Optimize large numpy array multiplication with sparse matrices - python

I am doing a statistical calculation of the following form:
where
d (data) is a matrix of size [i=30, 100x100]
m (model) is a matrix of size [i=30, 100x100]
C-1 (covariance) is a 1002 by 1002 symmetric matrix
d and C-1 are constants and do not have any structure apart from C-1 being symmetric. m changes, but is always sparse. The output of the calculation is just a floating-point number.
I need to perform this calculation many times in a Monte Carlo simulation, so speed is of the essence. Using sparse array multiplication techniques with m speeds things up considerably over a naive matrix dot product. However, each iteration of the slow function below still takes about 0.1 seconds to run. The vast majority of time (>98%) is spent in the matrix multiplications, and not the model generation function (generate_model). I would like to speed this up by an order of magnitude if possible.
The code and output are pasted below.
Things that do not work include:
Upgrading to the Intel MKL linear algebra routines (few percent speedup, surprisingly small)
Using numpy.linalg.multi_dot
Taking advantage of the fact that C-1 is symmetric (this does not work even in principle, see this mathoverflow question)
Things that sort of work include:
Precalculating C-1d, gives a ~40% speedup
How can I speed up this code? Solutions relying on packages like cython, numba, etc are most welcome as well as "standard" scipy/numpy solutions. Thanks in advance!
from __future__ import division
import numpy as np
import scipy.sparse
import sys
import timeit
def generate_model(n, size, hw = 8):
#model for the data--squares at random locations
output = np.zeros((n, size, size))
for i in range(n):
randx = np.random.randint(hw, size-hw)
randy = np.random.randint(hw, size-hw)
output[i,(randx-hw):(randx+hw), (randy-hw):(randy+hw)]=np.random.random((hw*2, hw*2))
return output
def slow_function(datacube, invcovmatrix, size):
model = generate_model(30, size)
output = 0
for i in range(model.shape[0]):
data = datacube[i,:,:].flatten()
mu = model[i,:,:].flatten()
sparsemu = scipy.sparse.csr_matrix(mu)
output += -0.5* (
np.float(-2.0*sparsemu.dot(invcovmatrix).dot(data)) +
np.float(sparsemu.dot(sparsemu.dot(invcovmatrix).T))
)
return output
def wrapper(func, *args, **kwargs):
def wrapped():
return func(*args, **kwargs)
return wrapped
if __name__ == "__main__":
size = 100
invcovmat = np.random.random((size**2, size**2))
#make symmetric for consistency
invcovmat = (invcovmat+invcovmat.T)/2
datacube = np.random.random((30, size, size))
#TIMING
wrapped = wrapper(slow_function, datacube, invcovmat, size)
times = []
for i in range(20):
print i
times.append(timeit.timeit(wrapped, number = 1))
times.sort()
print '\n', np.mean(times[0:3]), ' s/iteration; best of 3'
Output:
0.10408163070678711 s/iteration; best of 3

Related

Efficient computation of a loop of integrals in Python

I was wondering how to speed up the following code in where I compute a probability function which involves numerical integrals and then I compute some confidence margins.
Some possibilities that I have thought about are Numba or vectorization of the code
EDIT:
I have made minor modifications because there was a mistake. I am looking for some modifications that provide major time improvements (I know that there are some minor changes that would provide some minor time improvements, such as repeated functions, but I am not concerned about them)
The code is:
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 26 17:05:46 2021
#author: Ignacio
"""
import numpy as np
from scipy.integrate import simps
def pdf(V,alfa_points):
alfa=np.linspace(0,2*np.pi,alfa_points)
return simps(1/np.sqrt(2*np.pi)/np.sqrt(sigma_R2)*np.exp(-(V*np.cos(alfa)-eR)**2/2/sigma_R2)*1/np.sqrt(2*np.pi)/np.sqrt(sigma_I2)*np.exp(-(V*np.sin(alfa)-eI)**2/2/sigma_I2),alfa)
def find_nearest(array,value):
array=np.asarray(array)
idx = (np.abs(array-value)).argmin()
return array[idx]
N = 20
n=np.linspace(0,N-1,N)
d=1
sigma_An=0.1
sigma_Pn=0.2
An=np.ones(N)
Pn=np.zeros(N)
Vs=np.linspace(0,30,1000)
inc=np.max(Vs)/len(Vs)
th=np.linspace(0,np.pi/2,250)
R=np.sum(An*np.cos(Pn+2*np.pi*np.sin(th[:,np.newaxis])*n*d),axis=1)
I=np.sum(An*np.sin(Pn+2*np.pi*np.sin(th[:,np.newaxis])*n*d),axis=1)
fmin=np.zeros(len(th))
fmax=np.zeros(len(th))
for tt in range(len(th)):
eR=np.exp(-sigma_Pn**2/2)*np.sum(An*np.cos(Pn+2*np.pi*np.sin(th[tt])*n*d))
eI=np.exp(-sigma_Pn**2/2)*np.sum(An*np.sin(Pn+2*np.pi*np.sin(th[tt])*n*d))
sigma_R2=1/2*np.sum(An*sigma_An**2)+1/2*(1-np.exp(-sigma_Pn**2))*np.sum(An**2)+1/2*np.sum(np.cos(2*(Pn+2*np.pi*np.sin(th[tt])*n*d))*((An**2+sigma_An**2)*np.exp(-2*sigma_Pn**2)-An**2*np.exp(-sigma_Pn**2)))
sigma_I2=1/2*np.sum(An*sigma_An**2)+1/2*(1-np.exp(-sigma_Pn**2))*np.sum(An**2)-1/2*np.sum(np.cos(2*(Pn+2*np.pi*np.sin(th[tt])*n*d))*((An**2+sigma_An**2)*np.exp(-2*sigma_Pn**2)-An**2*np.exp(-sigma_Pn**2)))
PDF=np.zeros(len(Vs))
for vv in range(len(Vs)):
PDF[vv]=pdf(Vs[vv],100)
total=simps(PDF,Vs)
values=np.cumsum(PDF)*inc/total
xval_05=find_nearest(values,0.05)
fmin[tt]=Vs[values==xval_05]
xval_95=find_nearest(values,0.95)
fmax[tt]=Vs[values==xval_95]
This version's speedup: 31x
A simple profiling (%%prun) reveals that most of the time is spent in simps.
You are in control of the integration done in pdf(): for example, you can use the trapeze method instead of Simpson with negligible numerical difference if you increase a bit the resolution of alpha. In fact, the higher resolution obtained by a higher sampling of alpha more than makes up for the difference between simps and trapeze (see picture at the bottom as for why). This is by far the highest speedup. We go one bit further by implementing the trapeze method ourselves instead of using scipy, since it is so simple. This alone yields marginal gain, but opens the door for a more drastic optimization (below, about pdf2D.
Also, the remaining simps(PDF, ...) goes faster when it knows that the dx step is constant, so we can just say so instead of passing the whole alpha array.
You can avoid doing the loop to compute PDF and use np.vectorize(pdf) directly on Vs, or better (as in the code below), do a 2-D version of that calculation.
There are some other minor things (such as using an index directly fmin[tt] = Vs[closest(values, 0.05)] instead of finding the index, returning the value, and then using a boolean mask for where values == xval_05), or taking all the constants (including alpha) outside functions and avoid recalculating every time.
This above gives us a 5.2x improvement. There is a number of things I don't understand in your code, e.g. why having An (ones) and Pn (zeros)?
But, importantly, another ~6x speedup comes from the observation that, since we are implementing our own trapeze method by using numpy primitives, we can actually do it in 2D in one go for the whole PDF.
The final speed up of the code below is 31x. I believe that a better understanding of "the big picture" of what you want to do would yield additional, perhaps substantial, speed gains.
Modified code:
import numpy as np
from scipy.integrate import simps
alpha_points = 200 # more points as we'll use trapeze not simps
alpha = np.linspace(0, 2*np.pi, alpha_points)
cosalpha = np.cos(alpha)
sinalpha = np.sin(alpha)
d_alpha = np.mean(np.diff(alpha)) # constant dx
coeff = 1 / np.sqrt(2*np.pi)
Vs=np.linspace(0,30,1000)
d_Vs = np.mean(np.diff(Vs)) # constant dx
inc=np.max(Vs)/len(Vs)
def f2D(Vs, eR, sigma_R2, eI, sigma_I2):
a = coeff / np.sqrt(sigma_R2)
b = coeff / np.sqrt(sigma_I2)
y = a * np.exp(-(np.outer(cosalpha, Vs) - eR)**2 / 2 / sigma_R2) * b * np.exp(-(np.outer(sinalpha, Vs) - eI)**2 / 2 / sigma_I2)
return y
def pdf2D(Vs, eR, sigma_R2, eI, sigma_I2):
y = f2D(Vs, eR, sigma_R2, eI, sigma_I2)
s = y.sum(axis=0) - (y[0] + y[-1]) / 2 # our own impl of trapeze, on 2D y
return s * d_alpha
def closest(a, val):
return np.abs(a - val).argmin()
N = 20
n = np.linspace(0,N-1,N)
d = 1
sigma_An = 0.1
sigma_Pn = 0.2
An=np.ones(N)
Pn=np.zeros(N)
th = np.linspace(0,np.pi/2,250)
R = np.sum(An*np.cos(Pn+2*np.pi*np.sin(th[:,np.newaxis])*n*d),axis=1)
I = np.sum(An*np.sin(Pn+2*np.pi*np.sin(th[:,np.newaxis])*n*d),axis=1)
fmin=np.zeros(len(th))
fmax=np.zeros(len(th))
for tt in range(len(th)):
eR=np.exp(-sigma_Pn**2/2)*np.sum(An*np.cos(Pn+2*np.pi*np.sin(th[tt])*n*d))
eI=np.exp(-sigma_Pn**2/2)*np.sum(An*np.sin(Pn+2*np.pi*np.sin(th[tt])*n*d))
sigma_R2=1/2*np.sum(An*sigma_An**2)+1/2*(1-np.exp(-sigma_Pn**2))*np.sum(An**2)+1/2*np.sum(np.cos(2*(Pn+2*np.pi*np.sin(th[tt])*n*d))*((An**2+sigma_An**2)*np.exp(-2*sigma_Pn**2)-An**2*np.exp(-sigma_Pn**2)))
sigma_I2=1/2*np.sum(An*sigma_An**2)+1/2*(1-np.exp(-sigma_Pn**2))*np.sum(An**2)-1/2*np.sum(np.cos(2*(Pn+2*np.pi*np.sin(th[tt])*n*d))*((An**2+sigma_An**2)*np.exp(-2*sigma_Pn**2)-An**2*np.exp(-sigma_Pn**2)))
PDF=pdf2D(Vs, eR, sigma_R2, eI, sigma_I2)
total = simps(PDF, dx=d_Vs)
values = np.cumsum(PDF) * inc / total
fmin[tt] = Vs[closest(values, 0.05)]
fmax[tt] = Vs[closest(values, 0.95)]
Note: most of the fmin and fmax are np.allclose() compared with the original function, but some of them have a small error: after some digging, it turns out that the implementation here is more precise as that function f() can be pretty abrupt, and more alpha points actually help (and more than compensate the minuscule lack of precision due to using trapeze instead of Simpson).
For example, at index tt=244, vv=400:
Considering several methods, the one that provides the largest time improvement is the Numba method. The method proposed by Pierre is very interesting and it does not require to install other packages, which is an asset.
However, in the examples that I have computed, the time improvement is not as large as with the numba example, specially when the points in th grows to a few tenths of thousands (which is my actual case). I post here the Numba code just in case someone is interested:
import numpy as np
from numba import njit
#njit
def margins(val_min,val_max):
fmin=np.zeros(len(th))
fmax=np.zeros(len(th))
for tt in range(len(th)):
eR=np.exp(-sigma_Pn**2/2)*np.sum(An*np.cos(Pn+2*np.pi*np.sin(th[tt])*n*d))
eI=np.exp(-sigma_Pn**2/2)*np.sum(An*np.sin(Pn+2*np.pi*np.sin(th[tt])*n*d))
sigma_R2=1/2*np.sum(An*sigma_An**2)+1/2*(1-np.exp(-sigma_Pn**2))*np.sum(An**2)+1/2*np.sum(np.cos(2*(Pn+2*np.pi*np.sin(th[tt])*n*d))*((An**2+sigma_An**2)*np.exp(-2*sigma_Pn**2)-An**2*np.exp(-sigma_Pn**2)))
sigma_I2=1/2*np.sum(An*sigma_An**2)+1/2*(1-np.exp(-sigma_Pn**2))*np.sum(An**2)-1/2*np.sum(np.cos(2*(Pn+2*np.pi*np.sin(th[tt])*n*d))*((An**2+sigma_An**2)*np.exp(-2*sigma_Pn**2)-An**2*np.exp(-sigma_Pn**2)))
Vs=np.linspace(0,30,1000)
inc=np.max(Vs)/len(Vs)
integration_points=200
PDF=np.zeros(len(Vs))
for vv in range(len(Vs)):
PDF[vv]=np.trapz(1/np.sqrt(2*np.pi)/np.sqrt(sigma_R2)*np.exp(-(Vs[vv]*np.cos(np.linspace(0,2*np.pi,integration_points))-eR)**2/2/sigma_R2)*1/np.sqrt(2*np.pi)/np.sqrt(sigma_I2)*np.exp(-(Vs[vv]*np.sin(np.linspace(0,2*np.pi,integration_points))-eI)**2/2/sigma_I2),np.linspace(0,2*np.pi,integration_points))
total=np.trapz(PDF,Vs)
values=np.cumsum(PDF)*inc/total
idx = (np.abs(values-val_min)).argmin()
xval_05=values[idx]
fmin[tt]=Vs[np.where(values==xval_05)[0][0]]
idx = (np.abs(values-val_max)).argmin()
xval_95=values[idx]
fmax[tt]=Vs[np.where(values==xval_95)[0][0]]
return fmin,fmax
N = 20
n=np.linspace(0,N-1,N)
d=1
sigma_An=1/2**6
sigma_Pn=2*np.pi/2**6
An=np.ones(N)
Pn=np.zeros(N)
th=np.linspace(0,np.pi/2,250)
R=np.sum(An*np.cos(Pn+2*np.pi*np.sin(th[:,np.newaxis])*n*d),axis=1)
I=np.sum(An*np.sin(Pn+2*np.pi*np.sin(th[:,np.newaxis])*n*d),axis=1)
F=R+1j*I
Fa=np.abs(F)/np.max(np.abs(F))
fmin, fmax = margins(0.05,0.95)

Working with very large matrices in numpy

I have a transition matrix for which I want to calculate a steady state vector. The code I'm using is adapted from this question, and it works well for matrices of normal size:
def steady_state(matrix):
dim = matrix.shape[0]
q = (matrix - np.eye(dim))
ones = np.ones(dim)
q = np.c_[q, ones]
qtq = np.dot(q, q.T)
bqt = np.ones(dim)
return np.linalg.solve(qtq, bqt)
However, the matrix I'm working with has about 1.5 million rows and columns. It isn't a sparse matrix either; most entries are small but non-zero. Of course, just trying to build that matrix throws a memory error.
How can I modify the above code to work with huge matrices? I've heard of solutions like PyTables, but I'm not sure how to apply them, and I don't know if they would work for tasks like np.linalg.solve.
Being very new to numpy and very inexperienced with linear algebra, I'd very much appreciate an example of what to do in my case. I'm open to using something other than numpy, and even something other than Python if needed.
Here's some ideas to start with:
We can use the fact that any initial probability vector will converge on the steady state under time evolution (assuming it's ergodic, aperiodic, regular, etc).
For small matrices we could use
def steady_state(matrix):
dim = matrix.shape[0]
prob = np.ones(dim) / dim
other = np.zeros(dim)
while np.linalg.norm(prob - other) > 1e-3:
other = prob.copy()
prob = other # matrix
return prob
(I think the conventions assumed by the function in the question is that distributions go in rows).
Now we can use the fact that matrix multiplication and norm can be done chunk by chunk:
def steady_state_chunk(matrix, block_in=100, block_out=10):
dim = matrix.shape[0]
prob = np.ones(dim) / dim
error = 1.
while error > 1e-3:
error = 0.
other = prob.copy()
for i in range(0, dim, block_out):
outs = np.s_[i:i+block_out]
vec_out = np.zeros(block_out)
for j in range(0, dim, block_in):
ins = np.s_[j:j+block_in]
vec_out += other[ins] # matrix[ins, outs]
error += np.linalg.norm(vec_out - prob[outs])**2
prob[outs] = vec_out
error = np.sqrt(error)
return prob
This should use less memory for temporaries, thought you could do better by using the out parameter of np.matmul.
I should add something to deal with the last slice in each loop, in case dim isn't divisible by block_*, but I hope you get the idea.
For arrays that don't fit in memory to start with, you can apply the tools from the links in the comments above.

Speeding up Evaluation of Sympy Symbolic Expressions

A Python program I am currently working on (Gaussian process classification) is bottlenecking on evaluation of Sympy symbolic matrices, and I can't figure out what I can, if anything, do to speed it up. Other parts of the program I've already ensured are typed properly (in terms of numpy arrays) so calculations between them are properly vectorised, etc.
I looked into Sympy's codegen functions a bit (autowrap, binary_function) in particular, but because my within my ImmutableMatrix object itself are partial derivatives over elements of a symbolic matrix, there is a long list of 'unhashable' things which prevent me from using the codegen functionality.
Another possibility I looked into was using Theano - but after some initial benchmarks, I found that while it build the initial partial derivative symbolic matrices much quicker, it seemed to be a few orders of magnitude slower at evaluation, the opposite of what I was seeking.
Below is a working, extracted snippet of the code I am currently working on.
import theano
import sympy
from sympy.utilities.autowrap import autowrap
from sympy.utilities.autowrap import binary_function
import numpy as np
import math
from datetime import datetime
# 'Vectorized' cdist that can handle symbols/arbitrary types - preliminary benchmarking put it at ~15 times faster than python list comprehension, but still notably slower (forgot at the moment) than cdist, of course
def sqeucl_dist(x, xs):
m = np.sum(np.power(
np.repeat(x[:,None,:], len(xs), axis=1) -
np.resize(xs, (len(x), xs.shape[0], xs.shape[1])),
2), axis=2)
return m
def build_symbolic_derivatives(X):
# Pre-calculate derivatives of inverted matrix to substitute values in the Squared Exponential NLL gradient
f_err_sym, n_err_sym = sympy.symbols("f_err, n_err")
# (1,n) shape 'matrix' (vector) of length scales for each dimension
l_scale_sym = sympy.MatrixSymbol('l', 1, X.shape[1])
# K matrix
print("Building sympy matrix...")
eucl_dist_m = sqeucl_dist(X/l_scale_sym, X/l_scale_sym)
m = sympy.Matrix(f_err_sym**2 * math.e**(-0.5 * eucl_dist_m)
+ n_err_sym**2 * np.identity(len(X)))
# Element-wise derivative of K matrix over each of the hyperparameters
print("Getting partial derivatives over all hyperparameters...")
pd_t1 = datetime.now()
dK_df = m.diff(f_err_sym)
dK_dls = [m.diff(l_scale_sym) for l_scale_sym in l_scale_sym]
dK_dn = m.diff(n_err_sym)
print("Took: {}".format(datetime.now() - pd_t1))
# Lambdify each of the dK/dts to speed up substitutions per optimization iteration
print("Lambdifying ")
l_t1 = datetime.now()
dK_dthetas = [dK_df] + dK_dls + [dK_dn]
dK_dthetas = sympy.lambdify((f_err_sym, l_scale_sym, n_err_sym), dK_dthetas, 'numpy')
print("Took: {}".format(datetime.now() - l_t1))
return dK_dthetas
# Evaluates each dK_dtheta pre-calculated symbolic lambda with current iteration's hyperparameters
def eval_dK_dthetas(dK_dthetas_raw, f_err, l_scales, n_err):
l_scales = sympy.Matrix(l_scales.reshape(1, len(l_scales)))
return np.array(dK_dthetas_raw(f_err, l_scales, n_err), dtype=np.float64)
dimensions = 3
X = np.random.rand(50, dimensions)
dK_dthetas_raw = build_symbolic_derivatives(X)
f_err = np.random.rand()
l_scales = np.random.rand(3)
n_err = np.random.rand()
t1 = datetime.now()
dK_dthetas = eval_dK_dthetas(dK_dthetas_raw, f_err, l_scales, n_err) # ~99.7%
print(datetime.now() - t1)
In this example, 5 50x50 symbolic matrices are evaluated, i.e. only 12,500 elements, taking 7 seconds. I've spent quite some time looking for resources on speeding operations like this up, and trying to translate it into Theano (at least until I found its evaluation slower in my case) and having no luck there either.
Any help greatly appreciated!

Convolution computations in Numpy/Scipy

Profiling some computational work I'm doing showed me that one bottleneck in my program was a function that basically did this (np is numpy, sp is scipy):
def mix1(signal1, signal2):
spec1 = np.fft.fft(signal1, axis=1)
spec2 = np.fft.fft(signal2, axis=1)
return np.fft.ifft(spec1*spec2, axis=1)
Both signals have shape (C, N) where C is the number of sets of data (usually less than 20) and N is the number of samples in each set (around 5000). The computation for each set (row) is completely independent of any other set.
I figured that this was just a simple convolution, so I tried to replace it with:
def mix2(signal1, signal2):
outputs = np.empty_like(signal1)
for idx, row in enumerate(outputs):
outputs[idx] = sp.signal.convolve(signal1[idx], signal2[idx], mode='same')
return outputs
...just to see if I got the same results. But I didn't, and my questions are:
Why not?
Is there a better way to compute the equivalent of mix1()?
(I realise that mix2 probably wouldn't have been faster as-is, but it might have been a good starting point for parallelisation.)
Here's the full script I used to quickly check this:
import numpy as np
import scipy as sp
import scipy.signal
N = 4680
C = 6
def mix1(signal1, signal2):
spec1 = np.fft.fft(signal1, axis=1)
spec2 = np.fft.fft(signal2, axis=1)
return np.fft.ifft(spec1*spec2, axis=1)
def mix2(signal1, signal2):
outputs = np.empty_like(signal1)
for idx, row in enumerate(outputs):
outputs[idx] = sp.signal.convolve(signal1[idx], signal2[idx], mode='same')
return outputs
def test(num, chans):
sig1 = np.random.randn(chans, num)
sig2 = np.random.randn(chans, num)
res1 = mix1(sig1, sig2)
res2 = mix2(sig1, sig2)
np.testing.assert_almost_equal(res1, res2)
if __name__ == "__main__":
np.random.seed(0x1234ABCD)
test(N, C)
So I tested this out and can now confirm a few things:
1) numpy.convolve is not circular, which is what the fft code is giving you:
2) FFT does not internally pad to a power of 2. Compare the vastly different speeds of the following operations:
x1 = np.random.uniform(size=2**17-1)
x2 = np.random.uniform(size=2**17)
np.fft.fft(x1)
np.fft.fft(x2)
3) Normalization is not a difference -- if you do a naive circular convolution by adding up a(k)*b(i-k), you will get the result of the FFT code.
The thing is padding to a power of 2 is going to change the answer. I've heard tales that there are ways to deal with this by cleverly using prime factors of the length (mentioned but not coded in Numerical Recipes) but I've never seen people actually do that.
scipy.signal.fftconvolve does convolve by FFT, it's python code. You can study the source code, and correct you mix1 function.
As mentioned before, the scipy.signal.convolve function does not perform a circular convolution. If you want a circular convolution performed in realspace (in contrast to using fft's) I suggest using the scipy.ndimage.convolve function. It has a mode parameter which can be set to 'wrap' making it a circular convolution.
for idx, row in enumerate(outputs):
outputs[idx] = sp.ndimage.convolve(signal1[idx], signal2[idx], mode='wrap')

Rewriting a for loop in pure NumPy to decrease execution time

I recently asked about trying to optimise a Python loop for a scientific application, and received an excellent, smart way of recoding it within NumPy which reduced execution time by a factor of around 100 for me!
However, calculation of the B value is actually nested within a few other loops, because it is evaluated at a regular grid of positions. Is there a similarly smart NumPy rewrite to shave time off this procedure?
I suspect the performance gain for this part would be less marked, and the disadvantages would presumably be that it would not be possible to report back to the user on the progress of the calculation, that the results could not be written to the output file until the end of the calculation, and possibly that doing this in one enormous step would have memory implications? Is it possible to circumvent any of these?
import numpy as np
import time
def reshape_vector(v):
b = np.empty((3,1))
for i in range(3):
b[i][0] = v[i]
return b
def unit_vectors(r):
return r / np.sqrt((r*r).sum(0))
def calculate_dipole(mu, r_i, mom_i):
relative = mu - r_i
r_unit = unit_vectors(relative)
A = 1e-7
num = A*(3*np.sum(mom_i*r_unit, 0)*r_unit - mom_i)
den = np.sqrt(np.sum(relative*relative, 0))**3
B = np.sum(num/den, 1)
return B
N = 20000 # number of dipoles
r_i = np.random.random((3,N)) # positions of dipoles
mom_i = np.random.random((3,N)) # moments of dipoles
a = np.random.random((3,3)) # three basis vectors for this crystal
n = [10,10,10] # points at which to evaluate sum
gamma_mu = 135.5 # a constant
t_start = time.clock()
for i in range(n[0]):
r_frac_x = np.float(i)/np.float(n[0])
r_test_x = r_frac_x * a[0]
for j in range(n[1]):
r_frac_y = np.float(j)/np.float(n[1])
r_test_y = r_frac_y * a[1]
for k in range(n[2]):
r_frac_z = np.float(k)/np.float(n[2])
r_test = r_test_x +r_test_y + r_frac_z * a[2]
r_test_fast = reshape_vector(r_test)
B = calculate_dipole(r_test_fast, r_i, mom_i)
omega = gamma_mu*np.sqrt(np.dot(B,B))
# write r_test, B and omega to a file
frac_done = np.float(i+1)/(n[0]+1)
t_elapsed = (time.clock()-t_start)
t_remain = (1-frac_done)*t_elapsed/frac_done
print frac_done*100,'% done in',t_elapsed/60.,'minutes...approximately',t_remain/60.,'minutes remaining'
One obvious thing you can do is replace the line
r_test_fast = reshape_vector(r_test)
with
r_test_fast = r_test.reshape((3,1))
Probably won't make any big difference in performance, but in any case it makes sense to use the numpy builtins instead of reinventing the wheel.
Generally speaking, as you probably have noticed by now, the trick with optimizing numpy is to express the algorithm with the help of numpy whole-array operations or at least with slices instead of iterating over each element in python code. What tends to prevent this kind of "vectorization" is so-called loop-carried dependencies, i.e. loops where each iteration is dependent on the result of a previous iteration. Looking briefly at your code, you have no such thing, and it should be possible to vectorize your code just fine.
EDIT: One solution
I haven't verified this is correct, but should give you an idea of how to approach it.
First, take the cartesian() function, which we'll use. Then
def calculate_dipole_vect(mus, r_i, mom_i):
# Treat each mu sequentially
Bs = []
omega = []
for mu in mus:
rel = mu - r_i
r_norm = np.sqrt((rel * rel).sum(1))
r_unit = rel / r_norm[:, np.newaxis]
A = 1e-7
num = A*(3*np.sum(mom_i * r_unit, 0)*r_unit - mom_i)
den = r_norm ** 3
B = np.sum(num / den[:, np.newaxis], 0)
Bs.append(B)
omega.append(gamma_mu * np.sqrt(np.dot(B, B)))
return Bs, omega
# Transpose to get more "natural" ordering with row-major numpy
r_i = r_i.T
mom_i = mom_i.T
t_start = time.clock()
r_frac = cartesian((np.arange(n[0]) / float(n[0]),
np.arange(n[1]) / float(n[1]),
np.arange(n[2]) / float(n[2])))
r_test = np.dot(r_frac, a)
B, omega = calculate_dipole_vect(r_test, r_i, mom_i)
print 'Total time for vectorized: %f s' % (time.clock() - t_start)
Well, in my testing, this is in fact slightly slower than the loop-based approach I started from. The thing is, in the original version in the question, it was already vectorized with whole-array operations over arrays of shape (20000, 3), so any further vectorization doesn't really bring much further benefit. In fact, it may worsen the performance, as above, maybe due to big temporary arrays.
If you profile your code, you'll see that 99% of the running time is in calculate_dipole so reducing the time for this looping really won't give a noticeable reduction in execution time. You still need to focus on calculate_dipole if you want to make this faster. I tried my Cython code for calculate_dipole on this and got a reduction by about a factor of 2 in the overall time. There might be other ways to improve the Cython code too.

Categories

Resources