In a python script, I have a large dataset that I would like to apply multiple functions to. The functions are responsible for creating certain outputs that get saved to the hard drive.
A few things of note:
the functions are independent
none of the functions return anything
the functions will take variable amounts of time
some of the functions may fail, and that is fine
Can I multiprocess this in any way that each function and the dataset are sent separately to a core and run there? This way I do not need the first function to finish before the second one can kick off? There is no need for them to be sequentially dependent.
Thanks!
Since your functions are independent and only read data, as long as it is not an issue if your data is modified during the execution of a function, then they are also thread safe.
Use a thread pool (click) . You would have to create a task per function you want to run.
Note: In order for it to run on more than one core you must use Python Multiprocessing. Else all the threads will run on a single core. This happens because Python has a Global Interpreter Lock (GIL). For more information Python threads all executing on a single core
Alternatively, you could use DASK , which augments the data in order to run some multi threading. While adding some overhead, it might be quicker for your needs.
I was in a similar situation as yours, and used Processes with the following function:
import multiprocessing as mp
def launch_proc(nproc, lst_functions, lst_args, lst_kwargs):
n = len(lst_functions)
r = 1 if n % nproc > 0 else 0
for b in range(n//nproc + r):
bucket = []
for p in range(nproc):
i = b*nproc + p
if i == n:
break
proc = mp.Process(target=lst_functions[i], args=lst_args[i], kwargs=lst_kwargs[i])
bucket.append(proc)
for proc in bucket:
proc.start()
for proc in bucket:
proc.join()
This has a major drawback: all Processes in a bucket have to finish before a new bucket can start. I tried to use a JoinableQueue to avoid this, but could not make it work.
Example:
def f(i):
print(i)
nproc = 2
n = 11
lst_f = [f] * n
lst_args = [[i] for i in range(n)]
lst_kwargs = [{}] * n
launch_proc(nproc, lst_f, lst_args, lst_kwargs)
Hope it can help.
Related
Suppose I have the following in Python
# A loop
for i in range(10000):
Do Task A
# B loop
for i in range(10000):
Do Task B
How do I run these loops simultaneously in Python?
If you want concurrency, here's a very simple example:
from multiprocessing import Process
def loop_a():
while 1:
print("a")
def loop_b():
while 1:
print("b")
if __name__ == '__main__':
Process(target=loop_a).start()
Process(target=loop_b).start()
This is just the most basic example I could think of. Be sure to read http://docs.python.org/library/multiprocessing.html to understand what's happening.
If you want to send data back to the program, I'd recommend using a Queue (which in my experience is easiest to use).
You can use a thread instead if you don't mind the global interpreter lock. Processes are more expensive to instantiate but they offer true concurrency.
There are many possible options for what you wanted:
use loop
As many people have pointed out, this is the simplest way.
for i in xrange(10000):
# use xrange instead of range
taskA()
taskB()
Merits: easy to understand and use, no extra library needed.
Drawbacks: taskB must be done after taskA, or otherwise. They can't be running simultaneously.
multiprocess
Another thought would be: run two processes at the same time, python provides multiprocess library, the following is a simple example:
from multiprocessing import Process
p1 = Process(target=taskA, args=(*args, **kwargs))
p2 = Process(target=taskB, args=(*args, **kwargs))
p1.start()
p2.start()
merits: task can be run simultaneously in the background, you can control tasks(end, stop them etc), tasks can exchange data, can be synchronized if they compete the same resources etc.
drawbacks: too heavy!OS will frequently switch between them, they have their own data space even if data is redundant. If you have a lot tasks (say 100 or more), it's not what you want.
threading
threading is like process, just lightweight. check out this post. Their usage is quite similar:
import threading
p1 = threading.Thread(target=taskA, args=(*args, **kwargs))
p2 = threading.Thread(target=taskB, args=(*args, **kwargs))
p1.start()
p2.start()
coroutines
libraries like greenlet and gevent provides something called coroutines, which is supposed to be faster than threading. No examples provided, please google how to use them if you're interested.
merits: more flexible and lightweight
drawbacks: extra library needed, learning curve.
Why do you want to run the two processes at the same time? Is it because you think they will go faster (there is a good chance that they wont). Why not run the tasks in the same loop, e.g.
for i in range(10000):
doTaskA()
doTaskB()
The obvious answer to your question is to use threads - see the python threading module. However threading is a big subject and has many pitfalls, so read up on it before you go down that route.
Alternatively you could run the tasks in separate proccesses, using the python multiprocessing module. If both tasks are CPU intensive this will make better use of multiple cores on your computer.
There are other options such as coroutines, stackless tasklets, greenlets, CSP etc, but Without knowing more about Task A and Task B and why they need to be run at the same time it is impossible to give a more specific answer.
from threading import Thread
def loopA():
for i in range(10000):
#Do task A
def loopB():
for i in range(10000):
#Do task B
threadA = Thread(target = loopA)
threadB = Thread(target = loobB)
threadA.run()
threadB.run()
# Do work indepedent of loopA and loopB
threadA.join()
threadB.join()
You could use threading or multiprocessing.
How about: A loop for i in range(10000): Do Task A, Do Task B ? Without more information i dont have a better answer.
I find that using the "pool" submodule within "multiprocessing" works amazingly for executing multiple processes at once within a Python Script.
See Section: Using a pool of workers
Look carefully at "# launching multiple evaluations asynchronously may use more processes" in the example. Once you understand what those lines are doing, the following example I constructed will make a lot of sense.
import numpy as np
from multiprocessing import Pool
def desired_function(option, processes, data, etc...):
# your code will go here. option allows you to make choices within your script
# to execute desired sections of code for each pool or subprocess.
return result_array # "for example"
result_array = np.zeros("some shape") # This is normally populated by 1 loop, lets try 4.
processes = 4
pool = Pool(processes=processes)
args = (processes, data, etc...) # Arguments to be passed into desired function.
multiple_results = []
for i in range(processes): # Executes each pool w/ option (1-4 in this case).
multiple_results.append(pool.apply_async(param_process, (i+1,)+args)) # Syncs each.
results = np.array(res.get() for res in multiple_results) # Retrieves results after
# every pool is finished!
for i in range(processes):
result_array = result_array + results[i] # Combines all datasets!
The code will basically run the desired function for a set number of processes. You will have to carefully make sure your function can distinguish between each process (hence why I added the variable "option".) Additionally, it doesn't have to be an array that is being populated in the end, but for my example, that's how I used it. Hope this simplifies or helps you better understand the power of multiprocessing in Python!
I have edited the code , currently it is working fine . But thinks it is not executing parallely or dynamically . Can anyone please check on to it
Code :
def folderStatistic(t):
j, dir_name = t
row = []
for content in dir_name.split(","):
row.append(content)
print(row)
def get_directories():
import csv
with open('CONFIG.csv', 'r') as file:
reader = csv.reader(file,delimiter = '\t')
return [col for row in reader for col in row]
def folderstatsMain():
freeze_support()
start = time.time()
pool = Pool()
worker = partial(folderStatistic)
pool.map(worker, enumerate(get_directories()))
def datatobechecked():
try:
folderstatsMain()
except Exception as e:
# pass
print(e)
if __name__ == '__main__':
datatobechecked()
Config.CSV
C:\USERS, .CSV
C:\WINDOWS , .PDF
etc.
There may be around 200 folder paths in config.csv
welcome to StackOverflow and Python programming world!
Moving on to the question.
Inside the get_directories() function you open the file in with context, get the reader object and close the file immediately after the moment you leave the context so when the time comes to use the reader object the file is already closed.
I don't want to discourage you, but if you are very new to programming do not dive into parallel programing yet. Difficulty in handling multiple threads simultaneously grows exponentially with every thread you add (pools greatly simplify this process though). Processes are even worse as they don't share memory and can't communicate with each other easily.
My advice is, try to write it as a single-thread program first. If you have it working and still need to parallelize it, isolate a single function with input file path as a parameter that does all the work and then use thread/process pool on that function.
EDIT:
From what I can understand from your code, you get directory names from the CSV file and then for each "cell" in the file you run parallel folderStatistics. This part seems correct. The problem may lay in dir_name.split(","), notice that you pass individual "cells" to the folderStatistics not rows. What makes you think it's not running paralelly?.
There is a certain amount of overhead in creating a multiprocessing pool because creating processes is, unlike creating threads, a fairly costly operation. Then those submitted tasks, represented by each element of the iterable being passed to the map method, are gathered up in "chunks" and written to a multiprocessing queue of tasks that are read by the pool processes. This data has to move from one address space to another and that has a cost associated with it. Finally when your worker function, folderStatistic, returns its result (which is None in this case), that data has to be moved from one process's address space back to the main process's address space and that too has a cost associated with it.
All of those added costs become worthwhile when your worker function is sufficiently CPU-intensive such that these additional costs is small compared to the savings gained by having the tasks run in parallel. But your worker function's CPU requirements are so small as to reap any benefit from multiprocessing.
Here is a demo comparing single-processing time vs. multiprocessing times for invoking a worker function, fn, twice where the first time it only performs its internal loop 10 times (low CPU requirements) while the second time it performs its internal loop 1,000,000 times (higher CPU requirements). You can see that in the first case the multiprocessing version runs considerable slower (you can't even measure the time for the single processing run). But when we make fn more CPU-intensive, then multiprocessing achieves gains over the single-processing case.
from multiprocessing import Pool
from functools import partial
import time
def fn(iterations, x):
the_sum = x
for _ in range(iterations):
the_sum += x
return the_sum
# required for Windows:
if __name__ == '__main__':
for n_iterations in (10, 1_000_000):
# single processing time:
t1 = time.time()
for x in range(1, 20):
fn(n_iterations, x)
t2 = time.time()
# multiprocessing time:
worker = partial(fn, n_iterations)
t3 = time.time()
with Pool() as p:
results = p.map(worker, range(1, 20))
t4 = time.time()
print(f'#iterations = {n_iterations}, single processing time = {t2 - t1}, multiprocessing time = {t4 - t3}')
Prints:
#iterations = 10, single processing time = 0.0, multiprocessing time = 0.35399389266967773
#iterations = 1000000, single processing time = 1.182999849319458, multiprocessing time = 0.5530076026916504
But even with a pool size of 8, the running time is not reduced by a factor of 8 (it's more like a factor of 2) due to the fixed multiprocessing overhead. When I change the number of iterations for the second case to be 100,000,000 (even more CPU-intensive), we get ...
#iterations = 100000000, single processing time = 109.3077495098114, multiprocessing time = 27.202054023742676
... which is a reduction in running time by a factor of 4 (I have many other processes running in my computer, so there is competition for the CPU).
I relatively new to python, and have been able to answer most of my questions based on similar problems answered on forms, but I'm at a point where I'm stuck an could use some help.
I have a simple nested for loop script that generates an output of strings. What I need to do next is have each grouping go through a simulation, based on numerical values that the strings will be matched too.
really my question is how do I go about this in the best way? Im not sure if multithreading will work since the strings are generated and then need to undergo the simulation, one set at a time. I was reading about queue's and wasn't sure if they could be passed into queue's for storage and then undergo the simulation, in the same order they entered the queue.
Regardless of the research I've done I'm open to any suggestion anyone can make on the matter.
thanks!
edit: Im not look for an answer on how to do the simulation, but rather a way to store the combinations while simulations are being computed
example
X = ["a","b"]
Y = ["c","d","e"]
Z= ["f","g"]
for A in itertools.combinations(X,1):
for B in itertools.combinations(Y,2):
for C in itertools.combinations(Z, 2):
D = A + B + C
print(D)
As was hinted at in the comments, the multiprocessing module is what you're looking for. Threading won't help you because of the Global Interpreter Lock (GIL), which limits execution to one Python thread at a time. In particular, I would look at multiprocessing pools. These objects give you an interface to have a pool of subprocesses do work for you in parallel with the main process, and you can go back and check on the results later.
Your example snippet could look something like this:
import multiprocessing
X = ["a","b"]
Y = ["c","d","e"]
Z= ["f","g"]
pool = multiprocessing.pool() # by default, this will create a number of workers equal to
# the number of CPU cores you have available
combination_list = [] # create a list to store the combinations
for A in itertools.combinations(X,1):
for B in itertools.combinations(Y,2):
for C in itertools.combinations(Z, 2):
D = A + B + C
combination_list.append(D) # append this combination to the list
results = pool.map(simulation_function, combination_list)
# simulation_function is the function you're using to actually run your
# simulation - assuming it only takes one parameter: the combination
The call to pool.map is blocking - meaning that once you call it, execution in the main process will halt until all the simulations are complete, but it is running them in parallel. When they complete, whatever your simulation function returns will be available in results, in the same order that the input arguments were in the combination_list.
If you don't want to wait for them, you can also use apply_async on your pool and store the result to look at later:
import multiprocessing
X = ["a","b"]
Y = ["c","d","e"]
Z= ["f","g"]
pool = multiprocessing.pool()
result_list = [] # create a list to store the simulation results
for A in itertools.combinations(X,1):
for B in itertools.combinations(Y,2):
for C in itertools.combinations(Z, 2):
D = A + B + C
result_list.append(pool.apply_async(
simulation_function,
args=(D,))) # note the extra comma - args must be a tuple
# do other stuff
# now iterate over result_list to check the results when they're ready
If you use this structure, result_list will be full of multiprocessing.AsyncResult objects, which allow you to check if they are ready with result.ready() and, if it's ready, retrieve the result with result.get(). This approach will cause the simulations to be kicked off right when the combination is calculated, instead of waiting until all of them have been calculated to start processing them. The downside is that it's a little more complicated to manage and retrieve the results. For example, you have to make sure the result is ready or be ready to catch an exception, you need to be ready to catch exceptions that may have been raised in the worker function, etc. The caveats are explained pretty well in the documentation.
If calculating the combinations doesn't actually take very long and you don't mind your main process halting until they're all ready, I suggest the pool.map approach.
I have searched the site but I am not sure precisely what terms would yield relevant answers, my apologies if this question is redundant.
I need to process a very very large matrix (14,000,000 * 250,000) and would like to exploit Python's multiprocessing module to speed things up. For each pair of columns in the matrix I need to apply a function which will then store the results in a proprietary class.
I will be implementing a double four loop which provides the necessary combinations of columns.
I do not want to load up a pool with 250,000 tasks as I fear the memory usage will be significant.Ideally, I would like to have one column then be tasked out amongst the pool I.e
Process 1 takes Column A and Column B and a function F takes A,B and G and then stores the result in Class G[A,B]
Process 2 takes Column A and Column C and proceeds similarly
The processes will never access the same element of G.
So I would like to pause the for loop every N tasks. The set/get methods of G will be overriden to perform some back end tasks.
What I do not understand is whether or not pausing the loop is necessary? I.e is Python smart enough to only take what it can work on? Or will it be populating a massive amount of tasks?
Lastly, I am unclear of how the results work. I just want them to be set in G and not return anything. I do not want to have to worry about about .get() etc. but from my understanding the pool method returns a result object. Can I just ignore this?
Is there a better way? Am I completly lost?
First off - you will want to create a multiprocessing pool class. You setup how many workers you want and then use map to start up tasks. I am sure you already know but here is the python multiprocessing docs.
You say that you don't want to return data because you don't need to but how are you planning on viewing results? Will each task write the data to disk? To pass data between your processes you will want to use something like the multiprocessing queue.
Here is example code from the link on how to use process and queue:
from multiprocessing import Process, Queue
def f(q):
q.put([42, None, 'hello'])
if __name__ == '__main__':
q = Queue()
p = Process(target=f, args=(q,))
p.start()
print q.get() # prints "[42, None, 'hello']"
p.join()
And this is an example of using the Pool:
from multiprocessing import Pool
def f(x):
return x*x
if __name__ == '__main__':
pool = Pool(processes=4) # start 4 worker processes
result = pool.apply_async(f, [10]) # evaluate "f(10)" asynchronously
print result.get(timeout=1) # prints "100" unless your computer is *very* slow
print pool.map(f, range(10)) # prints "[0, 1, 4,..., 81]"
Edit: #goncalopp makes a very important point that you may not want to do heavy numerical calculations in python due to how slow it is. Numpy is a great package for doing number crunching.
If you are heavily IO bound due to writing to disk on each process you should consider running something like 4*num_processors so that you always have something to do. You also should make sure you have a very fast disk :)
I am attempting to parallelize an algorithm that I have been working on using the Multiprocessing and Pool.map() commands. I ran into a problem and was hoping someone could point me in the right direction.
Let x denote an array of N rows and 1 column, which is initialized to be a vector of zeros. Let C denote an array of length N by 2. The vector x is constructed iteratively by using information from some subsets of C (doing some math operations). The code (not parallelized) as a large for loop looks roughly as follows:
for j in range(0,N)
#indx_j will have n_j <<N entries
indx_j = build_indices(C,j)
#x_j will be entries to be added to vector x at indices indx_j
#This part is time consuming
x_j = build_x_j(indx_j,C)
#Add x_j into entries of x
x[indx_j] = x[indx_j] + x_j
I was able to parallelize this using the multiprocessing module and using the pool.map to eliminate the large for loop. I wrote a function that did the above computations, except the step of adding x_j to x[indx_j]. The parallelized function instead returns two data sets back: x_j and indx_j. After those are computed, I run a for loop (not parallel) to build up x by doing the x[indx_j] = x[indx_j] +x_j computation for j=0,N.
The downside to my method is that pool.map operation returns a gigantic list of N pairs of arrays x_j and indx_j. where both x_j and indx_j were n_j by 1 vectors (n_j << N). For large N (N >20,000) this was taking up way too much memory. Here is my question: Can I somehow, in parallel, do the construction operation x[indx_j] = x[indx_j] + x_j. It seems to me each process in pool.map() would have to be able to interact with the vector x. Do I place x in some sort of shared memory? How would I do such a thing? I suspect that this has to be possible somehow, as I assume people assemble matrices in parallel for finite element methods all the time. How can I have multiple processes interact with a vector without having some sort of problem? I'm worried that perhaps for j= 20 and j = 23, if they happen simultaneously, they might try to add to x[indx_20] = x[indx_20] + x_20 and simultaneously x[indx_30] = x[indx_30] + x_30 and maybe some error will happen. I also don't know how to even have this computation done via the pool.map() (I don't think I can feed x in as an input, as it would be changing after each process).
I'm not sure if it matters or not, but the sets indx_j will have non-trivial intersection (e.g., indx_1 and indx_2 may have indices [1,2,3] and [3,4,5] for example).
If this is unclear, please let me know and I will attempt to clarify. This is my first time trying to work in parallel, so I am very unsure of how to proceed. Any information would be greatly appreciated. Thanks!
I dont know If I am qualified to give proper advice on the topic of shared memory arrays, but I had a similar need to share arrays across processes in python recently and came across a small custom numpy.ndarray implementation for a shared memory array in numpy using the shared ctypes within multiprocessing. Here is a link to the code: shmarray.py. It acts just like a normal array,except the underlying data is stored in shared memory, meaning separate processes can both read and write to the same array.
Using Shared Memory Array
In threading, all information available to the thread (global and local namespace) can be handled as shared between all other threads that have access to it, but in multiprocessing that data is not so easily accessible. On linux data is available for reading, but cannot be written to. Instead when a write is done, the data is copied and then written to, meaning no other process can see those changes. However, if the memory being written to is shared memory, it is not copied. This means with shmarray we can do things similar to the way we would do threading, with the true parallelism of multiprocessing. One way to have access to the shared memory array is with a subclass. I know you are currently using Pool.map(), but I had felt limited by the way map worked, especially when dealing with n-dimensional arrays. Pool.map() is not really designed to work with numpy styled interfaces, at least I don't think it can easily. Here is a simple idea where you would spawn a process for each j in N:
import numpy as np
import shmarray
import multiprocessing
class Worker(multiprocessing.Process):
def __init__(self, j, C, x):
multiprocessing.Process.__init__()
self.shared_x = x
self.C = C
self.j = j
def run(self):
#Your Stuff
#indx_j will have n_j <<N entries
indx_j = build_indices(self.C,self.j)
#x_j will be entries to be added to vector x at indices indx_j
x_j = build_x_j(indx_j,self.C)
#Add x_j into entries of x
self.shared_x[indx_j] = self.shared_x[indx_j] + x_j
#And then actually do the work
N = #What ever N should be
x = shmarray.zeros(shape=(N,1))
C = #What ever C is, doesn't need to be shared mem, since no writing is happening
procs = []
for j in range(N):
proc = Worker(j, C, x)
procs.append(proc)
proc.start()
#And then join() the processes with the main process
for proc in procs:
proc.join()
Custom Process Pool and Queues
So this might work, but spawning several thousand processes is not really going to be of any use if you only have a few cores. The way I handled this was to implement a Queue system between my process. That is to say, we have a Queue that the main process fills with j's and then a couple worker processes get numbers from the Queue and do work with it, note that by implementing this, you are essentially doing exactly what Pool does. Also note we are actually going to use multiprocessing.JoinableQueue for this since it lets use join() to wait till a queue is emptied.
Its not hard to implement this at all really, simply we must modify our Subclass a bit and how we use it.
import numpy as np
import shmarray
import multiprocessing
class Worker(multiprocessing.Process):
def __init__(self, C, x, job_queue):
multiprocessing.Process.__init__()
self.shared_x = x
self.C = C
self.job_queue = job_queue
def run(self):
#New Queue Stuff
j = None
while j!='kill': #this is how I kill processes with queues, there might be a cleaner way.
j = self.job_queue.get() #gets a job from the queue if there is one, otherwise blocks.
if j!='kill':
#Your Stuff
indx_j = build_indices(self.C,j)
x_j = build_x_j(indx_j,self.C)
self.shared_x[indx_j] = self.shared_x[indx_j] + x_j
#This tells the queue that the job that was pulled from it
#Has been completed (we need this for queue.join())
self.job_queue.task_done()
#The way we interact has changed, now we need to define a job queue
job_queue = multiprocessing.JoinableQueue()
N = #What ever N should be
x = shmarray.zeros(shape=(N,1))
C = #What ever C is, doesn't need to be shared mem, since no writing is happening
procs = []
proc_count = multiprocessing.cpu_count() # create as many procs as cores
for _ in range(proc_count):
proc = Worker(C, x, job_queue) #now we pass the job queue instead
procs.append(proc)
proc.start()
#all the workers are just waiting for jobs now.
for j in range(N):
job_queue.put(j)
job_queue.join() #this blocks the main process until the queue has been emptied
#Now if you want to kill all the processes, just send a 'kill'
#job for each process.
for proc in procs:
job_queue.put('kill')
job_queue.join()
Finally, I really cannot say anything about how this will handle writing to overlapping indices at the same time. Worst case is that you could have a serious problem if two things attempt to write at the same time and things get corrupted/crash(I am no expert here so I really have no idea if that would happen). Best case since you are just doing addition, and order of operations doesn't matter, everything runs smoothly. If it doesn't run smoothly, my suggestion is to create a second custom Process subclass that specifically does the array assignment. To implement this you would need to pass both a job queue, and an 'output' queue to the Worker subclass. Within the while loop, you should have a `output_queue.put((indx_j, x_j)). NOTE: If you are putting these into a Queue they are being pickled, which can be slow. I recommend making them shared memory arrays if they can be before using put. It may be faster to just pickle them in some cases, but I have not tested this. To assign these as they are generated, you then need to have your Assigner process read these values from a queue as jobs and apply them, such that the work loop would essentially be:
def run(self):
job = None
while job!='kill':
job = self.job_queue.get()
if job!='kill':
indx_j, x_j = job
#Note this is the process which really needs access to the X array.
self.x[indx_j] += x_j
self.job_queue.task_done()
This last solution will likely be slower than doing the assignment within the worker threads, but if you are doing it this way, you have no worries about race conditions, and memory is still lighter since you can use up the indx_j and x_j values as you generate them, instead of waiting till all of them are done.
Note for Windows
I didn't do any of this work on windows, so I am not 100% certain, but I believe the code above will be very memory intensive since windows does not implement a copy-on-write system for spawning independent processes. Essentially windows will copy ALL information that a process needs when spawning a new one from the main process. To fix this, I think replacing all your x_j and C with shared memory arrays (anything you will be handing around to other processes) instead of normal arrays should cause windows to not copy the data, but I am not certain. You did not specify which platform you were on so I figured better safe than sorry, since multiprocessing is a different beast on windows than linux.