.6,
#hover_line_color = 'black',
#hover_line_color = col_brew[top_wds.index(i)],
source = source, legend=i, name = 'use'
)
plot.circle(x, y, fill_color='white', size=5,
selection_color='green',
nonselection_fill_color='grey',nonselection_fill_alpha=0.4,
hover_color='red',
source = source, name = 'use')
# add legend
plot.legend.location = "top_left"
plot.legend.label_text_font_style = 'bold'
# materialize the plot
show(plot)
There seems to be an issue when the renderers share a data source. However, this works (with Bokeh >= 0.13.0) if you let Bokeh create a new separate source for each glyph:
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure, show
p = figure(tools="hover", tooltips="$name: #$name")
data=dict(x=[1,2,3], y1=[2,6,5], y2=[6,2,3])
p.line('x', 'y1', color="navy", line_width=3, source=data,
alpha=0.1, hover_color="navy", hover_alpha=0.6, name="y1")
p.line('x', 'y2',color="firebrick", line_width=3, source=data,
alpha=0.1, hover_color="firebrick", hover_alpha=0.6, name="y2")
show(p)

Add hover to Bokeh without losing rest of tools

So with Bokeh I can do something like this to create a hover option:
From bokeh.models import HoverTool #add hover functionality
Hover = HoverTool(tooltips=[(name1:#column1), (name2:#columns2)])
Plot = figure(tools=[hover])
Plot.circle(x,y,hover_color=’red’)
However, by doing so, I lose the standard tools you get when you call figure() like pan, box_zoom, wheel_zoom, etc. I know I can add them back 1 by 1 inside the figure(tools=[]), but is there a way to only add hover to the rest of the default tools of figure(), after it is defined??
Thanks!
Use the add_tools() method, as outlined in the docs:
https://docs.bokeh.org/en/latest/docs/user_guide/tools.html#specifying-tools
Slightly modified example from the docs:
from bokeh.plotting import figure, output_file, show
from bokeh.models import HoverTool
output_file("toolbar.html")
# create a new plot with the toolbar below
p = figure(plot_width=400, plot_height=400,
title=None, toolbar_location="below")
p.circle([1, 2, 3, 4, 5], [2, 5, 8, 2, 7], size=10)
p.add_tools(HoverTool())
show(p)

Interactively change glyphs in bokeh plot

I'm trying to generate a bokeh application which allows the user to change the glyphs of a plot. Unfortunately, the glyphs don't change after calling on_change() method of the dropdown button although I'm able to change the axis label in a similar way. However, changing plot.glyph outside of the called function works fine.
from bokeh.layouts import layout
from bokeh.models import ColumnDataSource
from bokeh.models.widgets import Dropdown
from bokeh.plotting import figure
from bokeh.io import curdoc
from bokeh.models.markers import Cross, Circle
source=ColumnDataSource(dict(x=[1,2,3],y=[4,5,6]))
fig=figure()
plot=fig.circle(x='x', y='y',source=source)
fig.xaxis.axis_label='This is a label'
#this changes the glyphs from circle to cross
plot.glyph=Cross(x='x', y='y', size=20, line_color='firebrick',
fill_color='firebrick', line_alpha=0.8, fill_alpha=0.3)
def update_plot(attr,old,new):
if dropdown.value=='cross':
#this changes the axis label but not the glyphs
fig.xaxis.axis_label='Label changed'
plot.glyph=Cross(x='x', y='y', size=20, line_color='firebrick',
fill_color='firebrick', line_alpha=0.8, fill_alpha=0.3)
elif dropdown.value=='circle':
#this also only changes the axis label but not the glyphs
fig.xaxis.axis_label='Label changed again'
plot.glyph=Circle(x='x', y='y', size=20, line_color='firebrick',
fill_color='firebrick', line_alpha=0.8, fill_alpha=0.3)
menu=[('Circle','circle'),('Cross', 'cross')]
dropdown=Dropdown(label="Select marker", menu=menu, value='circle')
dropdown.on_change('value', update_plot)
lay_out=layout([fig, dropdown])
curdoc().add_root(lay_out)
I'm not sure about the exact reasons why your approach doesn't work, but this one works:
from bokeh.io import curdoc
from bokeh.layouts import layout
from bokeh.models import ColumnDataSource
from bokeh.models.widgets import Dropdown
from bokeh.plotting import figure
source = ColumnDataSource(dict(x=[1, 2, 3], y=[4, 5, 6]))
plot = figure()
renderers = {rn: getattr(plot, rn)(x='x', y='y', source=source,
**extra, visible=False)
for rn, extra in [('circle', dict(size=10)),
('line', dict()),
('cross', dict(size=10)),
('triangle', dict(size=15))]}
def label_fn(item):
return 'Select marker ({})'.format(item)
menu = [('No renderer', None)]
menu.extend((rn.capitalize(), rn) for rn in renderers)
dropdown = Dropdown(label=label_fn(None), menu=menu, value=None)
def update_plot(attr, old, new):
dropdown.label = label_fn(new)
for renderer_name, renderer in renderers.items():
renderer.visible = (renderer_name == new)
dropdown.on_change('value', update_plot)
lay_out = layout([plot, dropdown])
curdoc().add_root(lay_out)
Basically, I create all necessary renderers beforehand, and then just switch visible flag of each one.
Also, note the correct terminology. What you're calling a plot, is not actually a plot but a glyph renderer. And plot and figure are basically the same thing.

Categories

Resources