Simplified dfs:
df = pd.DataFrame(
{
"ID": [6, 2, 4],
"ID2": [2, 3, 4],
"foo": [2, 3, 4],
}
)
df2 = pd.DataFrame(
{
"ID": [6, 2, 4],
"ID2": [1, 3, 2],
"foo": [2, 3, 4],
"to_ignore": ["idk", "bar", "whatever"],
"A": ["unwanted str", "desired str", "unwanted str"],
}
)
We want to add a column to df which has values from df2's A column where values from columns ID and ID2 match like so:
ID ID2 NewCol
0 6 2 NaN
1 2 3 desired str
2 4 4 NaN
We can do this where one column's values match:
df["NewCol"] = df["ID"].map(df2.drop_duplicates("ID").set_index("ID")["A"])
How can we make this only work for entries where both ID and ID2 match? df["NewCol"] = df["ID", "ID2"].map(df2.drop_duplicates("ID").set_index(["ID", "ID2"])["A"]) obviously doesn't work.
We could concatenate the ID cols and crudely use this above approach while risking concatenated ID strs incorrectly matching:
for d in [df, df2]:
d['lookup_combined'] = d["ID"] + d["ID2"]
df["NewCol"] = df["lookup_combined"].map(df2.drop_duplicates("lookup_combined").set_index("lookup_combined")["A"])
for d in [df, df2]:
d.drop(columns="lookup_combined", inplace=True)
But this is clunky and error prone. Can we do better?
Note we don't want to merge / join the tables as there are more columns and other complications removed for question simplicity. We only want a new column named by a string we supply.
You are looking for the function merge. You just need to indicate the columns on which you are merging on as follows:
df.merge(df2, how='left', on = ['ID', 'ID2'])
ID ID2 A
0 6 2 NaN
1 2 3 desired str
2 4 4 NaN
Edit:
I still do not see where merge is an issue: with new data, just do:
vars = ['ID', 'ID2']
df[vars].merge(df2[vars + ['A']], how='left', on =vars)
ID ID2 A
0 6 2 NaN
1 2 3 desired str
2 4 4 NaN
I'm trying to figure out how to add multiple columns to pandas simultaneously with Pandas. I would like to do this in one step rather than multiple repeated steps.
import pandas as pd
df = {'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]}
df = pd.DataFrame(df)
df[[ 'column_new_1', 'column_new_2','column_new_3']] = [np.nan, 'dogs',3] # I thought this would work here...
I would have expected your syntax to work too. The problem arises because when you create new columns with the column-list syntax (df[[new1, new2]] = ...), pandas requires that the right hand side be a DataFrame (note that it doesn't actually matter if the columns of the DataFrame have the same names as the columns you are creating).
Your syntax works fine for assigning scalar values to existing columns, and pandas is also happy to assign scalar values to a new column using the single-column syntax (df[new1] = ...). So the solution is either to convert this into several single-column assignments, or create a suitable DataFrame for the right-hand side.
Here are several approaches that will work:
import pandas as pd
import numpy as np
df = pd.DataFrame({
'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]
})
Then one of the following:
1) Three assignments in one, using list unpacking:
df['column_new_1'], df['column_new_2'], df['column_new_3'] = [np.nan, 'dogs', 3]
2) DataFrame conveniently expands a single row to match the index, so you can do this:
df[['column_new_1', 'column_new_2', 'column_new_3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)
3) Make a temporary data frame with new columns, then combine with the original data frame later:
df = pd.concat(
[
df,
pd.DataFrame(
[[np.nan, 'dogs', 3]],
index=df.index,
columns=['column_new_1', 'column_new_2', 'column_new_3']
)
], axis=1
)
4) Similar to the previous, but using join instead of concat (may be less efficient):
df = df.join(pd.DataFrame(
[[np.nan, 'dogs', 3]],
index=df.index,
columns=['column_new_1', 'column_new_2', 'column_new_3']
))
5) Using a dict is a more "natural" way to create the new data frame than the previous two, but the new columns will be sorted alphabetically (at least before Python 3.6 or 3.7):
df = df.join(pd.DataFrame(
{
'column_new_1': np.nan,
'column_new_2': 'dogs',
'column_new_3': 3
}, index=df.index
))
6) Use .assign() with multiple column arguments.
I like this variant on #zero's answer a lot, but like the previous one, the new columns will always be sorted alphabetically, at least with early versions of Python:
df = df.assign(column_new_1=np.nan, column_new_2='dogs', column_new_3=3)
7) This is interesting (based on https://stackoverflow.com/a/44951376/3830997), but I don't know when it would be worth the trouble:
new_cols = ['column_new_1', 'column_new_2', 'column_new_3']
new_vals = [np.nan, 'dogs', 3]
df = df.reindex(columns=df.columns.tolist() + new_cols) # add empty cols
df[new_cols] = new_vals # multi-column assignment works for existing cols
8) In the end it's hard to beat three separate assignments:
df['column_new_1'] = np.nan
df['column_new_2'] = 'dogs'
df['column_new_3'] = 3
Note: many of these options have already been covered in other answers: Add multiple columns to DataFrame and set them equal to an existing column, Is it possible to add several columns at once to a pandas DataFrame?, Add multiple empty columns to pandas DataFrame
You could use assign with a dict of column names and values.
In [1069]: df.assign(**{'col_new_1': np.nan, 'col2_new_2': 'dogs', 'col3_new_3': 3})
Out[1069]:
col_1 col_2 col2_new_2 col3_new_3 col_new_1
0 0 4 dogs 3 NaN
1 1 5 dogs 3 NaN
2 2 6 dogs 3 NaN
3 3 7 dogs 3 NaN
My goal when writing Pandas is to write efficient readable code that I can chain. I won't go into why I like chaining so much here, I expound on that in my book, Effective Pandas.
I often want to add new columns in a succinct manner that also allows me to chain. My general rule is that I update or create columns using the .assign method.
To answer your question, I would use the following code:
(df
.assign(column_new_1=np.nan,
column_new_2='dogs',
column_new_3=3
)
)
To go a little further. I often have a dataframe that has new columns that I want to add to my dataframe. Let's assume it looks like say... a dataframe with the three columns you want:
df2 = pd.DataFrame({'column_new_1': np.nan,
'column_new_2': 'dogs',
'column_new_3': 3},
index=df.index
)
In this case I would write the following code:
(df
.assign(**df2)
)
With the use of concat:
In [128]: df
Out[128]:
col_1 col_2
0 0 4
1 1 5
2 2 6
3 3 7
In [129]: pd.concat([df, pd.DataFrame(columns = [ 'column_new_1', 'column_new_2','column_new_3'])])
Out[129]:
col_1 col_2 column_new_1 column_new_2 column_new_3
0 0.0 4.0 NaN NaN NaN
1 1.0 5.0 NaN NaN NaN
2 2.0 6.0 NaN NaN NaN
3 3.0 7.0 NaN NaN NaN
Not very sure of what you wanted to do with [np.nan, 'dogs',3]. Maybe now set them as default values?
In [142]: df1 = pd.concat([df, pd.DataFrame(columns = [ 'column_new_1', 'column_new_2','column_new_3'])])
In [143]: df1[[ 'column_new_1', 'column_new_2','column_new_3']] = [np.nan, 'dogs', 3]
In [144]: df1
Out[144]:
col_1 col_2 column_new_1 column_new_2 column_new_3
0 0.0 4.0 NaN dogs 3
1 1.0 5.0 NaN dogs 3
2 2.0 6.0 NaN dogs 3
3 3.0 7.0 NaN dogs 3
Dictionary mapping with .assign():
This is the most readable and dynamic way to assign new column(s) with value(s) when working with many of them.
import pandas as pd
import numpy as np
new_cols = ["column_new_1", "column_new_2", "column_new_3"]
new_vals = [np.nan, "dogs", 3]
# Map new columns as keys and new values as values
col_val_mapping = dict(zip(new_cols, new_vals))
# Unpack new column/new value pairs and assign them to the data frame
df = df.assign(**col_val_mapping)
If you're just trying to initialize the new column values to be empty as you either don't know what the values are going to be or you have many new columns.
import pandas as pd
import numpy as np
new_cols = ["column_new_1", "column_new_2", "column_new_3"]
new_vals = [None for item in new_cols]
# Map new columns as keys and new values as values
col_val_mapping = dict(zip(new_cols, new_vals))
# Unpack new column/new value pairs and assign them to the data frame
df = df.assign(**col_val_mapping)
use of list comprehension, pd.DataFrame and pd.concat
pd.concat(
[
df,
pd.DataFrame(
[[np.nan, 'dogs', 3] for _ in range(df.shape[0])],
df.index, ['column_new_1', 'column_new_2','column_new_3']
)
], axis=1)
if adding a lot of missing columns (a, b, c ,....) with the same value, here 0, i did this:
new_cols = ["a", "b", "c" ]
df[new_cols] = pd.DataFrame([[0] * len(new_cols)], index=df.index)
It's based on the second variant of the accepted answer.
Just want to point out that option2 in #Matthias Fripp's answer
(2) I wouldn't necessarily expect DataFrame to work this way, but it does
df[['column_new_1', 'column_new_2', 'column_new_3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)
is already documented in pandas' own documentation
http://pandas.pydata.org/pandas-docs/stable/indexing.html#basics
You can pass a list of columns to [] to select columns in that order.
If a column is not contained in the DataFrame, an exception will be raised.
Multiple columns can also be set in this manner.
You may find this useful for applying a transform (in-place) to a subset of the columns.
You can use tuple unpacking:
df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
df['col3'], df['col4'] = 'a', 10
Result:
col1 col2 col3 col4
0 1 3 a 10
1 2 4 a 10
If you just want to add empty new columns, reindex will do the job
df
col_1 col_2
0 0 4
1 1 5
2 2 6
3 3 7
df.reindex(list(df)+['column_new_1', 'column_new_2','column_new_3'], axis=1)
col_1 col_2 column_new_1 column_new_2 column_new_3
0 0 4 NaN NaN NaN
1 1 5 NaN NaN NaN
2 2 6 NaN NaN NaN
3 3 7 NaN NaN NaN
full code example
import numpy as np
import pandas as pd
df = {'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]}
df = pd.DataFrame(df)
print('df',df, sep='\n')
print()
df=df.reindex(list(df)+['column_new_1', 'column_new_2','column_new_3'], axis=1)
print('''df.reindex(list(df)+['column_new_1', 'column_new_2','column_new_3'], axis=1)''',df, sep='\n')
otherwise go for zeros answer with assign
I am not comfortable using "Index" and so on...could come up as below
df.columns
Index(['A123', 'B123'], dtype='object')
df=pd.concat([df,pd.DataFrame(columns=list('CDE'))])
df.rename(columns={
'C':'C123',
'D':'D123',
'E':'E123'
},inplace=True)
df.columns
Index(['A123', 'B123', 'C123', 'D123', 'E123'], dtype='object')
You could instantiate the values from a dictionary if you wanted different values for each column & you don't mind making a dictionary on the line before.
>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame({
'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]
})
>>> df
col_1 col_2
0 0 4
1 1 5
2 2 6
3 3 7
>>> cols = {
'column_new_1':np.nan,
'column_new_2':'dogs',
'column_new_3': 3
}
>>> df[list(cols)] = pd.DataFrame(data={k:[v]*len(df) for k,v in cols.items()})
>>> df
col_1 col_2 column_new_1 column_new_2 column_new_3
0 0 4 NaN dogs 3
1 1 5 NaN dogs 3
2 2 6 NaN dogs 3
3 3 7 NaN dogs 3
Not necessarily better than the accepted answer, but it's another approach not yet listed.
import pandas as pd
df = pd.DataFrame({
'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]
})
df['col_3'], df['col_4'] = [df.col_1]*2
>> df
col_1 col_2 col_3 col_4
0 4 0 0
1 5 1 1
2 6 2 2
3 7 3 3
I have 2 dataframes, each with 2 columns (shown in the picture). I'm trying to define a function or perform an operation to scan df2 on df1 and store
df2["values"] in df1["values"] if df2["ID"] matches df1["ID"].
I want the result as shown in New_df1 (picture)
I have tried a for loop with function append() but it's really tricky to make it work...
You can do this via pandas.concat, sorting and dropping druplicates:
import pandas as pd, numpy as np
df1 = pd.DataFrame([[i, np.nan] for i in list('abcdefghik')],
columns=['ID', 'Values'])
df2 = pd.DataFrame([['a', 2], ['c', 5], ['e', 4], ['g', 7], ['h', 1]],
columns=['ID', 'Values'])
res = pd.concat([df1, df2], axis=0)\
.sort_values(['ID', 'Values'])\
.drop_duplicates('ID')
print(res)
# ID Values
# 0 a 2.0
# 1 b NaN
# 1 c 5.0
# 3 d NaN
# 2 e 4.0
# 5 f NaN
# 3 g 7.0
# 4 h 1.0
# 8 i NaN
# 9 k NaN
Note: This question is inspired by the ideas discussed in this other post: DataFrame algebra in Pandas
Say I have two dataframes A and B and that for some column col_name, their values are:
A[col_name] | B[col_name]
--------------| ------------
1 | 3
2 | 4
3 | 5
4 | 6
I want to compute the set difference between A and B based on col_name. The result of this operation should be:
The rows of A where A[col_name] didn't match any entries in B[col_name].
Below is the result for the above example (showing other columns of A as well):
A[col_name] | A[other_column_1] | A[other_column_2]
------------+-------------------|------------------
1 | 'foo' | 'xyz' ....
2 | 'bar' | 'abc'
Keep in mind that some entries in A[col_name] and B[col_name] could hold the value np.NaN. I would like to treat those entries as undefined BUT different, i.e. the set difference should return them.
How can I do this in Pandas? (generalizing to a difference on multiple columns would be great as well)
One way is to use the Series isin method:
In [11]: df1 = pd.DataFrame([[1, 'foo'], [2, 'bar'], [3, 'meh'], [4, 'baz']], columns = ['A', 'B'])
In [12]: df2 = pd.DataFrame([[3, 'a'], [4, 'b']], columns = ['A', 'C'])
Now you can check whether each item in df1['A'] is in of df2['A']:
In [13]: df1['A'].isin(df2['A'])
Out[13]:
0 False
1 False
2 True
3 True
Name: A, dtype: bool
In [14]: df1[~df1['A'].isin(df2['A'])] # not in df2['A']
Out[14]:
A B
0 1 foo
1 2 bar
I think this does what you want for NaNs too:
In [21]: df1 = pd.DataFrame([[1, 'foo'], [np.nan, 'bar'], [3, 'meh'], [np.nan, 'baz']], columns = ['A', 'B'])
In [22]: df2 = pd.DataFrame([[3], [np.nan]], columns = ['A'])
In [23]: df1[~df1['A'].isin(df2['A'])]
Out[23]:
A B
0 1.0 foo
1 NaN bar
3 NaN baz
Note: For large frames it may be worth making these columns an index (to perform the join as discussed in the other question).
More generally
One way to merge on two or more columns is to use a dummy column:
In [31]: df1 = pd.DataFrame([[1, 'foo'], [np.nan, 'bar'], [4, 'meh'], [np.nan, 'eurgh']], columns = ['A', 'B'])
In [32]: df2 = pd.DataFrame([[np.nan, 'bar'], [4, 'meh']], columns = ['A', 'B'])
In [33]: cols = ['A', 'B']
In [34]: df2['dummy'] = df2[cols].isnull().any(1) # rows with NaNs in cols will be True
In [35]: merged = df1.merge(df2[cols + ['dummy']], how='left')
In [36]: merged
Out[36]:
A B dummy
0 1 foo NaN
1 NaN bar True
2 4 meh False
3 NaN eurgh NaN
The booleans were present in df2, the True has an NaN in one of the merging columns. Following your spec, we should drop those which are False:
In [37]: merged.loc[merged.dummy != False, df1.columns]
Out[37]:
A B
0 1 foo
1 NaN bar
3 NaN eurgh
Inelegant.
Here is one option that is also not elegant since it pre-maps the NaN values to some other value (0) so that they can be used as an index:
def left_difference(L, R, L_on, R_on, NULL_VALUE):
L[L_on] = L[L_on].fillna(NULL_VALUE)
L.set_index(L_on, inplace=True)
R[R_on] = R[R_on].fillna(NULL_VALUE)
R.set_index(R_on, inplace=True)
# MultiIndex difference:
diff = L.ix[L.index - R.index]
diff = diff.reset_index()
return diff
To make this work peroperly, NULL_VALUE should be a value not used by L_on nor R_on.