Remove '.' from Thousands of Column Heads [python] - python

My DataFrame has around 9K columns, and I want to remove the . from every column name, see example column names below:
`traffic.seas1`
`traffic.seas2`
`traffic.seas3`
These are just three, I have 9K columns, some do not have . but many do. How can I remove them efficiently, as the rename function is too manual.

You can use str.replace:
df.columns = df.columns.str.replace('.','')
Or list comprehension with replace:
df.columns = [x.replace('.','') for x in df.columns]
Sample:
df = pd.DataFrame({'traffic.seas1':list('abcdef'),
'traffic.seas2':[4,5,4,5,5,4],
'traffic.seas3':[7,8,9,4,2,3],
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')})
print (df)
D E F traffic.seas1 traffic.seas2 traffic.seas3
0 1 5 a a 4 7
1 3 3 a b 5 8
2 5 6 a c 4 9
3 7 9 b d 5 4
4 1 2 b e 5 2
5 0 4 b f 4 3
df.columns = df.columns.str.replace('.','')
print (df)
D E F trafficseas1 trafficseas2 trafficseas3
0 1 5 a a 4 7
1 3 3 a b 5 8
2 5 6 a c 4 9
3 7 9 b d 5 4
4 1 2 b e 5 2
5 0 4 b f 4 3
Timings:
N = 9000
df = pd.DataFrame(np.random.randint(10, size=(3, N))).add_prefix('traffic.seas')
print (df)
In [161]: %timeit df.columns = df.columns.str.replace('.','')
4.4 ms ± 267 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [162]: %timeit df.columns = [x.replace('.','') for x in df.columns]
2.53 ms ± 177 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

You can use list comprehension on df.columns like this:
df.columns = [c.replace('.', '') for c in df.columns]
For example:
df = pd.DataFrame({'foo': [1], 'bar.z': [2]})
>>> df.columns
Index(['bar.z', 'foo'], dtype='object')
df.columns = [c.replace('.', '') for c in df.columns]
>>> df
barz foo
0 2 1

Related

Create a sequence of numbers and reset itself when certain number is reached

I have a dataframe which first column has 11 rows, i want to create a second column and count from 1 to 4 and then reset the count and start from 1 to 4 and stop counting when reaches the last row.
for instance, I have df['item'] and the code should create a df['new column']:
df['item']= [a b c d e f g h i j k]
df['new column'] = [1 2 3 4 1 2 3 4 1 2 3]
Use modulo with 4 and add 1:
import pandas as pd
df = pd.DataFrame({'item': list('abcdefghijk')})
#default index solution
df['new column'] = df.index % 4 + 1
#general solution
#df['new column'] = np.arange(len(df)) % 4 + 1
print(df)
Output:
item new column
0 a 1
1 b 2
2 c 3
3 d 4
4 e 1
5 f 2
6 g 3
7 h 4
8 i 1
9 j 2
10 k 3
If large DataFrame performance is for each solution different:
df = pd.DataFrame({'a':range(1000000)})
In [307]: %timeit df['new column'] = (len(df)*[1, 2, 3, 4])[:len(df)]
363 ms ± 15.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [308]: %timeit df['new column1'] = df.index % 4 + 1
35.1 ms ± 416 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [309]: %timeit df['new column2'] = np.arange(len(df)) % 4 + 1
14.4 ms ± 165 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
You can repeat the list [1, 2, 3, 4] n times simply by doing n * [1, 2, 3, 4]. Thus your new column is created with:
df['new column'] = (len(df)*[1, 2, 3, 4])[:len(df)]

Pandas analogue to SQL MINUS / EXCEPT operator, using multiple columns

I'm looking for the fastest and idiomatic analog to SQL MINUS (AKA EXCEPT) operator.
Here is what I mean - given two Pandas DataFrames as follows:
In [77]: d1
Out[77]:
a b c
0 0 0 1
1 0 1 2
2 1 0 3
3 1 1 4
4 0 0 5
5 1 1 6
6 2 2 7
In [78]: d2
Out[78]:
a b c
0 1 1 10
1 0 0 11
2 1 1 12
How to find a result of d1 MINUS d2 taking into account only columns "a" and "b" in order to get the following result:
In [62]: res
Out[62]:
a b c
1 0 1 2
2 1 0 3
6 2 2 7
MVCE:
d1 = pd.DataFrame({
'a': [0, 0, 1, 1, 0, 1, 2],
'b': [0, 1, 0, 1, 0, 1, 2],
'c': [1, 2, 3, 4, 5, 6, 7]
})
d2 = pd.DataFrame({
'a': [1, 0, 1],
'b': [1, 0, 1],
'c': [10, 11, 12]
})
What have I tried:
In [65]: tmp1 = d1.reset_index().set_index(["a", "b"])
In [66]: idx = tmp1.index.difference(d2.set_index(["a","b"]).index)
In [67]: res = d1.loc[tmp1.loc[idx, "index"]]
In [68]: res
Out[68]:
a b c
1 0 1 2
2 1 0 3
6 2 2 7
it gives me correct results, but I have a feeling that there must be a more idiomatic and nicer / cleaner way to achieve that.
PS DataFrame.isin() method won't help in this case as it'll produce a wrong result set
Execution time comparison for larger data sets:
In [100]: df1 = pd.concat([d1] * 10**5, ignore_index=True)
In [101]: df2 = pd.concat([d2] * 10**5, ignore_index=True)
In [102]: df1.shape
Out[102]: (700000, 3)
In [103]: df2.shape
Out[103]: (300000, 3)
pd.concat().drop_duplicates() approach:
In [10]: %%timeit
...: res = pd.concat([d1, pd.concat([d2]*2)]).drop_duplicates(['a', 'b'], keep=False)
...:
...:
2.59 ms ± 129 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
multi-index NOT IS IN approach:
In [11]: %%timeit
...: res = df1[~df1.set_index(["a", "b"]).index.isin(df2.set_index(["a","b"]).index)]
...:
...:
484 ms ± 18.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
multi-index difference approach:
In [12]: %%timeit
...: tmp1 = df1.reset_index().set_index(["a", "b"])
...: idx = tmp1.index.difference(df2.set_index(["a","b"]).index)
...: res = df1.loc[tmp1.loc[idx, "index"]]
...:
...:
1.04 s ± 20.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
merge(how="outer") approach - gives me a MemoryError:
In [106]: %%timeit
...: res = (df1.reset_index()
...: .merge(df2, on=['a','b'], indicator=True, how='outer', suffixes=('','_'))
...: .query('_merge == "left_only"')
...: .set_index('index')
...: .rename_axis(None)
...: .reindex(df1.columns, axis=1))
...:
...:
---------------------------------------------------------------------------
MemoryError Traceback (most recent call last)
compare concatenated strings approach:
In [13]: %%timeit
...: res = df1[~df1[['a','b']].astype(str).sum(axis=1).isin(df2[['a','b']].astype(str).sum(axis=1))]
...:
...:
2.05 s ± 65.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
I am thinking a little bit like excel here:
d1[~d1[['a','b']].astype(str).sum(axis=1).isin(d2[['a','b']].astype(str).sum(axis=1))]
a b c
1 0 1 2
2 1 0 3
6 2 2 7
One possible solution with merge and indicator=True:
df = (d1.reset_index()
.merge(d2, on=['a','b'], indicator=True, how='outer', suffixes=('','_'))
.query('_merge == "left_only"')
.set_index('index')
.rename_axis(None)
.reindex(d1.columns, axis=1))
print (df)
a b c
1 0 1 2
2 1 0 3
6 2 2 7
Solution with isin:
df = d1[~d1.set_index(["a", "b"]).index.isin(d2.set_index(["a","b"]).index)]
print (df)
a b c
1 0 1 2
2 1 0 3
6 2 2 7
We can use pandas.concat with drop_duplicates here and pass it the argument to drop all duplicates with keep=False:
pd.concat([d1, d2]).drop_duplicates(['a', 'b'], keep=False)
a b c
1 0 1 2
2 1 0 3
6 2 2 7
Edit after comment by OP
If you want to make sure that unique rows in df2 arnt taken into account, we can duplicate that df:
pd.concat([d1, pd.concat([d2]*2)]).drop_duplicates(['a', 'b'], keep=False)
a b c
1 0 1 2
2 1 0 3
6 2 2 7
I had similar question, I tried your idea
(
In [65]: tmp1 = d1.reset_index().set_index(["a", "b"])
In [66]: idx = tmp1.index.difference(d2.set_index(["a","b"]).index)
In [67]: res = d1.loc[tmp1.loc[idx, "index"]]
)
for test and it works.
However, I use the way in my sqlite, tow databases that have the same Structure,that means its tables and tables' columns are the same, and it occurred some mistakes, it shows that this two df seems don't have the same shap.
if u r happy to give me a hand and want more details, we can have a further conversation thanks a lot

Pandas DataFrame aggregated column with names of other columns as value

I'm trying to create a new column in my DataFrame that is a list of aggregated column names. Here's a sample DataFrame:
In [1]: df = pd.DataFrame({'A':[1,2,3],
'B':[4,5,6],
'C':[7,8,9],
'D':[1,3,5],
'E':[5,3,6],
'F':[7,4,3]})
In [2]: df
Out[2]:
A B C D E F
0 1 4 7 1 5 7
1 2 5 8 3 3 4
2 3 6 9 5 6 3
I'd like to create a new column containing a list of column names where a certain condition is met. Say that I'm interested in columns where value > 3 -- I would want an output that looks like this:
In [3]: df
Out[3]:
A B C D E F Flag
0 1 4 7 1 5 7 ['B', 'C', 'E', 'F']
1 2 5 8 3 3 4 ['B', 'C', 'F']
2 3 6 9 5 6 3 ['B', 'C', 'D', 'E']
Currently, I'm using apply:
df['Flag'] = df.apply(lambda row: [list(df)[i] for i, j in enumerate(row) if j > 3], axis = 1)
This gets the job done, but feels clunky and I'm wondering if there is a more elegant solution.
Thanks!
Use df.dot() here:
df['Flag']=(df>3).dot(df.columns).apply(list)
print(df)
A B C D E F Flag
0 1 4 7 1 5 7 [B, C, E, F]
1 2 5 8 3 3 4 [B, C, F]
2 3 6 9 5 6 3 [B, C, D, E]
I still like for loop here
df['Flag']=[df.columns[x].tolist() for x in df.gt(3).values]
df
Out[968]:
A B C D E F Flag
0 1 4 7 1 5 7 [B, C, E, F]
1 2 5 8 3 3 4 [B, C, F]
2 3 6 9 5 6 3 [B, C, D, E]
One option is to create a dataframe of booleans by checking which values are above a certain threshold with DataFrame.gt, and take the dot product with the column names. Finally use apply(list) to obtain lists from the resulting strings:
df['Flag'] = df.gt(3).dot(df.columns).apply(list)
A B C D E F Flag
0 1 4 7 1 5 7 [B, C, E, F]
1 2 5 8 3 3 4 [B, C, F]
2 3 6 9 5 6 3 [B, C, D, E]
Another way:
df['Flag'] = df.T.apply(lambda x: list(x[x>3].index))
Edit: adding timing for all solutions of this question
I prefer a solution without apply
df['Flag'] = df.reset_index().melt(id_vars='index', value_name='val', var_name='col').query('val > 3').groupby('index')['col'].agg(list)
Or
df['Flag'] = df.stack().rename('val').reset_index(level=1).query('val > 3').groupby(level=0)['level_1'].agg(list)
Out[2576]:
A B C D E F Flag
0 1 4 7 1 5 7 [B, C, E, F]
1 2 5 8 3 3 4 [B, C, F]
2 3 6 9 5 6 3 [B, C, D, E]
Test data:
a = [
[1, 4, 7, 1, 5, 7],
[2, 5, 8, 3, 3, 4],
[3, 6, 9, 5, 6, 3],
] * 10000
df = pd.DataFrame(a, columns = list('ABCDEF'))
Timing with %timeit:
In [79]: %timeit (df>3).dot(df.columns).apply(list)
40.8 ms ± 1.66 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [80]: %timeit [df.columns[x].tolist() for x in df.gt(3).values]
1.23 s ± 10.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [81]: %timeit df.gt(3).dot(df.columns).apply(list)
37.6 ms ± 644 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [82]: %timeit df.T.apply(lambda x: list(x[x>3].index))
16.4 s ± 99.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [83]: %timeit df.stack().rename('val').reset_index(level=1).query('val > 3')
...: .groupby(level=0)['level_1'].agg(list)
4.05 s ± 15.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [84]: %timeit df.apply(lambda x: df.columns[np.argwhere(x>3).ravel()].values
...: , 1)
c:\program files\python37\lib\site-packages\numpy\core\fromnumeric.py:56: Future
Warning: Series.nonzero() is deprecated and will be removed in a future version.
Use Series.to_numpy().nonzero() instead
return getattr(obj, method)(*args, **kwds)
12 s ± 45.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Fastest are solution using .dot
Using numpy.argwhere and ravel():
df.apply(lambda x: df.columns[np.argwhere(x>3).ravel()].values, 1)
we can use # also
df['Flag'] = ((df >3) # df.columns).map(list)

Selecting all column names where value is greater than another column in pandas

I'm trying to find the column names of each column in a pandas dataframe where the value is greater than that of another column.
For example, if I have the following dataframe:
A B C D threshold
0 1 3 3 1 2
1 2 3 6 1 5
2 9 5 0 2 4
For each row I would like to return the names of the columns where the values are greater than the threshold, so I would have:
0: B, C
1: C
2: A, B
Any help would be much appreciated!
If you want a large increase in speed you can use NumPy's vectorized where function.
s = np.where(df.gt(df['threshold'],0), ['A, ', 'B, ', 'C, ', 'D, ', ''], '')
pd.Series([''.join(x).strip(', ') for x in s])
0 B, C
1 C
2 A, B
dtype: object
There is more than an order of magnitude speedup vs #jezrael and MaxU solutions when using a dataframe of 100,000 rows. Here I create the test DataFrame first.
n = 100000
df = pd.DataFrame(np.random.randint(0, 10, (n, 5)),
columns=['A', 'B', 'C', 'D', 'threshold'])
Timings
%%timeit
>>> s = np.where(df.gt(df['threshold'],0), ['A, ', 'B, ', 'C, ', 'D, ', ''], '')
>>> pd.Series([''.join(x).strip(', ') for x in s])
280 ms ± 5.29 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
>>> df1 = df.drop('threshold', 1).gt(df['threshold'], 0)
>>> df1 = df1.apply(lambda x: ', '.join(x.index[x]),axis=1)
3.15 s ± 82.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
>>> x = df.drop('threshold',1)
>>> x.T.gt(df['threshold']).agg(lambda c: ', '.join(x.columns[c]))
3.28 s ± 145 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
You can use:
df1 = df.drop('threshold', 1).gt(df['threshold'], 0)
df1 = df1.apply(lambda x: ', '.join(x.index[x]),axis=1)
print (df1)
0 B, C
1 C
2 A, B
dtype: object
Similar solution:
df1 = df.drop('threshold', 1).gt(df['threshold'], 0).stack().rename_axis(('a','b'))
.reset_index(name='boolean')
a = df1[df1['boolean']].groupby('a')['b'].apply(', '.join).reset_index()
print (a)
a b
0 0 B, C
1 1 C
2 2 A, B
you can do it this way:
In [99]: x = df.drop('threshold',1)
In [100]: x
Out[100]:
A B C D
0 1 3 3 1
1 2 3 6 1
2 9 5 0 2
In [102]: x.T.gt(df['threshold']).agg(lambda c: ', '.join(x.columns[c]))
Out[102]:
0 B, C
1 C
2 A, B
dtype: object

Pandas: Selecting rows based on value counts of a particular column

Whats the simplest way of selecting all rows from a panda dataframe, who's sym occurs exactly twice in the entire table? For example, in the table below, I would like to select all rows with sym in ['b','e'], since the value_counts for these symbols equal 2.
df=pd.DataFrame({'sym':['a', 'b', 'b', 'c', 'd','d','d','e','e'],'price':np.random.randn(9)})
price sym
0 -0.0129 a
1 -1.2940 b
2 1.8423 b
3 -0.7160 c
4 -2.3216 d
5 -0.0120 d
6 -0.5914 d
7 0.6280 e
8 0.5361 e
df.sym.value_counts()
Out[237]:
d 3
e 2
b 2
c 1
a 1
I think you can use groupby by column sym and filter values with length == 2:
print df.groupby("sym").filter(lambda x: len(x) == 2)
price sym
1 0.400157 b
2 0.978738 b
7 -0.151357 e
8 -0.103219 e
Second solution use isin with boolean indexing:
s = df.sym.value_counts()
print s[s == 2].index
Index([u'e', u'b'], dtype='object')
print df[df.sym.isin(s[s == 2].index)]
price sym
1 0.400157 b
2 0.978738 b
7 -0.151357 e
8 -0.103219 e
And fastest solution with transform and boolean indexing:
print (df[df.groupby("sym")["sym"].transform('size') == 2])
price sym
1 -1.2940 b
2 1.8423 b
7 0.6280 e
8 0.5361 e
You can use map, which should be faster than using groupby and transform:
df[df['sym'].map(df['sym'].value_counts()) == 2]
e.g.
%%timeit
df[df['sym'].map(df['sym'].value_counts()) == 2]
Out[1]:
1.83 ms ± 23.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit
df[df.groupby("sym")["sym"].transform('size') == 2]
Out[2]:
2.08 ms ± 41.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Categories

Resources