Understanding python mock framework - python

I haven't been able to found a good explanation of this in the net, I'm guessing that i'm missing something trivial but I haven't been able to find it, so I came here to ask the experts :)
I have a test were I need to patch a constructor call, reading the docs as I understand, something like this should work, but:
import unittest.mock as mocker
import some_module
mock_class1 = mocker.patch('some_module.some_class')
print(mock_class1 is some_module.some_class) # Returns False
print(mock_class1) # <unittest.mock._patch>
mock_instance1 = mock_class1.return_value # _patch object has no attr return_value
Instead I get a different output if I do this
with mocker.patch('some_module.some_class') as mock_class2:
print(mock_class2 is some_module.some_class) # Returns True
print(mock_class2) # <MagicMock name=...>
mock_instance2 = mock_class2.return_value # No problem
print(mock_instance2) # <NonCallableMagicMock name=...>
Now, for the test itself, i'm using pytest-mock module which gives a mocker fixture that behaves like the first code block.
I would like to know:
why the behavior differs depending on the way that one call the mock framework
is there a clean way to trigger the behavior of the second code block without the with clause?

1) pytest mocker plugin is being developer to avoid use of context managers; and probably not everybody fond of the way the standard mock plays with functions parameter 2) not really. It is intended to be used either as content manager or function decorator.
I think it is possible use mocker package without pytest
References
https://github.com/pytest-dev/pytest-mock
https://www.packtpub.com/mapt/book/application_development/9781847198846/5/ch05lvl1sec45/integrating-with-python-mocker
What about installing pytest-mock and creating a test like this
import itertools
def test1(mocker):
mock_class1 = mocker.patch('itertools.count')
print(mock_class1 is itertools.count)
print(mock_class1)
mock_instance1 = mock_class1.return_value # Magic staff...
or may be using monkeypatching? Just do not use the standard unittest.mock with pytest

Related

pytest mocker.patch.object's return_value uses different mock than the one I passed it

I'm using pytest to patch the os.makedirs method for a test. In a particular test I wanted to add a side effect of an exception.
So I import the os object that I've imported in my script under test, patch it, and then set the side effect in my test:
from infrastructure.scripts.src.server_administrator import os
def mock_makedirs(self, mocker):
mock = MagicMock()
mocker.patch.object(os, "makedirs", return_value=mock)
return mock
def test_if_directory_exist_exception_is_not_raised(self, administrator, mock_makedirs):
mock_makedirs.side_effect = Exception("Directory already exists.")
with pytest.raises(Exception) as exception:
administrator.initialize_server()
assert exception.value == "Directory already exists."
The problem I ran into was that when the mock gets called in my script under test, the side effect no longer existed. While troubleshooting I stopped the tests in the debugger to look at the ID values for the mock I created and the mock that the patch should have set as the return value and found that they are different instances:
I'm still relatively new to some of the testing tools in python, so this may be me missing something in the documentation, but shouldn't the returned mock patched in here be the mock I created?? Am I patching it wrong?
UPDATE
I even adjusted the import style to grab makedirs directly to patch it:
def mock_makedirs(self, mocker):
mock = MagicMock()
mocker.patch("infrastructure.scripts.src.server_administrator.makedirs", return_value=mock)
return mock
And I still run into the same "different mocks" issue.
:facepalm:
I was patching incorrectly. I'm considering just deleting the whole question/answer, but I figured I'd leave it here in case someone runs into the same situation.
I'm defining the patch like this:
mocker.patch.object(os, "makedirs", return_value=mock)
Which would be a valid structure if I was patching the result a function/method. That is, what this patch is saying is "when you call the makedirs, return this.
What I actually want to do is return a mock in place of the method. In it's current form it makes sense that I see two different mocks because the patch logic is currently "replace makedirs with a new mock and then when that mock is called, return this other mock (the mock I made)"
What I really want is just:
mocker.patch.object(os, "makedirs", mock)
Where my third argument (in the patch.object form) is the mock module parameter (vs the named return_value parameter).
In retrospect, it's pretty obvious when I think about it which is why I'm considering deleting the question, but it's an easy enough trip-up that I'm going to leave it live for now.

Pytest - How to assert whether a function have called monkeypatched methods

I have a complex function that calls many other 3rd party methods. I monkeypatched them out one by one:
import ThirdParty as tp
def my_method():
tp.func_3rd_party_1()
...
tp.func_3rd_party_5()
return "some_value"
In my test:
import pytest
def test_my_method(monkeypatch):
monkeypatch.setattr(ThirdParty, 'func_3rd_party_1', some_mock_1())
...
monkeypatch.setattr(ThirdParty, 'func_3rd_party_5', some_mock_5())
return_value = my_method()
assert return value
This runs just fine but the test feels too implicit for me in this form. I'd like to explicitly state that the monkeypatched methods were indeed called.
For the record, my mocked methods are not using any inbuilt Mock library resource. They are just redefined methods (smart stubs).
Is there any way to assert for that?
So the pytest monkeypatching fixture is specifically provided so you can change some global attributes like environment variables, stuff in third party libraries, etc, to provide some controlled and easy behavior for your test.
The Mock objects, on the other hand, are meant to provide all sorts of tracking and inspection on the object.
The two go hand in hand: You use patching to replace some third party function with a Mock object, then execute your code, and then ask the Mock object if it has indeed been invoked with the right arguments, for the right number of times.
Note that even though the mock module is part of unittest, it works perfectly fine with pytest.
Now as for the patching itself, it's up to your personal preference, and depends a bit on what exactly you want to patch, whether using unittest.mock.patch is more compact or pytest's monkeypatch fixture.
import pytest
from unittest.mock import Mock
def test_my_method(monkeypatch):
# refer to the mock module documentation for more complex
# set ups, where the mock object _also_ exhibits some behavior.
# as is, calling the function doesn't actually _do_ anything.
some_mock_1 = Mock()
...
some_mock_5 = Mock(return_value=66)
monkeypatch.setattr(ThirdParty, 'func_3rd_party_1', some_mock_1)
...
monkeypatch.setattr(ThirdParty, 'func_3rd_party_5', some_mock_5)
some_mock_1.assert_called_once()
some_mock_5.assert_called_with(42)
...
Now a note on this type of testing: Don't go overboard! It can quite easily lead to what's called brittle tests: Tests that break with the slightest change to your code. It can make refactoring an impossible neightmare.
These types of assertions are best when you use them in a message-focused object-oriented approach. If the whole point of the class or method under test is to invoke, in a particular way, the method or class of another object, then Mock away. If the calls to third party functions on the other hand are merely a means to an end, then go a level higher with your test and test for the desired behavior instead.

Using patch() to mock something that I don't explicilty import

Let's say I have the following modules:
# src/myapp/utils.py
import thirdparty
from myapp.secrets import get_super_secret_stuff
def get_thirdparty_client() -> return thirdparty.Client:
thirdparty.Client(**get_super_secret_stuff())
# src/myapp/things.py
from myapp.utils import get_thirdparty_client
from myapp.transformations import apply_fairydust, make_it_sparkle
def do_something(x):
thirdparty_client = get_thirdparty_client()
y = thidparty_client.query(apply_fairydust(x))
return make_it_sparkle(y)
Assume that myapp is lightly-tested legacy code, and refactoring is out of the question. Also assume (annoyingly) that thirdparty.Client does non-deterministic network I/O in its __init__ method. Therefore I intend to mock the thirdparty.Client class itself so as to make this do_something function testable.
Assume also that I must use unittest and cannot use another test framework like Pytest.
It seems like the patch function from unittest.mock is the right tool for the job. However, I'm unsure of how to apply the usual admonition to "patch where it is used."
Ideally I want to write a test that looks something like this:
# tests/test_myapp/test_things.py
from unittest import TestCase
from unittest.mock import patch
from myapp.things import do_something
def gen_test_pairs():
# Generate pairs of expected inputs and outputs
...
class ThingTest(unittest.TestCase):
#patch('????')
def test_do_something(self, mock_thirdparty_client):
for x, y in gen_test_pairs:
with self.subTest(params={'x': x, 'y': y}):
mock_thirdparty_client.query.return_value = y
self.assertEqual(do_something(x), y)
My problem is that I don't know what to write in place of the ????, because I never actually import thirdparty.Client in src/myapp/things.py.
Options I considered:
Apply the patch at myapp.utils.thirdparty.Client, which makes my test fragile and dependent on implementation details.
"Break the rules" and apply the patch at thirdparty.Client.
Import get_thirdparty_client in the test, use patch.object on it, and set its return_value to another MagicMock that I create separately, and this second mock would stand in for thirdparty.Client. This makes for more verbose testing code that can't easily be applied as a single decorator.
None of these options sounds particularly appealing, but I don't know which is considered the least bad.
Or is there another option available to me that I am not seeing?
The correct answer is 2: apply the patch to thirdparty.Client.
This is correct because it does NOT in fact break the "patch where it is used" rule.
The rule is intended to be descriptive, not literal. In this case, thirdparty.Client is considered to be "used" in the thirdparty module.
This concept is described in more detail in the 2018 PyCon talk "Demystifying the Patch Function" by Lisa Roach. The full recording is available on YouTube here: https://youtu.be/ww1UsGZV8fQ?t=537. The explanation of this particular case starts at approximately 9 minutes into the video.

Unit Testing/Mocking in Python

So let's say I have this bit of code:
import coolObject
def doSomething():
x = coolObject()
x.coolOperation()
Now it's a simple enough method, and as you can see we are using an external library(coolObject).
In unit tests, I have to create a mock of this object that roughly replicates it. Let's call this mock object coolMock.
My question is how would I tell the code when to use coolMock or coolObject? I've looked it up online, and a few people have suggested dependency injection, but I'm not sure I understand it correctly.
Thanks in advance!
def doSomething(cool_object=None):
cool_object = cool_object or coolObject()
...
In you test:
def test_do_something(self):
cool_mock = mock.create_autospec(coolObject, ...)
cool_mock.coolOperation.side_effect = ...
doSomthing(cool_object=cool_mock)
...
self.assertEqual(cool_mock.coolOperation.call_count, ...)
As Dan's answer says, one option is to use dependency injection: have the function accept an optional argument, if it's not passed in use the default class, so that a test can pass in a moc.
Another option is to use the mock library (here or here) to replace your coolObject.
Let's say you have a foo.py that looks like
from somewhere.else import coolObject
def doSomething():
x = coolObject()
x.coolOperation()
In your test_foo.py you can do:
import mock
def test_thing():
path = 'foo.coolObject' # The fully-qualified path to the module, class, function, whatever you want to mock.
with mock.patch('foo.coolObject') as m:
doSomething()
# Whatever you want to assert here.
assert m.called
The path you use can include properties on objects, e.g. module1.module2.MyClass.my_class_method. A big gotcha is that you need to mock the object in the module being tested, not where it is defined. In the example above, that means using a path of foo.coolObject and not somwhere.else.coolObject.

Override a "private" method in a python module

I want to test a function in python, but it relies on a module-level "private" function, that I don't want called, but I'm having trouble overriding/mocking it. Scenario:
module.py
_cmd(command, args):
# do something nasty
function_to_be_tested():
# do cool things
_cmd('rm', '-rf /')
return 1
test_module.py
import module
test_function():
assert module.function_to_be_tested() == 1
Ideally, in this test I dont want to call _cmd. I've looked at some other threads, and I've tried the following with no luck:
test_function():
def _cmd(command, args):
# do nothing
pass
module._cmd = _cmd
although checking module._cmd against _cmd doesn't give the correct reference. Using mock:
from mock import patch
def _cmd_mock(command, args):
# do nothing
pass
#patch('module._cmd', _cmd_mock)
test_function():
...
gives the correct reference when checking module._cmd, although `function_to_be_tested' still uses the original _cmd (as evidenced by it doing nasty things).
This is tricky because _cmd is a module-level function, and I dont want to move it into a module
[Disclaimer]
The synthetic example posted in this question works and the described issue become from specific implementation in production code. Maybe this question should be closed as off topic because the issue is not reproducible.
[Note] For impatient people Solution is at the end of the answer.
Anyway that question given to me a good point to thought: how we can patch a method reference when we cannot access to the variable where the reference is?
Lot of times I found some issue like this. There are lot of ways to meet that case and the commons are
Decorators: the instance we would like replace is passed as decorator argument or used in decorator static implementation
What we would like to patch is a default argument of a method
In both cases maybe refactor the code is the best way to play with that but what about if we are playing with some legacy code or the decorator is a third part decorator?
Ok, we have the back on the wall but we are using python and in python nothing is impossible. What we need is just the reference of the function/method to patch and instead of patching its reference we can patch the __code__: yes I'm speaking about patching the bytecode instead the function.
Get a real example. I'm using default parameter case that is simple, but it works either in decorator case.
def cmd(a):
print("ORIG {}".format(a))
def cmd_fake(a):
print("NEW {}".format(a))
def do_work(a, c=cmd):
c(a)
do_work("a")
cmd=cmd_fake
do_work("b")
Output:
ORIG a
ORIG b
Ok In this case we can test do_work by passing cmd_fake but there some cases where is impossible do it: for instance what about if we need to call something like that:
def what_the_hell():
list(map(lambda a:do_work(a), ["c","d"]))
what we can do is patch cmd.__code__ instead of _cmd by
cmd.__code__ = cmd_fake.__code__
So follow code
do_work("a")
what_the_hell()
cmd.__code__ = cmd_fake.__code__
do_work("b")
what_the_hell()
Give follow output:
ORIG a
ORIG c
ORIG d
NEW b
NEW c
NEW d
Moreover if we want to use a mock we can do it by add follow lines:
from unittest.mock import Mock, call
cmd_mock = Mock()
def cmd_mocker(a):
cmd_mock(a)
cmd.__code__=cmd_mocker.__code__
what_the_hell()
cmd_mock.assert_has_calls([call("c"),call("d")])
print("WORKS")
That print out
WORKS
Maybe I'm done... but OP still wait for a solution of his issue
from mock import patch, Mock
cmd_mock = Mock()
#A closure for grabbing the right function code
def cmd_mocker(a):
cmd_mock(a)
#patch.object(module._cmd,'__code__', new=cmd_mocker.__code__)
test_function():
...
Now I should say never use this trick unless you are with the back on the wall. Test should be simple to understand and to debug ... try to debug something like this and you will become mad!

Categories

Resources