Related
I have been using Gaussian Mixture Models (GMM) to model a set of peaks in a 2D numpy array (a).
a = np.array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 1., 100., 1000., 100., 2., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1., 1., 100., 100., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 2., 1., 2., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
The problem is that in order to fit a GMM to my data with sklearn I have to first generate a density_array, which holds a huge amount of data points depending on the height of the peaks in a.
def convert_to_density_array(array):
"""
Convert an array to a density array
"""
density_list = []
# iterate over each i,j coordinate in the array
for (i, j), value in np.ndenumerate(array):
for x in range(int(value)):
density_list.append((i, j))
return np.array(density_list)
density_array = convert_to_density_array(a)
gmm = mixture.GaussianMixture(n_components=2,covariance_type='full').fit(density_array)
Is there an efficient way of representing a 2D numpy array for the purpose of fitting a GMM to it?
you can store data using less precision by adding dtype=np.float32 to your np.array call, which is okay as long as you are fine with 8 digits of precision instead of 15 (which is totally acceptable in your case), but that's the only way to store the same data in memory in less footprint and still pass it to gmm.
what you are trying to do is curve fitting, not data modelling , so you can use scipy curve fit on your original data without making density_array to start with, you just have to pass it a function of two gaussians and in a loop change the initial estimate randomly until you get the least error, but as writing the code for it will take some time, consider this approach only if you cannot get your data in memory using any other method.
I'm trying to append to an existing dataframe 3 new columns which should encode dummy variables.
To do this I am creating a function to look through the array to be "dummied", and for each 'hit' to assign the corresponding value to the to a new row.
import numpy as np
import pandas as pd
iriss = np.concatenate((np.array(['setosa']*50), np.array(['versicolor']*50), np.array(['virginica']*50)), axis = 0)
In this case I present the Iris data set's species column, with 150 equally distributed species (50 units per species).
def one_hot_coding():
one_hot_column = np.array([], dtype = 'int8')
for one_hot in iriss:
#my idea here is to find the 'hit = species' and to then for each 'hit' to assign to these
# three different np.arrays the value of one or zero
if one_hot == 'setosa':
one_hot_setosa = np.append(one_hot_column, 1)
one_hot_versicolor = np.append(one_hot_column, 0)
one_hot_virginica = np.append(one_hot_column, 0)
elif one_hot == 'versicolor':
one_hot_setosa = np.append(one_hot_column, 0)
one_hot_versicolor = np.append(one_hot_column, 1)
one_hot_virginica = np.append(one_hot_column, 0)
else:
one_hot_setosa = np.append(one_hot_column, 0)
one_hot_versicolor = np.append(one_hot_column, 0)
one_hot_virginica = np.append(one_hot_column, 1)
one_hot_setosa = np.concatenate((one_hot_setosa), axis = 0)
print(one_hot_setosa)
one_hot_coding()
Results Discussion:
to make it easier I will only talk about one_hot_setosa:
when I call print on one_hot_setosa 150 lines appear where the first 50 lines are [1]'s and the latter 100 [0]'s.
[1] [1] ...48 [0] [0] ...48 [0] [0] ... 48
From what I see here my results are 150 independent arrays inside of the array called one_hot_setosa.
When I try to concatenate them all to obtain a single array (i.e. the iriss array created to house the 150 units) I get the following error
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-107-6f70367ed6eb> in <module>
24
25 print(one_hot_setosa)
---> 26 one_hot_coding()
<ipython-input-107-6f70367ed6eb> in one_hot_coding()
21 one_hot_virginica = np.append(one_hot_column, 1)
22
---> 23 one_hot_setosa = np.concatenate((one_hot_setosa), axis = 0)
24
25 print(one_hot_setosa)
<__array_function__ internals> in concatenate(*args, **kwargs)
ValueError: zero-dimensional arrays cannot be concatenated
So this error is telling me that I don't actually have 150 arrays, or better said an array.shape = (150, 1) (which is what I want). but that actually my array contains nothing? Why is this?
Okay, so I've been fighting a lot but I managed to solve the problem.
np.concatenate will add rows to the array. So I specified I wanted to add rows to the one_hot_flower. Also, as #hpaulj pointed out, square brackets are very important to consider. Since my arrays are 1d arrays I needed to add only square brackets once to the value I wanted to concatenate.
All in all the final code looks like this:
import numpy as np
import pandas as pd
iriss = np.concatenate((np.array(['setosa']*50), np.array(['versicolor']*50), np.array(['virginica']*50)), axis = 0)
one_hot_setosa = np.array([])
one_hot_versicolor = np.array([])
one_hot_virginica = np.array([])
def one_hot_coding():
global one_hot_setosa
global one_hot_versicolor
global one_hot_virginica
for one_hot in iriss:
if one_hot == 'setosa':
one_hot_setosa = np.concatenate((one_hot_setosa, np.array([1])), axis = 0)
one_hot_versicolor = np.concatenate((one_hot_versicolor, np.array([0])), axis = 0)
one_hot_virginica = np.concatenate((one_hot_virginica, np.array([0])), axis = 0)
elif one_hot == 'versicolor':
one_hot_setosa = np.concatenate((one_hot_setosa, np.array([0])), axis = 0)
one_hot_versicolor = np.concatenate((one_hot_versicolor, np.array([1])), axis = 0)
one_hot_virginica = np.concatenate((one_hot_virginica, np.array([0])), axis = 0)
else:
one_hot_setosa = np.concatenate((one_hot_setosa, np.array([0])), axis = 0)
one_hot_versicolor = np.concatenate((one_hot_versicolor, np.array([0])), axis = 0)
one_hot_virginica = np.concatenate((one_hot_virginica, np.array([1])), axis = 0)
#one_hot_setosa = np.concatenate((one_hot_setosa), axis = 0)
return one_hot_setosa, one_hot_versicolor, one_hot_virginica
one_hot_coding()
[Out]:
(array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]),
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]))
I am working on a graph network problem where I would like to leverage the power of TensorFlow.
I have troubles implementing the cost function in TensorFlow correctly though.
my cost function is given as:
sum_i>j A_ij*log(pi_ij)+(1-A_ij)*log(1-pi_ij)
where: pi_ij = sigmoid(-|z_i-z_j|+beta)
|| is the euclidian distance, pi_ij denotes the chance for a link between i and j, and A_ij = 1 if link and 0 if not (in a simple adjencency matrix), both are matrices of same size. I have solved this optimization problem manually using python and a simple SGD method. I calculate the cost function as following:
import tensorflow as tf
import numpy as np
import scipy.sparse.csgraph as csg
from scipy.spatial import distance
Y = np.array([[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0.],
[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0.],
[0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
[1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 1.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 1.],
[0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 1., 0., 0., 0.]])
# removing all non linked entries
temp = Y[~np.all(Y == 0, axis=1)]
temp = temp[:,~np.all(Y == 0, axis=1)]
Y = temp
n = np.shape(Y)[0]
k = 2
# finding shortest path and cmdscaling
D = csg.shortest_path(Y, directed=True)
Z = cmdscale(D)[0][:,0:k]
Z = Z - Z.mean(axis=0, keepdims=True)
# calculating cost
euclideanZ = distance.cdist(Z, Z, 'euclidean')
sigmoid = lambda x: 1 / (1 + np.exp(-x))
vectorSigmoid = np.vectorize(sigmoid)
pi = vectorSigmoid(euclideanZ)
cost = np.sum(Y*np.log(pi)+(1-Y)*np.log(1-pi))
How could I define such a loss function in TensorFlow? Is it even possible? Any help or nudge in the right direction would be greatly appreciated.
EDIT
I got this down in tensor flow:
tfY = tf.placeholder(shape=(15, 15), dtype=tf.float32)
with tf.variable_scope('test'):
shape = [] # Shape [] means that we're using a scalar variable
B = tf.Variable(tf.zeros(shape))
tfZ = tf.Variable(tf.zeros(shape=(15,2)))
def loss():
r = tf.reduce_sum(tfZ*tfZ, 1)
r = tf.reshape(r, [-1, 1])
D = tf.sqrt(r - 2*tf.matmul(tfZ, tf.transpose(tfZ)) + tf.transpose(r))
return tf.reduce_sum(tfY*tf.log(tf.sigmoid(D+B))+(1-tfY)*tf.log(1-tf.sigmoid(D+B)))
LOSS = loss()
GRADIENT = tf.gradients(LOSS, [B, tfZ])
sess = tf.Session()
sess.run(tf.global_variables_initializer())
tot_loss = sess.run(LOSS, feed_dict={tfZ: Z,
tfY: Y})
print(tot_loss)
loss_grad = sess.run(GRADIENT, feed_dict={tfZ: Z,
tfY: Y})
print(loss_grad)
which prints the following:
-487.9079
[-152.56271, array([[nan, nan],
[nan, nan],
[nan, nan],
[nan, nan],
[nan, nan],
[nan, nan],
[nan, nan],
[nan, nan],
[nan, nan],
[nan, nan],
[nan, nan],
[nan, nan],
[nan, nan],
[nan, nan],
[nan, nan]], dtype=float32)]
My beta returns a value, and adding it multiplied with the learning rate improves the score, but my tfZ vector is only returning nans, I am obviously doing something wrong, if anyone can spot what I am doing wrong, I would be grateful.
Just change this:
D = tf.sqrt(r - 2*tf.matmul(tfZ, tf.transpose(tfZ)) + tf.transpose(r) + 1e-8) # adding a small constant.
Because the distances have zeros in the diagonal and the gradient of sqrt can not be computed when the value being zero.
There are some signal generation helper functions in python's scipy, but these are only for 1 dimensional signal.
I want to generate a 2-D ideal bandpass filter, which is a matrix of all zeros, with a circle of ones to remove some periodic noise from my image.
I am now doing with:
def unit_circle(r):
def distance(x1, y1, x2, y2):
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
d = 2*r + 1
mat = np.zeros((d, d))
rx , ry = d/2, d/2
for row in range(d):
for col in range(d):
dist = distance(rx, ry, row, col)
if abs(dist - r) < 0.5:
mat[row, col] = 1
return mat
result:
In [18]: unit_circle(6)
Out[18]:
array([[ 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0.],
[ 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0.],
[ 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.],
[ 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0.],
[ 0., 0., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0.]])
Is there a more direct way to generate a matrix of circle of ones, all else zeros?
Edit:
Python 2.7.12
Here's a vectorized approach -
def unit_circle_vectorized(r):
A = np.arange(-r,r+1)**2
dists = np.sqrt(A[:,None] + A)
return (np.abs(dists-r)<0.5).astype(int)
Runtime test -
In [165]: %timeit unit_circle(100) # Original soln
10 loops, best of 3: 31.1 ms per loop
In [166]: %timeit my_unit_circle(100) ##Eli Korvigo's soln
100 loops, best of 3: 2.68 ms per loop
In [167]: %timeit unit_circle_vectorized(100)
1000 loops, best of 3: 582 µs per loop
Here is a pure NumPy alternative that should run significantly faster and looks cleaner, imho. Basically, we vectorise your code by replacing built-in sqrt and abs with their NumPy alternatives and working on matrices of indices.
Updated to replace distance with np.hypot(courtesy of James K)
In [5]: import numpy as np
In [6]: def my_unit_circle(r):
...: d = 2*r + 1
...: rx, ry = d/2, d/2
...: x, y = np.indices((d, d))
...: return (np.abs(np.hypot(rx - x, ry - y)-r) < 0.5).astype(int)
...:
In [7]: my_unit_circle(6)
Out[7]:
array([[ 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0.],
[ 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0.],
[ 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.],
[ 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0.],
[ 0., 0., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0.]])
Benchmarks
In [12]: %timeit unit_circle(100)
100 loops, best of 3: 17.7 ms per loop
In [13]: %timeit my_unit_circle(100)
1000 loops, best of 3: 480 µs per loop
result of code execution
def gen_circle(img: np.ndarray, center: tuple, diameter: int) -> np.ndarray:
"""
Creates a matrix of ones filling a circle.
"""
# gets the radious of the image
radious = diameter//2
# gets the row and column center of the image
row, col = center
# generates theta vector to variate the angle
theta = np.arange(0, 360)*(np.pi/180)
# generates the indexes of the column
y = (radious*np.sin(theta)).astype("int32")
# generates the indexes of the rows
x = (radious*np.cos(theta)).astype("int32")
# with:
# img[x, y] = 1
# you can draw the border of the circle
# instead of the inner part and the border.
# centers the circle at the input center
rows = x + (row)
cols = y + (col)
# gets the number of rows and columns to make
# to cut by half the execution
nrows = rows.shape[0]
ncols = cols.shape[0]
# makes a copy of the image
img_copy = copy.deepcopy(img)
# We use the simetry in our favour
# does reflection on the horizontal axes
# and in the vertical axes
for row_down, row_up, col1, col2 in zip(rows[:nrows//4],
np.flip(rows[nrows//4:nrows//2]),
cols[:ncols//4],
cols[nrows//2:3*ncols//4]):
img_copy[row_up:row_down, col2:col1] = 1
return img_copy
center = (30,40)
ones = np.zeros((center[0]*2, center[1]*2))
diameter = 30
circle = gen_circle(ones, center, diameter)
plt.imshow(circle)
I have two numpy arrays: 9x9 and 9x1. I'd like to solve the differential equation at discrete time points, but am having trouble getting ODEInt to work. I do am unsure if I'm even doing the right thing.
With Mathematica, the equation is:
Solution = {A[t]} /. NDSolve[{A'[t] == Ab.A[t] && A[0] == A0}, {A[t]}, {t, 0, .5}, MaxSteps -> \[Infinity]];
time = 0.25;
increment = 0.05;
MA = Table[Solution, {t, 0, time, increment}];
Where Ab is the 9x9 matrix, A0 is the 9x1 matrix (initial). Here, I solve for time and life is good.
In Python implementation I have the following code which gives me the wrong answer:
from scipy.integrate import odeint
from numpy import array, dot, pi
def deriv(A, t, Ab):
return dot(Ab, A)
def MatrixBM3(k12,k21,k13,k31,k23,k32,delta1,delta2,delta3,
w1, R1, R2):
K = array([[-k21 -k23, k12, k32, 0., 0., 0., 0., 0., 0.],
[k21, -k12 - k13, k31, 0., 0., 0., 0., 0., 0.],
[k23, k13, -k31 - k32, 0., 0., 0., 0., 0., 0.],
[0., 0., 0., -k21 - k23, k12, k32, 0., 0., 0.],
[0., 0., 0., k21, -k12 - k13, k31, 0., 0., 0.],
[0., 0., 0., k23, k13, -k31 - k32, 0., 0., 0.],
[0., 0., 0., 0., 0., 0., -k21 - k23, k12, k32],
[0., 0., 0., 0., 0., 0., k21, -k12 - k13, k31],
[0., 0., 0., 0., 0., 0., k23, k13, -k31 - k32]])
Der = array([[0., 0., 0., -delta2, 0., 0., 0., 0., 0.],
[0., 0., 0., 0., -delta1, 0., 0., 0., 0.],
[0., 0., 0., 0., 0., -delta3, 0., 0., 0.],
[delta2, 0., 0., 0., 0., 0., 0., 0., 0.],
[0., delta1, 0., 0., 0., 0., 0., 0., 0.],
[0., 0., delta3, 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0.]])
W = array([[0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., w1, 0., 0.],
[0., 0., 0., 0., 0., 0., 0., w1, 0.],
[0., 0., 0., 0., 0., 0., 0., 0., w1],
[0., 0., 0., w1, 0., 0., 0., 0., 0.],
[0., 0., 0., 0., w1, 0., 0., 0., 0.],
[0., 0., 0., 0., 0., w1, 0., 0., 0.]])*2*pi
R = array([[-R2, 0., 0., 0., 0., 0., 0., 0., 0.],
[0., -R2, 0., 0., 0., 0., 0., 0., 0.],
[0., 0., -R2, 0., 0., 0., 0., 0., 0.],
[0., 0., 0., -R2, 0., 0., 0., 0., 0.],
[0., 0., 0., 0., -R2, 0., 0., 0., 0.],
[0., 0., 0., 0., 0., -R2, 0., 0., 0.],
[0., 0., 0., 0., 0., 0., -R1, 0., 0.],
[0., 0., 0., 0., 0., 0., 0., -R1, 0.],
[0., 0., 0., 0., 0., 0., 0., 0., -R1]])
return(K + Der + W + R)
Ab = MatrixBM3(21.218791062154633, 17653.497151475527, 40.50203461096454, 93956.36617049483, 0.0, 0.0, -646.4238856161137, 6727.748368359598, 20919.132768439955, 200.0, 2.36787, 5.39681)
A0 = array([-0.001071585381162955, -0.89153191708755708, -0.00038431516707591748, 0.0, 0.0, 0.0, 0.00054009700135979673, 0.4493470361764082, 0.00019370128872934646])
time = array([0.0,0.05,0.1,0.15,0.2,0.25])
MA = odeint(deriv, A0, time, args=(Ab,), maxsteps=2000)
Output is:
[[ -1.07158538e-003 -8.91531917e-001 -3.84315167e-004 0.00000000e+000
0.00000000e+000 0.00000000e+000 5.40097001e-004 4.49347036e-001
1.93701289e-004]
[ 3.09311322e+019 9.45061860e+022 2.35327270e+019 2.11901406e+020
1.63784238e+023 7.60569684e+019 2.29098804e+020 1.89766602e+023
8.18752241e+019]
[ 9.84409730e+042 3.00774018e+046 7.48949158e+042 6.74394343e+043
5.21257342e+046 2.42057805e+043 7.29126532e+043 6.03948436e+046
2.60574901e+043]
[ 3.13296814e+066 9.57239028e+069 2.38359473e+066 2.14631766e+067
1.65894606e+070 7.70369662e+066 2.32050753e+067 1.92211754e+070
8.29301904e+066]
[ 9.97093898e+089 3.04649506e+093 7.58599405e+089 6.83083947e+090
5.27973769e+093 2.45176732e+090 7.38521364e+090 6.11730342e+093
2.63932422e+090]
[ 3.17333659e+113 9.69573101e+116 2.41430747e+113 2.17397307e+114
1.68032166e+117 7.80295913e+113 2.35040739e+114 1.94688412e+117
8.39987500e+113]]
But the correct answer should be:
{-0.0010733126291998989, -0.8929689437405254, -0.0003849346301906338, 0., 0., 0., 0.0005366563145999495, 0.4464844718702628, 0.00019246731509531696}
{-0.000591095648651598, -0.570032546156741, -0.00023381082725213798, -0.00024790706920038567, 0.00010389803046880286, -0.00005361569187144767, 0.0003273277204077012, 0.2870035216110215, 0.00012300339326137006}
{-0.0003770535829276868, -0.364106358478121, -0.0001492324135668267, -0.0001596072774600538, -0.0011479989178276948, -0.000034744485507007025, 0.00020965172928479557, 0.18378613639965447, 0.00007876820247280559}
{-0.00024100792803807562, -0.23298939195213314, -0.00009543704274825206, -0.00010271831380730501, -0.0013205519868311284, -0.000022472380871477824, 0.00013326471695185768, 0.11685506361394844, 0.00005008078740423007}
{-0.00015437993249587976, -0.1491438843823813, -0.00006111736454518403, -0.00006545797627466387, -0.0005705018939767294, -0.000014272382451480663, 0.00008455890984798549, 0.0741820536557778, 0.00003179071165818503}
{-0.00009882799610556456, -0.09529950309336405, -0.00003909275555213336, -0.00004138741286392128, 0.00006303116741431477, -8.944610716890746*^-6, 0.00005406263888971806, 0.04743157303933772, 0.00002032674776723143}
Can anyone point me to what I may be doing wrong?
In the call to odeint, try changing tuple(array[Ab]) to (array(Ab),), or even just (Ab,). That is, use
MA = odeint(deriv, A0, time, (Ab,))
Without seeing how you defined A0 and Ab, I can't be sure that this will fix the problem, but the following variation of your code will work. I used a 3x3 array instead of 9x9.
import numpy as np
from scipy.integrate import odeint
def deriv(A, t, Ab):
return np.dot(Ab, A)
Ab = np.array([[-0.25, 0, 0],
[ 0.25, -0.2, 0],
[ 0, 0.2, -0.1]])
time = np.linspace(0, 25, 101)
A0 = np.array([10, 20, 30])
MA = odeint(deriv, A0, time, args=(Ab,))