Normalize scipy sparse matrix with number of nonzero elements - python

I want to divide each row of the csr_matrix by the number of non zero entries in that row.
For example : Consider a csr_matrix A:
A = [[6, 0, 0, 4, 0], [3, 18, 0, 9, 0]]
Result = [[3, 0, 0, 2, 0], [1, 6, 0, 3, 0]]
What's the shortest and efficient way to do it ?

Get the counts with getnnz method and then replicate and divide in-place into its flattened view obtained with data method -
s = A.getnnz(axis=1)
A.data /= np.repeat(s, s)
Inspired by Row Division in Scipy Sparse Matrix 's solution post : Approach #2.
Sample run -
In [15]: from scipy.sparse import csr_matrix
In [16]: A = csr_matrix([[6, 0, 0, 4, 0], [3, 18, 0, 9, 0]])
In [18]: s = A.getnnz(axis=1)
...: A.data /= np.repeat(s, s)
In [19]: A.toarray()
Out[19]:
array([[3, 0, 0, 2, 0],
[1, 6, 0, 3, 0]])
Note: To be compatible between Python2 and 3, we might want to use // -
A.data //= ...

Divakar gives an in-place method. My trial creates a new array.
from scipy import sparse
A = sparse.csr_matrix([[6, 0, 0, 4, 0], [3, 18, 0, 9, 0]])
A.multiply(1.0/(A != 0).sum(axis=1))
We multiply the inverse values of the sum of non-zero parts in each row. Note that one may want to make sure there is no dividing-by-zero errors.
As Divakar pointed out: 1.0, instead of 1, is needed at A.multiply(1.0/...) to be compatible with Python 2.

Related

Multiply vector on dataframe - vectorized

I have a pandas dataframe of size 2441x1441 (A), which is zero in the upper triangle - the diagnoal has values. I would like to multiply each column of this with a vector of length 2441 (B). The tricky part is, that I want the first non-zero value of A multiplied with the first value of B (and second value of A with second value of B and so on). This should happen for all columns of A and result in another dataframe, C.
A=pd.DataFrame(
[[1, 0, 0],
[3, 4, 0],
[6, 7, 8]])
B=np.array([1,2,3,4]).T
Here the result would be
C=[ 1, 0, 0,
6, 4, 0,
18, 14, 8]
I have made a for loop, where I can iterate through each value
for x in range(0,len(B)):
C = (A.iloc[192+x:,:].T*B[0:len(B)-x]).T
However this is very slow, and I need to repeat this operation many times on different datasets. Is there a nice and pythonic way of vectorizing this?
Use np.fromfunction to define a matrix whose entries are the multipliers that you want. For example, if
A = np.array([[1, 0, 0],
[3, 4, 0],
[6, 7, 8]])
then
B = np.clip(np.fromfunction(lambda i, j: i-j+1, A.shape), 0, None)
will give you
B = np.array([[1, 0, 0],
[2, 1, 0],
[3, 2, 1]])
and then the result you want is simply the elementwise product of A and B:
C = A * B
yields
C = np.array([[1, 0, 0],
[6, 4, 0],
[18, 14, 8]])
In fact, since your A is lower-triangular, you can drop the call to np.clip in the definition of B and obtain the same C.
Edit: I slightly misinterpreted the question. If the B in the OP (let me call it b, since I've already used B) is not the sequence of natural numbers, you can do
B = np.tril(
np.fromfunction(
lambda i, j: b[np.clip((i-j).astype(int), 0, b.shape[0])],
A.shape))
For example, if
b = np.array([2, 3, 1, 4])
then you would get
B = np.array([[2, 0, 0],
[3, 2, 0],
[1, 3, 2]])
OK, so how about creating an array from your B vector that matches the shape you're after?
Once you've transformed it in that way, you could perform an element-wise multiplication, and all the right values will be aligned.
A = np.array([[1, 0, 0],
[3, 4, 0],
[6, 7, 8]])
B = np.array([1,2,3,4])
mB = B[:A.shape[0]]
shift = B[:A.shape[0]]
for b in range(0,A.shape[0]):
shift = np.roll(shift ,1)
mB = np.append(mB, shift)
mB.resize(A.shape)
np.tril(mB.T)
>>>> array([[1, 0, 0],
[2, 1, 0],
[3, 2, 1]])
In the above I force the top-right triangle to be zeros, but since your A vector has already got zeros in those positions, it doesn't really matter what values are going to be in those positions of the multiplying array - so the np.tril step is not really necessary.
Anyway, whatever your preference, once you've got that form (and there may well be a better way than the one used above to arrive at that form) then you can np.multiply the two objects which will multiply aligned elements.
np.multiply(A, np.tril(mB.T))
>>>> array([[ 1, 0, 0],
[ 6, 4, 0],
[18, 14, 8]])
Here's a way to do it:
You can create a lower triangular matrix from B, by trimming and zero padding the vector B over each column so that its upper triangular part are all zeros.
So in essence this way you are replicating a matrix multiplication operation. You then simply have to multiply element-wise the two matrices by either using A*new_B or np.multiply(A,new_B).
new_b = np.array([list(np.pad(B[:-i] if i != 0 else B,(i,0), 'constant'))
for i in range(len(B))]).T[:len(A),:len(A)]
print(new_b)
array([[1, 0, 0],
[2, 1, 0],
[3, 2, 1]])
print(new_b*A)
array([[ 1, 0, 0],
[ 6, 4, 0],
[18, 14, 8]])

Compare numpy arrays of different sizes and find index that matches in Python 3 [duplicate]

I have an array X:
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
And I wish to find the index of the row of several values in this array:
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
For this example I would like a result like:
[0,3,4]
I have a code doing this, but I think it is overly complicated:
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
result = []
for s in searched_values:
idx = np.argwhere([np.all((X-s)==0, axis=1)])[0][1]
result.append(idx)
print(result)
I found this answer for a similar question but it works only for 1d arrays.
Is there a way to do what I want in a simpler way?
Approach #1
One approach would be to use NumPy broadcasting, like so -
np.where((X==searched_values[:,None]).all(-1))[1]
Approach #2
A memory efficient approach would be to convert each row as linear index equivalents and then using np.in1d, like so -
dims = X.max(0)+1
out = np.where(np.in1d(np.ravel_multi_index(X.T,dims),\
np.ravel_multi_index(searched_values.T,dims)))[0]
Approach #3
Another memory efficient approach using np.searchsorted and with that same philosophy of converting to linear index equivalents would be like so -
dims = X.max(0)+1
X1D = np.ravel_multi_index(X.T,dims)
searched_valuesID = np.ravel_multi_index(searched_values.T,dims)
sidx = X1D.argsort()
out = sidx[np.searchsorted(X1D,searched_valuesID,sorter=sidx)]
Please note that this np.searchsorted method assumes there is a match for each row from searched_values in X.
How does np.ravel_multi_index work?
This function gives us the linear index equivalent numbers. It accepts a 2D array of n-dimensional indices, set as columns and the shape of that n-dimensional grid itself onto which those indices are to be mapped and equivalent linear indices are to be computed.
Let's use the inputs we have for the problem at hand. Take the case of input X and note the first row of it. Since, we are trying to convert each row of X into its linear index equivalent and since np.ravel_multi_index assumes each column as one indexing tuple, we need to transpose X before feeding into the function. Since, the number of elements per row in X in this case is 2, the n-dimensional grid to be mapped onto would be 2D. With 3 elements per row in X, it would had been 3D grid for mapping and so on.
To see how this function would compute linear indices, consider the first row of X -
In [77]: X
Out[77]:
array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
We have the shape of the n-dimensional grid as dims -
In [78]: dims
Out[78]: array([10, 7])
Let's create the 2-dimensional grid to see how that mapping works and linear indices get computed with np.ravel_multi_index -
In [79]: out = np.zeros(dims,dtype=int)
In [80]: out
Out[80]:
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
Let's set the first indexing tuple from X, i.e. the first row from X into the grid -
In [81]: out[4,2] = 1
In [82]: out
Out[82]:
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
Now, to see the linear index equivalent of the element just set, let's flatten and use np.where to detect that 1.
In [83]: np.where(out.ravel())[0]
Out[83]: array([30])
This could also be computed if row-major ordering is taken into account.
Let's use np.ravel_multi_index and verify those linear indices -
In [84]: np.ravel_multi_index(X.T,dims)
Out[84]: array([30, 66, 61, 24, 41])
Thus, we would have linear indices corresponding to each indexing tuple from X, i.e. each row from X.
Choosing dimensions for np.ravel_multi_index to form unique linear indices
Now, the idea behind considering each row of X as indexing tuple of a n-dimensional grid and converting each such tuple to a scalar is to have unique scalars corresponding to unique tuples, i.e. unique rows in X.
Let's take another look at X -
In [77]: X
Out[77]:
array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
Now, as discussed in the previous section, we are considering each row as indexing tuple. Within each such indexing tuple, the first element would represent the first axis of the n-dim grid, second element would be the second axis of the grid and so on until the last element of each row in X. In essence, each column would represent one dimension or axis of the grid. If we are to map all elements from X onto the same n-dim grid, we need to consider the maximum stretch of each axis of such a proposed n-dim grid. Assuming we are dealing with positive numbers in X, such a stretch would be the maximum of each column in X + 1. That + 1 is because Python follows 0-based indexing. So, for example X[1,0] == 9 would map to the 10th row of the proposed grid. Similarly, X[4,1] == 6 would go to the 7th column of that grid.
So, for our sample case, we had -
In [7]: dims = X.max(axis=0) + 1 # Or simply X.max(0) + 1
In [8]: dims
Out[8]: array([10, 7])
Thus, we would need a grid of at least a shape of (10,7) for our sample case. More lengths along the dimensions won't hurt and would give us unique linear indices too.
Concluding remarks : One important thing to be noted here is that if we have negative numbers in X, we need to add proper offsets along each column in X to make those indexing tuples as positive numbers before using np.ravel_multi_index.
Another alternative is to use asvoid (below) to view each row as a single
value of void dtype. This reduces a 2D array to a 1D array, thus allowing you to use np.in1d as usual:
import numpy as np
def asvoid(arr):
"""
Based on http://stackoverflow.com/a/16973510/190597 (Jaime, 2013-06)
View the array as dtype np.void (bytes). The items along the last axis are
viewed as one value. This allows comparisons to be performed which treat
entire rows as one value.
"""
arr = np.ascontiguousarray(arr)
if np.issubdtype(arr.dtype, np.floating):
""" Care needs to be taken here since
np.array([-0.]).view(np.void) != np.array([0.]).view(np.void)
Adding 0. converts -0. to 0.
"""
arr += 0.
return arr.view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[-1])))
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
idx = np.flatnonzero(np.in1d(asvoid(X), asvoid(searched_values)))
print(idx)
# [0 3 4]
The numpy_indexed package (disclaimer: I am its author) contains functionality for performing such operations efficiently (also uses searchsorted under the hood). In terms of functionality, it acts as a vectorized equivalent of list.index:
import numpy_indexed as npi
result = npi.indices(X, searched_values)
Note that using the 'missing' kwarg, you have full control over behavior of missing items, and it works for nd-arrays (fi; stacks of images) as well.
Update: using the same shapes as #Rik X=[520000,28,28] and searched_values=[20000,28,28], it runs in 0.8064 secs, using missing=-1 to detect and denote entries not present in X.
Here is a pretty fast solution that scales up well using numpy and hashlib. It can handle large dimensional matrices or images in seconds. I used it on 520000 X (28 X 28) array and 20000 X (28 X 28) in 2 seconds on my CPU
Code:
import numpy as np
import hashlib
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
#hash using sha1 appears to be efficient
xhash=[hashlib.sha1(row).digest() for row in X]
yhash=[hashlib.sha1(row).digest() for row in searched_values]
z=np.in1d(xhash,yhash)
##Use unique to get unique indices to ind1 results
_,unique=np.unique(np.array(xhash)[z],return_index=True)
##Compute unique indices by indexing an array of indices
idx=np.array(range(len(xhash)))
unique_idx=idx[z][unique]
print('unique_idx=',unique_idx)
print('X[unique_idx]=',X[unique_idx])
Output:
unique_idx= [4 3 0]
X[unique_idx]= [[5 6]
[3 3]
[4 2]]
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
S = np.array([[4, 2],
[3, 3],
[5, 6]])
result = [[i for i,row in enumerate(X) if (s==row).all()] for s in S]
or
result = [i for s in S for i,row in enumerate(X) if (s==row).all()]
if you want a flat list (assuming there is exactly one match per searched value).
Another way is to use cdist function from scipy.spatial.distance like this:
np.nonzero(cdist(X, searched_values) == 0)[0]
Basically, we get row numbers of X which have distance zero to a row in searched_values, meaning they are equal. Makes sense if you look on rows as coordinates.
I had similar requirement and following worked for me:
np.argwhere(np.isin(X, searched_values).all(axis=1))
Here's what worked out for me:
def find_points(orig: np.ndarray, search: np.ndarray) -> np.ndarray:
equals = [np.equal(orig, p).all(1) for p in search]
exists = np.max(equals, axis=1)
indices = np.argmax(equals, axis=1)
indices[exists == False] = -1
return indices
test:
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6],
[0, 0]])
find_points(X, searched_values)
output:
[0,3,4,-1]

How to calculate intersection in numpy.array? [duplicate]

I have an array X:
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
And I wish to find the index of the row of several values in this array:
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
For this example I would like a result like:
[0,3,4]
I have a code doing this, but I think it is overly complicated:
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
result = []
for s in searched_values:
idx = np.argwhere([np.all((X-s)==0, axis=1)])[0][1]
result.append(idx)
print(result)
I found this answer for a similar question but it works only for 1d arrays.
Is there a way to do what I want in a simpler way?
Approach #1
One approach would be to use NumPy broadcasting, like so -
np.where((X==searched_values[:,None]).all(-1))[1]
Approach #2
A memory efficient approach would be to convert each row as linear index equivalents and then using np.in1d, like so -
dims = X.max(0)+1
out = np.where(np.in1d(np.ravel_multi_index(X.T,dims),\
np.ravel_multi_index(searched_values.T,dims)))[0]
Approach #3
Another memory efficient approach using np.searchsorted and with that same philosophy of converting to linear index equivalents would be like so -
dims = X.max(0)+1
X1D = np.ravel_multi_index(X.T,dims)
searched_valuesID = np.ravel_multi_index(searched_values.T,dims)
sidx = X1D.argsort()
out = sidx[np.searchsorted(X1D,searched_valuesID,sorter=sidx)]
Please note that this np.searchsorted method assumes there is a match for each row from searched_values in X.
How does np.ravel_multi_index work?
This function gives us the linear index equivalent numbers. It accepts a 2D array of n-dimensional indices, set as columns and the shape of that n-dimensional grid itself onto which those indices are to be mapped and equivalent linear indices are to be computed.
Let's use the inputs we have for the problem at hand. Take the case of input X and note the first row of it. Since, we are trying to convert each row of X into its linear index equivalent and since np.ravel_multi_index assumes each column as one indexing tuple, we need to transpose X before feeding into the function. Since, the number of elements per row in X in this case is 2, the n-dimensional grid to be mapped onto would be 2D. With 3 elements per row in X, it would had been 3D grid for mapping and so on.
To see how this function would compute linear indices, consider the first row of X -
In [77]: X
Out[77]:
array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
We have the shape of the n-dimensional grid as dims -
In [78]: dims
Out[78]: array([10, 7])
Let's create the 2-dimensional grid to see how that mapping works and linear indices get computed with np.ravel_multi_index -
In [79]: out = np.zeros(dims,dtype=int)
In [80]: out
Out[80]:
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
Let's set the first indexing tuple from X, i.e. the first row from X into the grid -
In [81]: out[4,2] = 1
In [82]: out
Out[82]:
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
Now, to see the linear index equivalent of the element just set, let's flatten and use np.where to detect that 1.
In [83]: np.where(out.ravel())[0]
Out[83]: array([30])
This could also be computed if row-major ordering is taken into account.
Let's use np.ravel_multi_index and verify those linear indices -
In [84]: np.ravel_multi_index(X.T,dims)
Out[84]: array([30, 66, 61, 24, 41])
Thus, we would have linear indices corresponding to each indexing tuple from X, i.e. each row from X.
Choosing dimensions for np.ravel_multi_index to form unique linear indices
Now, the idea behind considering each row of X as indexing tuple of a n-dimensional grid and converting each such tuple to a scalar is to have unique scalars corresponding to unique tuples, i.e. unique rows in X.
Let's take another look at X -
In [77]: X
Out[77]:
array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
Now, as discussed in the previous section, we are considering each row as indexing tuple. Within each such indexing tuple, the first element would represent the first axis of the n-dim grid, second element would be the second axis of the grid and so on until the last element of each row in X. In essence, each column would represent one dimension or axis of the grid. If we are to map all elements from X onto the same n-dim grid, we need to consider the maximum stretch of each axis of such a proposed n-dim grid. Assuming we are dealing with positive numbers in X, such a stretch would be the maximum of each column in X + 1. That + 1 is because Python follows 0-based indexing. So, for example X[1,0] == 9 would map to the 10th row of the proposed grid. Similarly, X[4,1] == 6 would go to the 7th column of that grid.
So, for our sample case, we had -
In [7]: dims = X.max(axis=0) + 1 # Or simply X.max(0) + 1
In [8]: dims
Out[8]: array([10, 7])
Thus, we would need a grid of at least a shape of (10,7) for our sample case. More lengths along the dimensions won't hurt and would give us unique linear indices too.
Concluding remarks : One important thing to be noted here is that if we have negative numbers in X, we need to add proper offsets along each column in X to make those indexing tuples as positive numbers before using np.ravel_multi_index.
Another alternative is to use asvoid (below) to view each row as a single
value of void dtype. This reduces a 2D array to a 1D array, thus allowing you to use np.in1d as usual:
import numpy as np
def asvoid(arr):
"""
Based on http://stackoverflow.com/a/16973510/190597 (Jaime, 2013-06)
View the array as dtype np.void (bytes). The items along the last axis are
viewed as one value. This allows comparisons to be performed which treat
entire rows as one value.
"""
arr = np.ascontiguousarray(arr)
if np.issubdtype(arr.dtype, np.floating):
""" Care needs to be taken here since
np.array([-0.]).view(np.void) != np.array([0.]).view(np.void)
Adding 0. converts -0. to 0.
"""
arr += 0.
return arr.view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[-1])))
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
idx = np.flatnonzero(np.in1d(asvoid(X), asvoid(searched_values)))
print(idx)
# [0 3 4]
The numpy_indexed package (disclaimer: I am its author) contains functionality for performing such operations efficiently (also uses searchsorted under the hood). In terms of functionality, it acts as a vectorized equivalent of list.index:
import numpy_indexed as npi
result = npi.indices(X, searched_values)
Note that using the 'missing' kwarg, you have full control over behavior of missing items, and it works for nd-arrays (fi; stacks of images) as well.
Update: using the same shapes as #Rik X=[520000,28,28] and searched_values=[20000,28,28], it runs in 0.8064 secs, using missing=-1 to detect and denote entries not present in X.
Here is a pretty fast solution that scales up well using numpy and hashlib. It can handle large dimensional matrices or images in seconds. I used it on 520000 X (28 X 28) array and 20000 X (28 X 28) in 2 seconds on my CPU
Code:
import numpy as np
import hashlib
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
#hash using sha1 appears to be efficient
xhash=[hashlib.sha1(row).digest() for row in X]
yhash=[hashlib.sha1(row).digest() for row in searched_values]
z=np.in1d(xhash,yhash)
##Use unique to get unique indices to ind1 results
_,unique=np.unique(np.array(xhash)[z],return_index=True)
##Compute unique indices by indexing an array of indices
idx=np.array(range(len(xhash)))
unique_idx=idx[z][unique]
print('unique_idx=',unique_idx)
print('X[unique_idx]=',X[unique_idx])
Output:
unique_idx= [4 3 0]
X[unique_idx]= [[5 6]
[3 3]
[4 2]]
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
S = np.array([[4, 2],
[3, 3],
[5, 6]])
result = [[i for i,row in enumerate(X) if (s==row).all()] for s in S]
or
result = [i for s in S for i,row in enumerate(X) if (s==row).all()]
if you want a flat list (assuming there is exactly one match per searched value).
Another way is to use cdist function from scipy.spatial.distance like this:
np.nonzero(cdist(X, searched_values) == 0)[0]
Basically, we get row numbers of X which have distance zero to a row in searched_values, meaning they are equal. Makes sense if you look on rows as coordinates.
I had similar requirement and following worked for me:
np.argwhere(np.isin(X, searched_values).all(axis=1))
Here's what worked out for me:
def find_points(orig: np.ndarray, search: np.ndarray) -> np.ndarray:
equals = [np.equal(orig, p).all(1) for p in search]
exists = np.max(equals, axis=1)
indices = np.argmax(equals, axis=1)
indices[exists == False] = -1
return indices
test:
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6],
[0, 0]])
find_points(X, searched_values)
output:
[0,3,4,-1]

Finding common rows between two 2D NumPy arrays [duplicate]

I have an array X:
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
And I wish to find the index of the row of several values in this array:
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
For this example I would like a result like:
[0,3,4]
I have a code doing this, but I think it is overly complicated:
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
result = []
for s in searched_values:
idx = np.argwhere([np.all((X-s)==0, axis=1)])[0][1]
result.append(idx)
print(result)
I found this answer for a similar question but it works only for 1d arrays.
Is there a way to do what I want in a simpler way?
Approach #1
One approach would be to use NumPy broadcasting, like so -
np.where((X==searched_values[:,None]).all(-1))[1]
Approach #2
A memory efficient approach would be to convert each row as linear index equivalents and then using np.in1d, like so -
dims = X.max(0)+1
out = np.where(np.in1d(np.ravel_multi_index(X.T,dims),\
np.ravel_multi_index(searched_values.T,dims)))[0]
Approach #3
Another memory efficient approach using np.searchsorted and with that same philosophy of converting to linear index equivalents would be like so -
dims = X.max(0)+1
X1D = np.ravel_multi_index(X.T,dims)
searched_valuesID = np.ravel_multi_index(searched_values.T,dims)
sidx = X1D.argsort()
out = sidx[np.searchsorted(X1D,searched_valuesID,sorter=sidx)]
Please note that this np.searchsorted method assumes there is a match for each row from searched_values in X.
How does np.ravel_multi_index work?
This function gives us the linear index equivalent numbers. It accepts a 2D array of n-dimensional indices, set as columns and the shape of that n-dimensional grid itself onto which those indices are to be mapped and equivalent linear indices are to be computed.
Let's use the inputs we have for the problem at hand. Take the case of input X and note the first row of it. Since, we are trying to convert each row of X into its linear index equivalent and since np.ravel_multi_index assumes each column as one indexing tuple, we need to transpose X before feeding into the function. Since, the number of elements per row in X in this case is 2, the n-dimensional grid to be mapped onto would be 2D. With 3 elements per row in X, it would had been 3D grid for mapping and so on.
To see how this function would compute linear indices, consider the first row of X -
In [77]: X
Out[77]:
array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
We have the shape of the n-dimensional grid as dims -
In [78]: dims
Out[78]: array([10, 7])
Let's create the 2-dimensional grid to see how that mapping works and linear indices get computed with np.ravel_multi_index -
In [79]: out = np.zeros(dims,dtype=int)
In [80]: out
Out[80]:
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
Let's set the first indexing tuple from X, i.e. the first row from X into the grid -
In [81]: out[4,2] = 1
In [82]: out
Out[82]:
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
Now, to see the linear index equivalent of the element just set, let's flatten and use np.where to detect that 1.
In [83]: np.where(out.ravel())[0]
Out[83]: array([30])
This could also be computed if row-major ordering is taken into account.
Let's use np.ravel_multi_index and verify those linear indices -
In [84]: np.ravel_multi_index(X.T,dims)
Out[84]: array([30, 66, 61, 24, 41])
Thus, we would have linear indices corresponding to each indexing tuple from X, i.e. each row from X.
Choosing dimensions for np.ravel_multi_index to form unique linear indices
Now, the idea behind considering each row of X as indexing tuple of a n-dimensional grid and converting each such tuple to a scalar is to have unique scalars corresponding to unique tuples, i.e. unique rows in X.
Let's take another look at X -
In [77]: X
Out[77]:
array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
Now, as discussed in the previous section, we are considering each row as indexing tuple. Within each such indexing tuple, the first element would represent the first axis of the n-dim grid, second element would be the second axis of the grid and so on until the last element of each row in X. In essence, each column would represent one dimension or axis of the grid. If we are to map all elements from X onto the same n-dim grid, we need to consider the maximum stretch of each axis of such a proposed n-dim grid. Assuming we are dealing with positive numbers in X, such a stretch would be the maximum of each column in X + 1. That + 1 is because Python follows 0-based indexing. So, for example X[1,0] == 9 would map to the 10th row of the proposed grid. Similarly, X[4,1] == 6 would go to the 7th column of that grid.
So, for our sample case, we had -
In [7]: dims = X.max(axis=0) + 1 # Or simply X.max(0) + 1
In [8]: dims
Out[8]: array([10, 7])
Thus, we would need a grid of at least a shape of (10,7) for our sample case. More lengths along the dimensions won't hurt and would give us unique linear indices too.
Concluding remarks : One important thing to be noted here is that if we have negative numbers in X, we need to add proper offsets along each column in X to make those indexing tuples as positive numbers before using np.ravel_multi_index.
Another alternative is to use asvoid (below) to view each row as a single
value of void dtype. This reduces a 2D array to a 1D array, thus allowing you to use np.in1d as usual:
import numpy as np
def asvoid(arr):
"""
Based on http://stackoverflow.com/a/16973510/190597 (Jaime, 2013-06)
View the array as dtype np.void (bytes). The items along the last axis are
viewed as one value. This allows comparisons to be performed which treat
entire rows as one value.
"""
arr = np.ascontiguousarray(arr)
if np.issubdtype(arr.dtype, np.floating):
""" Care needs to be taken here since
np.array([-0.]).view(np.void) != np.array([0.]).view(np.void)
Adding 0. converts -0. to 0.
"""
arr += 0.
return arr.view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[-1])))
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
idx = np.flatnonzero(np.in1d(asvoid(X), asvoid(searched_values)))
print(idx)
# [0 3 4]
The numpy_indexed package (disclaimer: I am its author) contains functionality for performing such operations efficiently (also uses searchsorted under the hood). In terms of functionality, it acts as a vectorized equivalent of list.index:
import numpy_indexed as npi
result = npi.indices(X, searched_values)
Note that using the 'missing' kwarg, you have full control over behavior of missing items, and it works for nd-arrays (fi; stacks of images) as well.
Update: using the same shapes as #Rik X=[520000,28,28] and searched_values=[20000,28,28], it runs in 0.8064 secs, using missing=-1 to detect and denote entries not present in X.
Here is a pretty fast solution that scales up well using numpy and hashlib. It can handle large dimensional matrices or images in seconds. I used it on 520000 X (28 X 28) array and 20000 X (28 X 28) in 2 seconds on my CPU
Code:
import numpy as np
import hashlib
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
#hash using sha1 appears to be efficient
xhash=[hashlib.sha1(row).digest() for row in X]
yhash=[hashlib.sha1(row).digest() for row in searched_values]
z=np.in1d(xhash,yhash)
##Use unique to get unique indices to ind1 results
_,unique=np.unique(np.array(xhash)[z],return_index=True)
##Compute unique indices by indexing an array of indices
idx=np.array(range(len(xhash)))
unique_idx=idx[z][unique]
print('unique_idx=',unique_idx)
print('X[unique_idx]=',X[unique_idx])
Output:
unique_idx= [4 3 0]
X[unique_idx]= [[5 6]
[3 3]
[4 2]]
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
S = np.array([[4, 2],
[3, 3],
[5, 6]])
result = [[i for i,row in enumerate(X) if (s==row).all()] for s in S]
or
result = [i for s in S for i,row in enumerate(X) if (s==row).all()]
if you want a flat list (assuming there is exactly one match per searched value).
Another way is to use cdist function from scipy.spatial.distance like this:
np.nonzero(cdist(X, searched_values) == 0)[0]
Basically, we get row numbers of X which have distance zero to a row in searched_values, meaning they are equal. Makes sense if you look on rows as coordinates.
I had similar requirement and following worked for me:
np.argwhere(np.isin(X, searched_values).all(axis=1))
Here's what worked out for me:
def find_points(orig: np.ndarray, search: np.ndarray) -> np.ndarray:
equals = [np.equal(orig, p).all(1) for p in search]
exists = np.max(equals, axis=1)
indices = np.argmax(equals, axis=1)
indices[exists == False] = -1
return indices
test:
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6],
[0, 0]])
find_points(X, searched_values)
output:
[0,3,4,-1]

Quick method to find cross index between two numpy arrays [duplicate]

I have an array X:
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
And I wish to find the index of the row of several values in this array:
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
For this example I would like a result like:
[0,3,4]
I have a code doing this, but I think it is overly complicated:
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
result = []
for s in searched_values:
idx = np.argwhere([np.all((X-s)==0, axis=1)])[0][1]
result.append(idx)
print(result)
I found this answer for a similar question but it works only for 1d arrays.
Is there a way to do what I want in a simpler way?
Approach #1
One approach would be to use NumPy broadcasting, like so -
np.where((X==searched_values[:,None]).all(-1))[1]
Approach #2
A memory efficient approach would be to convert each row as linear index equivalents and then using np.in1d, like so -
dims = X.max(0)+1
out = np.where(np.in1d(np.ravel_multi_index(X.T,dims),\
np.ravel_multi_index(searched_values.T,dims)))[0]
Approach #3
Another memory efficient approach using np.searchsorted and with that same philosophy of converting to linear index equivalents would be like so -
dims = X.max(0)+1
X1D = np.ravel_multi_index(X.T,dims)
searched_valuesID = np.ravel_multi_index(searched_values.T,dims)
sidx = X1D.argsort()
out = sidx[np.searchsorted(X1D,searched_valuesID,sorter=sidx)]
Please note that this np.searchsorted method assumes there is a match for each row from searched_values in X.
How does np.ravel_multi_index work?
This function gives us the linear index equivalent numbers. It accepts a 2D array of n-dimensional indices, set as columns and the shape of that n-dimensional grid itself onto which those indices are to be mapped and equivalent linear indices are to be computed.
Let's use the inputs we have for the problem at hand. Take the case of input X and note the first row of it. Since, we are trying to convert each row of X into its linear index equivalent and since np.ravel_multi_index assumes each column as one indexing tuple, we need to transpose X before feeding into the function. Since, the number of elements per row in X in this case is 2, the n-dimensional grid to be mapped onto would be 2D. With 3 elements per row in X, it would had been 3D grid for mapping and so on.
To see how this function would compute linear indices, consider the first row of X -
In [77]: X
Out[77]:
array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
We have the shape of the n-dimensional grid as dims -
In [78]: dims
Out[78]: array([10, 7])
Let's create the 2-dimensional grid to see how that mapping works and linear indices get computed with np.ravel_multi_index -
In [79]: out = np.zeros(dims,dtype=int)
In [80]: out
Out[80]:
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
Let's set the first indexing tuple from X, i.e. the first row from X into the grid -
In [81]: out[4,2] = 1
In [82]: out
Out[82]:
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
Now, to see the linear index equivalent of the element just set, let's flatten and use np.where to detect that 1.
In [83]: np.where(out.ravel())[0]
Out[83]: array([30])
This could also be computed if row-major ordering is taken into account.
Let's use np.ravel_multi_index and verify those linear indices -
In [84]: np.ravel_multi_index(X.T,dims)
Out[84]: array([30, 66, 61, 24, 41])
Thus, we would have linear indices corresponding to each indexing tuple from X, i.e. each row from X.
Choosing dimensions for np.ravel_multi_index to form unique linear indices
Now, the idea behind considering each row of X as indexing tuple of a n-dimensional grid and converting each such tuple to a scalar is to have unique scalars corresponding to unique tuples, i.e. unique rows in X.
Let's take another look at X -
In [77]: X
Out[77]:
array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
Now, as discussed in the previous section, we are considering each row as indexing tuple. Within each such indexing tuple, the first element would represent the first axis of the n-dim grid, second element would be the second axis of the grid and so on until the last element of each row in X. In essence, each column would represent one dimension or axis of the grid. If we are to map all elements from X onto the same n-dim grid, we need to consider the maximum stretch of each axis of such a proposed n-dim grid. Assuming we are dealing with positive numbers in X, such a stretch would be the maximum of each column in X + 1. That + 1 is because Python follows 0-based indexing. So, for example X[1,0] == 9 would map to the 10th row of the proposed grid. Similarly, X[4,1] == 6 would go to the 7th column of that grid.
So, for our sample case, we had -
In [7]: dims = X.max(axis=0) + 1 # Or simply X.max(0) + 1
In [8]: dims
Out[8]: array([10, 7])
Thus, we would need a grid of at least a shape of (10,7) for our sample case. More lengths along the dimensions won't hurt and would give us unique linear indices too.
Concluding remarks : One important thing to be noted here is that if we have negative numbers in X, we need to add proper offsets along each column in X to make those indexing tuples as positive numbers before using np.ravel_multi_index.
Another alternative is to use asvoid (below) to view each row as a single
value of void dtype. This reduces a 2D array to a 1D array, thus allowing you to use np.in1d as usual:
import numpy as np
def asvoid(arr):
"""
Based on http://stackoverflow.com/a/16973510/190597 (Jaime, 2013-06)
View the array as dtype np.void (bytes). The items along the last axis are
viewed as one value. This allows comparisons to be performed which treat
entire rows as one value.
"""
arr = np.ascontiguousarray(arr)
if np.issubdtype(arr.dtype, np.floating):
""" Care needs to be taken here since
np.array([-0.]).view(np.void) != np.array([0.]).view(np.void)
Adding 0. converts -0. to 0.
"""
arr += 0.
return arr.view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[-1])))
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
idx = np.flatnonzero(np.in1d(asvoid(X), asvoid(searched_values)))
print(idx)
# [0 3 4]
The numpy_indexed package (disclaimer: I am its author) contains functionality for performing such operations efficiently (also uses searchsorted under the hood). In terms of functionality, it acts as a vectorized equivalent of list.index:
import numpy_indexed as npi
result = npi.indices(X, searched_values)
Note that using the 'missing' kwarg, you have full control over behavior of missing items, and it works for nd-arrays (fi; stacks of images) as well.
Update: using the same shapes as #Rik X=[520000,28,28] and searched_values=[20000,28,28], it runs in 0.8064 secs, using missing=-1 to detect and denote entries not present in X.
Here is a pretty fast solution that scales up well using numpy and hashlib. It can handle large dimensional matrices or images in seconds. I used it on 520000 X (28 X 28) array and 20000 X (28 X 28) in 2 seconds on my CPU
Code:
import numpy as np
import hashlib
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
#hash using sha1 appears to be efficient
xhash=[hashlib.sha1(row).digest() for row in X]
yhash=[hashlib.sha1(row).digest() for row in searched_values]
z=np.in1d(xhash,yhash)
##Use unique to get unique indices to ind1 results
_,unique=np.unique(np.array(xhash)[z],return_index=True)
##Compute unique indices by indexing an array of indices
idx=np.array(range(len(xhash)))
unique_idx=idx[z][unique]
print('unique_idx=',unique_idx)
print('X[unique_idx]=',X[unique_idx])
Output:
unique_idx= [4 3 0]
X[unique_idx]= [[5 6]
[3 3]
[4 2]]
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
S = np.array([[4, 2],
[3, 3],
[5, 6]])
result = [[i for i,row in enumerate(X) if (s==row).all()] for s in S]
or
result = [i for s in S for i,row in enumerate(X) if (s==row).all()]
if you want a flat list (assuming there is exactly one match per searched value).
Another way is to use cdist function from scipy.spatial.distance like this:
np.nonzero(cdist(X, searched_values) == 0)[0]
Basically, we get row numbers of X which have distance zero to a row in searched_values, meaning they are equal. Makes sense if you look on rows as coordinates.
I had similar requirement and following worked for me:
np.argwhere(np.isin(X, searched_values).all(axis=1))
Here's what worked out for me:
def find_points(orig: np.ndarray, search: np.ndarray) -> np.ndarray:
equals = [np.equal(orig, p).all(1) for p in search]
exists = np.max(equals, axis=1)
indices = np.argmax(equals, axis=1)
indices[exists == False] = -1
return indices
test:
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6],
[0, 0]])
find_points(X, searched_values)
output:
[0,3,4,-1]

Categories

Resources