Jointplot multiindex columns with seaborn - python

I have this dataframe :
df = pd.DataFrame({'col1': ['A', 'A', 'B', 'B', 'B'], 'col2': ['A1', 'B1', 'B1', 'B1', 'A1']})
col1 col2
0 A A1
1 A B1
2 B B1
3 B B1
4 B A1
I did a groupby. The result was a multiindex column
df = df.groupby(['col1']).agg({'col2': ['nunique','count']})
col2
nunique count
col1
A 2 2
B 2 3
Then, I did a jointplot from seaborn library
sns.jointplot(x=['col2','nunique'],y=['col2','count'],data=df,kind='scatter')
I got this error
TypeError: only integer scalar arrays can be converted to a scalar index
My question is :
Is there a way to split the multiindex column into two seperate columns like this?
col1 col2_unique col2_count
A 2 2
B 2 3
or
Is there a ways to jointplot a multiindex column?
Thank you for help!

You can change aggregate by specify column col2 in list and in agg use only aggregate function for avoid MultiIndex in columns:
df = df.groupby(['col1'])['col2'].agg(['nunique','count'])
print(df)
nunique count
col1
A 2 2
B 2 3
sns.jointplot(x='nunique', y='count', data=df, kind='scatter')
Or flatten MultiIndex if need use dictinary in agg - e.g. aggregate another column:
df = df.groupby(['col1']).agg({'col2': ['nunique','count'], 'col1':['min']})
df.columns = df.columns.map('_'.join)
print (df)
col1_min col2_nunique col2_count
col1
A A 2 2
B B 2 3

Related

Pandas DataFrame.assign() doesn't work properly for multiple columns

I am trying to reassign multiple columns in DataFrame with modifications.
The below is a simplified example.
import pandas as pd
d = {'col1':[1,2], 'col2':[3,4]}
df = pd.DataFrame(d)
print(df)
col1 col2
0 1 3
1 2 4
I use assign() method to add 1 to both 'col1' and 'col2'.
However, the result is to add 1 only to 'col2' and copy the result to 'col1'.
df2 = df.assign(**{c: lambda x: x[c] + 1 for c in ['col1','col2']})
print(df2)
col1 col2
0 4 4
1 5 5
Can someone explain why this is happening, and also suggest a correct way to apply assign() to multiple columns?
I think the lambda here can not be used within the for loop dict
df.assign(**{c: df[c] + 1 for c in ['col1','col2']})

FutureWarning in pandas dataframe

I have a sample python code:
import pandas as pd
ddf = pd.DataFrame({'col1' : ['A', 'A', 'B'],
'Id' : [3,1,2],
'col3': ['x','a','b']})
ddf.index=ddf['Id']
ddf.sort_values(by='Id')
The above snippet produces ' FutureWarning: 'Id' is both an index level and a column label. Defaulting to column, but this will raise an ambiguity error in a future version'. And it does become a error when I try this under recent version of python. I am quite new to python and pandas. How do I resolve this issue?
Here the best is convert column Id to index with DataFrame.set_index for avoid index.name same with one of columns name:
ddf = pd.DataFrame({'col1' : ['A', 'A', 'B'],
'Id' : [3,1,2],
'col3': ['x','a','b']})
ddf = ddf.set_index('Id')
print (ddf.index.name)
Id
print (ddf.columns)
Index(['col1', 'col3'], dtype='object')
Better for sorting by index is DataFrame.sort_index:
print (ddf.sort_index())
col1 col3
Id
1 A a
2 B b
3 A x
Your solution working, if change index.name for different:
ddf = pd.DataFrame({'col1' : ['A', 'A', 'B'],
'Id' : [3,1,2],
'col3': ['x','a','b']})
ddf.index=ddf['Id']
print (ddf.index.name)
Id
print (ddf.columns)
Index(['col1', 'Id', 'col3'], dtype='object')
Set different index.name by DataFrame.rename_axis or set by scalar:
ddf = ddf.rename_axis('newID')
#alternative
#ddf.index.name = 'newID'
print (ddf.index.name)
newID
print (ddf.columns)
Index(['col1', 'Id', 'col3'], dtype='object')
So now is possible distinguish between index level and columns names, because sort_values working with both:
print(ddf.sort_values(by='Id'))
col1 Id col3
newID
1 A 1 a
2 B 2 b
3 A 3 x
print (ddf.sort_values(by='newID'))
#same like sorting by index
#print (ddf.sort_index())
col1 Id col3
newID
1 A 1 a
2 B 2 b
3 A 3 x
Simple add .values
ddf.index=ddf['Id'].values
ddf.sort_values(by='Id')
Out[314]:
col1 Id col3
1 A 1 a
2 B 2 b
3 A 3 x
Both your columns and row index contain 'Id', a simple solution would be to not set the (row) index as 'Id'.
import pandas as pd
ddf = pd.DataFrame({'col1' : ['A', 'A', 'B'],
'Id' : [3,1,2],
'col3': ['x','a','b']})
ddf.sort_values(by='Id')
Out[0]:
col1 Id col3
1 A 1 a
2 B 2 b
0 A 3 x
Or set the index when you create the df:
ddf = pd.DataFrame({'col1' : ['A', 'A', 'B'],
'col3': ['x','a','b']},
index=[3,1,2])
ddf.sort_index()
Out[1]:
col1 col3
1 A a
2 B b
3 A x

pandas dataframe from_dict - Set column name for key, and column name for key-value

I have a dictionary as follows:
my_keys = {'a':10, 'b':3, 'c':23}
I turn it into a Dataframe:
df = pd.DataFrame.from_dict(my_keys)
It outputs the df as below
a b c
0 10 3 23
How can I get it to look like below:
Col1 Col2
a 10
b 3
c 23
I've tried orient=index but I still can't get column names?
You can create list of tuples and pass to DataFrame constructor:
df = pd.DataFrame(list(my_keys.items()), columns=['col1','col2'])
Or convert keys and values to separate lists:
df = pd.DataFrame({'col1': list(my_keys.keys()),'col2':list(my_keys.values())})
print (df)
col1 col2
0 a 10
1 b 3
2 c 23
Your solution should be changed by orient='index' and columns, but then is necessary add DataFrame.rename_axis and
DataFrame.reset_index for column from index:
df = (pd.DataFrame.from_dict(my_keys, orient='index', columns=['col2'])
.rename_axis('col1')
.reset_index())

Count unique symbols per column in Pandas

I was wondering how to calculate the number of unique symbols that occur in a single column in a dataframe. For example:
df = pd.DataFrame({'col1': ['a', 'bbb', 'cc', ''], 'col2': ['ddd', 'eeeee', 'ff', 'ggggggg']})
df col1 col2
0 a ddd
1 bbb eeeee
2 cc ff
3 gggggg
It should calculate that col1 contains 3 unique symbols, and col2 contains 4 unique symbols.
My code so far (but this might be wrong):
unique_symbols = [0]*203
i = 0
for col in df.columns:
observed_symbols = []
df_temp = df[[col]]
df_temp = df_temp.astype('str')
#This part is where I am not so sure
for index, row in df_temp.iterrows():
pass
if symbol not in observed_symbols:
observed_symbols.append(symbol)
unique_symbols[i] = len(observed_symbols)
i += 1
Thanks in advance
Option 1
str.join + set inside a dict comprehension
For problems like this, I'd prefer falling back to python, because it's so much faster.
{c : len(set(''.join(df[c]))) for c in df.columns}
{'col1': 3, 'col2': 4}
Option 2
agg
If you want to stay in pandas space.
df.agg(lambda x: set(''.join(x)), axis=0).str.len()
Or,
df.agg(lambda x: len(set(''.join(x))), axis=0)
col1 3
col2 4
dtype: int64
Here is one way:
df.apply(lambda x: len(set(''.join(x.astype(str)))))
col1 3
col2 4
Maybe
df.sum().apply(set).str.len()
Out[673]:
col1 3
col2 4
dtype: int64
One more option:
In [38]: df.applymap(lambda x: len(set(x))).sum()
Out[38]:
col1 3
col2 4
dtype: int64

Python - Combinig pandas dataframes

I have 3 dataframes that I'd like to combine. They look like this:
df1 |df2 |df3
col1 col2 |col1 col2 |col1 col3
1 5 2 9 1 some
2 data
I'd like the first two df-s to be merged into the third df based on col1, so the desired output is
df3
col1 col3 col2
1 some 5
2 data 9
How can I achieve this? I'm trying:
df3['col2'] = df1[df1.col1 == df3.col1].col2 if df1[df1.col1 == df3.col1].col2 is not None else df2[df2.col1 == df3.col1].col2
For this I get ValueError: Series lengths must match to compare
It is guaranteed, that df3's col1 values are present either in df1 or df2. What's the way to do this? PLEASE NOTE, that a simple concat will not work, since there is other data in df3, not just col1.
If df1 and df2 don't have duplicates in col1, you can try this:
pd.concat([df1, df2]).merge(df3)
Data:
df1 = pd.DataFrame({'col1': [1], 'col2': [5]})
df2 = pd.DataFrame({'col1': [2], 'col2': [9]})
df3 = pd.DataFrame({'col1': [1,2], 'col3': ['some', 'data']})

Categories

Resources