Hand recognition script for OpenCV+Python not working - python

I'm trying to get the following script to work. I found it from this website but I keep getting the error :
contours, hierarchy = cv2.findContours(thresh1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
ValueError: too many values to unpack (expected 2)
I have little experience in Python and OpenCV so if anyone here can help that would be much appreciated!
I'm running Mac OS X 10.13.4, OpenCV 3.4.1, Python 3.6.5
and
Here is the script I'm trying to get work :
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
while( cap.isOpened() ) :
ret,img = cap.read()
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray,(5,5),0)
ret,thresh1 = cv2.threshold(blur,70,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
contours, hierarchy = cv2.findContours(thresh1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
drawing = np.zeros(img.shape,np.uint8)
max_area=0
for i in range(len(contours)):
cnt=contours[i]
area = cv2.contourArea(cnt)
if(area>max_area):
max_area=area
ci=i
cnt=contours[ci]
hull = cv2.convexHull(cnt)
moments = cv2.moments(cnt)
if moments['m00']!=0:
cx = int(moments['m10']/moments['m00']) # cx = M10/M00
cy = int(moments['m01']/moments['m00']) # cy = M01/M00
centr=(cx,cy)
cv2.circle(img,centr,5,[0,0,255],2)
cv2.drawContours(drawing,[cnt],0,(0,255,0),2)
cv2.drawContours(drawing,[hull],0,(0,0,255),2)
cnt = cv2.approxPolyDP(cnt,0.01*cv2.arcLength(cnt,True),True)
hull = cv2.convexHull(cnt,returnPoints = False)
if(1):
defects = cv2.convexityDefects(cnt,hull)
mind=0
maxd=0
for i in range(defects.shape[0]):
s,e,f,d = defects[i,0]
start = tuple(cnt[s][0])
end = tuple(cnt[e][0])
far = tuple(cnt[f][0])
dist = cv2.pointPolygonTest(cnt,centr,True)
cv2.line(img,start,end,[0,255,0],2)
cv2.circle(img,far,5,[0,0,255],-1)
print(i)
i=0
cv2.imshow('output',drawing)
cv2.imshow('input',img)
k = cv2.waitKey(10)
if k == 27:
break
Thank you so much in advanced!

The function cv2.fincContours has changed since OpenCV 3.x , and back in OpenCV 4.x . Try this:
## Find contours
if cv2.__version__.startswith("3."):
_, contours, _ = cv2.findContours(thresh1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
else:
contours, _ = cv2.findContours(thresh1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
Related:
How to use `cv2.findContours` in different OpenCV versions?

Related

i am working on program which select's the ROI of wobbly video and extract the ROI in diff window as stable ROI, want to improve its computation speed

The problem is, program is really lengthy and computationally expensive.
so is there any way to make this program faster or any other way to write this code?
I am beginner in python and would love to take all suggestions or different approach then this program
also i am new to the stack overflow so if anything is wrong in this post or any issue in program please point out in comment .
first section of code is
#TEST V2.1 multitracker
import cv2
import numpy as np
#path = (input("enter the video path: "))
cap = cv2.VideoCapture(" YOUR VIDEO PATH ")
# creating the dictionary to add all the wanted trackers in OpenCV that can be used for tracking in future
OBJECT_TRACKING_MACHINE = {
"csrt": cv2.legacy.TrackerCSRT_create,
"kcf": cv2.legacy.TrackerKCF_create,
"boosting": cv2.legacy.TrackerBoosting_create,
"mil": cv2.legacy.TrackerMIL_create,
"tld": cv2.legacy.TrackerTLD_create,
"medianflow": cv2.legacy.TrackerMedianFlow_create,
"mosse": cv2.legacy.TrackerMOSSE_create
}
# Creating the MultiTracker variable object to store the
trackers = cv2.legacy.MultiTracker_create()
here I started the loop
while True:
frame = cap.read()[1]
#print("freame start",frame)
if frame is None:
print("error getting the video,please check the input")
break
frame = cv2.resize(frame,(1080,720))
Thresh = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#Thresh = cv2.adaptiveThreshold(gray, 185, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY_INV, 11, 6)
#print(trackers.update(Thresh))
(success, boxes) = trackers.update(Thresh)
# loop over the bounding boxes and draw them on the frame
if success == False:
bound_boxes = trackers.getObjects()
idx = np.where(bound_boxes.sum(axis= 1) != 0)[0]
bound_boxes = bound_boxes[idx]
trackers = cv2.legacy.MultiTracker_create()
for bound_box in bound_boxes:
trackers.add(tracker,Thresh,bound_box)
x,y,w,h = cv2.boundingRect(Thresh)
k = cv2.waitKey(50)
And I am guessing this is the section which is making the program slow
if is there any different way to represent this part or any idea different then this
for i,box in enumerate(boxes):
(x, y, w, h) = [int(v) for v in box]
#cv2.rectangle(Thresh, (x, y), (x + w, y + h), (255, 255, 255), 2)
#cv2.putText(Thresh,('TRACKING BOX NO-'+str(i)),(x+10,y-3),cv2.FONT_HERSHEY_PLAIN,1.0,(255,255,0),2)
arr = boxes.astype(int)
if i == 0 :
Roi = Thresh[(arr[i,1]):(arr[i,1]+arr[i,3]),(arr[i,0]):(arr[i,0]+arr[i,2])]
murg = cv2.resize(Roi,(300,200))
cv2.imshow("horizon", murg)
#print(murg)
if i == 1 :
Roi1 = Thresh[(arr[i,1]):(arr[i,1]+arr[i,3]),(arr[i,0]):(arr[i,0]+arr[i,2])]
Roi = Thresh[(arr[(i-1),1]):(arr[(i-1),1]+arr[(i-1),3]),(arr[(i-1),0]):(arr[(i-1),0]+arr[(i-1),2])]
murg = cv2.resize(Roi,(300,200))
murg1 = cv2.resize(Roi1,(300,200))
hori = np.concatenate((murg,murg1),axis=1)
cv2.imshow("horizon",hori)
#print(hori)
elif i == 2 :
Roi2 = Thresh[(arr[i,1]):(arr[i,1]+arr[i,3]),(arr[i,0]):(arr[i,0]+arr[i,2])]
Roi1 = Thresh[(arr[(i-1),1]):(arr[(i-1),1]+arr[(i-1),3]),(arr[(i-1),0]):(arr[(i-1),0]+arr[(i-1),2])]
Roi = Thresh[(arr[(i-2),1]):(arr[(i-2),1]+arr[(i-2),3]),(arr[(i-2),0]):(arr[(i-2),0]+arr[(i-2),2])]
murg = cv2.resize(Roi,(300,200))
murg1 = cv2.resize(Roi1,(300,200))
murg2 = cv2.resize(Roi2,(300,200))
hori = np.concatenate((murg,murg1,murg2),axis=1)
cv2.imshow("horizon",hori)
#print(hori)
elif i == 3 :
Roi3 = Thresh[(arr[i,1]):(arr[i,1]+arr[i,3]),(arr[i,0]):(arr[i,0]+arr[i,2])]
Roi2 = Thresh[(arr[(i-1),1]):(arr[(i-1),1]+arr[(i-1),3]),(arr[(i-1),0]):(arr[(i-1),0]+arr[(i-1),2])]
Roi1 = Thresh[(arr[(i-2),1]):(arr[(i-2),1]+arr[(i-2),3]),(arr[(i-2),0]):(arr[(i-2),0]+arr[(i-2),2])]
Roi = Thresh[(arr[(i-3),1]):(arr[(i-3),1]+arr[(i-3),3]),(arr[(i-3),0]):(arr[(i-3),0]+arr[(i-3),2])]
murg = cv2.resize(Roi,(300,200))
murg1 = cv2.resize(Roi1,(300,200))
murg2 = cv2.resize(Roi2,(300,200))
murg3 = cv2.resize(Roi3,(300,200))
hori = np.concatenate((murg,murg1,murg2,murg3),axis=1)
cv2.imshow("horizon",hori)
#print(hori)
this section is so that I can print the ROI matrix and to select the ROI
if k == ord("1"):
print(murg)
if k == ord("2"):
print(murg1)
if k == ord ("3"):
print(murg2)
if k == ord("4"):
print(murg3)
cv2.imshow('Frame', Thresh)
if k == ord("e"):
break
if k == ord("s"):
roi = cv2.selectROI("Frame", Thresh, fromCenter=False,showCrosshair=False)
tracker = OBJECT_TRACKING_MACHINE['mosse']()
trackers.add(tracker, Thresh, roi)
#print(boxes,success)
cap.release()
cv2.destroyAllWindows()
when you will run this code you can extract 4 ROI frames which will track your ROI's (I haven't added the precaution for empty matrix so it will give you error if you select more than 4 roi's)
my end goal is to extract those ROI videos for Image processing (this code is not done yet and there's more image processing is going to happen in letter part) **

Python, cvzone - why do i get this ValueError?

I am trying to zoom into a picture with usage of two hands (gesture controled image zoom), but when trying to use two hands I get this error but I don't know why. When making my program I followed this tutorial: https://www.youtube.com/watch?v=VPaFV3QBsEw&t=675s. It's strange because the program worked for him.
This is the error I get:
hands, img = detector.findHands(img)
ValueError: too many values to unpack (expected 2)
This is my code:
import cv2
from cvzone.HandTrackingModule import HandDetector
cap = cv2.VideoCapture(0)
cap.set(3, 1280)
cap.set(4, 720)
detector = HandDetector(detectionCon=0.7)
startDist = None
scale = 0
cx, cy = 500,500
while True:
success, img = cap.read()
hands, img = detector.findHands(img)
img1 = cv2.imread("kung_fu_panda.png")
if len(hands) == 2:
if detector.fingersUp(hands[0]) == [1, 1, 0, 0, 0] and \
detector.fingersUp(hands[1]) == [1, 1, 0, 0, 0]:
lmList1 = hands[0]["lmList"]
lmList2 = hands[1]["lmList"]
# point 8 is the tip of the index finger
if startDist is None:
length, info, img = detector.findDistance(hands[0]["center"], hands[1]["center"], img)
startDist = length
length, info, img = detector.findDistance(hands[0]["center"], hands[1]["center"], img)
scale = int((length - startDist) // 2)
cx, cy = info[4:]
print(scale)
else:
startDist = None
try:
h1, w1, _= img1.shape
newH, newW = ((h1+scale)//2)*2, ((w1+scale)//2)*2
img1 = cv2.resize(img1, (newW,newH))
img[cy-newH//2:cy+ newH//2, cx-newW//2:cx+ newW//2] = img1
except:
pass
cv2.imshow("Image", img)
cv2.waitKey(1)
cvzone library keeps updating their library every time. As you can see at the beginning of the video, when he imports the cvzone package he uses cvzone version 1.5.0.
I tried your code with other versions and got an error similar to yours but with version 1.5.0 your code worked great.
you can use my answer here to change the version of your cvzone library in your project to 1.5.0.

Disparity Map just shows contouring

The problem:
The goal is to create a disparity map for two parallel cameras. Currently the calculation itself is working, and I have a live disparitymap. It just shows contouring instead of information for every pixel, which is not what a disparity map should be doing.
.
What I have tried:
I tried the tsuka example, the lines are commented out, but they work. So this proves that the used functions work.
The result of my code is here: https://imgur.com/a/bIDmdkk (I probably don't have the reputation needed to upload images)
As can be seen in that image just the outline, the contour, of my face is visible. This contour reacts to my actual distance - with getting brighter or darker - but the rest of the image is dark.
With all parameters commented out (as is the example) it does now work either but has lots and lots of speckles laying over.
I also tried almost any combination of numDisparities and blocksize.
Changing the position of the cameras to one another alters the result but does not change it massively. I made sure to have them in a line with each other, looking in parallel.
Edit: I tinkered a bit and got this result: https://imgur.com/a/m2o9FOE compared to the previous result there are more features, but also more noise. (This one has fewer disparities and another color convertion)
SOLVED: [I tried running the stereo.compute within the while-loop with BGR-Images, but that does not work. The tsuka-example images are colored though, so there might be some case of wrong datatype that I do not see.
Everything is uint8 currently.] => I forgot that imread("",0) reads an image as grayscale. So everything behaves as it should in this regard.
.
So what is the difference between my left/right images and the ones resulting in https://docs.opencv.org/master/disparity_map.jpg ?
.
The code:
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
cap1 = cv.VideoCapture(1)
cap3 = cv.VideoCapture(3)
#imgR = cv.imread('tsuL.png',0)
#imgL = cv.imread('tsuR.png',0)
#stereoTest = cv.StereoBM_create(numDisparities=16, blockSize=15)
#disparityTest = stereoTest.compute(imgL,imgR)
while True:
# save current camera image
ret1, frame1 = cap1.read()
ret3, frame3 = cap3.read()
# switch from BGR to gray
grayFrame1 = cv.cvtColor(frame1, cv.COLOR_BGR2GRAY)
grayFrame3 = cv.cvtColor(frame3, cv.COLOR_BGR2GRAY)
# disparity params
stereo = cv.StereoBM_create(numDisparities=128, blockSize=5)
stereo.setTextureThreshold(600)
#stereo.setSpeckleRange(4)
#stereo.setSpeckleWindowSize(9)
stereo.setMinDisparity(0)
# calculate both variants (Camera 1 Left, Camera 2 Right and Camera 1 right, Camera 2 left)
disparity = stereo.compute(grayFrame1,grayFrame3)
disparity2 = stereo.compute(grayFrame3,grayFrame1)
#res = cv.cvtColor(disparity,cv.COLOR_GRAY2BGR)
# Should have been 65535 from int16 to int8, but 4095 works..
div = 65535.0/16
res = cv.convertScaleAbs(disparity, alpha=(255.0/div))
res2= cv.convertScaleAbs(disparity2, alpha=(255.0/div))
# Show disparity map
cv.namedWindow("Disparity")
cv.moveWindow("Disparity", 450, 20)
cv.imshow('Disparity', np.hstack([res,res2]))
keyboard = cv.waitKey(30)
if keyboard == 'q' or keyboard == 27:
break
cap.release()
cv.destroyAllWindows()
New Code
I got the camera calibration data from boofcv and copied some lines from https://stackoverflow.com/a/29151300/13150965 to my code.
Schwarz S/W
Xc 311,0 323,3
Yc 257,1 261,9
fx 603,0 593,6
fy 604,3 596,5
skew
radial 1,43e-01 1,1e-01
-3,03e-01 -2,43e-01
tangential 1,37e-02 1,25e-02
-9,77e-03 -9,79e-04
These are the values I received for each Camera (Schwarz and S/W are just names for each camera, they have different cables, that's how I recognize them)
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
cap1 = cv.VideoCapture(0)
cap3 = cv.VideoCapture(1)
cameraMatrix1 = np.array(
[[603.0, 0, 311.0],
[0, 604.3, 257.1],
[0, 0, 1]]
)
cameraMatrix2 = np.array(
[[593.6, 0, 323.3],
[0, 596.5, 261.9],
[0, 0, 1]]
)
distCoeffs1 = np.array([[0.143, -0.303, 0.0137, -0.00977, 0.0]])
distCoeffs2 = np.array([[0.11, -0.243, 0.0125, -0.000979, 0.0]])
R = np.array(
[[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]]
)
T = np.array(
[[98.0],
[0.0],
[0.0]]
)
# Params from camera calibration
camMats = [cameraMatrix1, cameraMatrix2]
distCoeffs = [distCoeffs1, distCoeffs2]
camSources = [0,1]
for src in camSources:
distCoeffs[src][0][4] = 0.0 # use only the first 2 values in distCoeffs
xOff = 450
div = 64.0
i = 0
while True:
# save current camera image
ret1, frame1 = cap1.read()
ret3, frame3 = cap3.read()
w, h = frame1.shape[:2]
# The rectification process
newCams = [0,0]
roi = [0,0]
frames = [frame1, frame3]
i = i + 1
if i > 10:
for src in camSources:
newCams[src], roi[src] = cv.getOptimalNewCameraMatrix(cameraMatrix = camMats[src],
distCoeffs = distCoeffs[src],
imageSize = (w,h),
alpha = 0)
rectFrames = [0,0]
for src in camSources:
rectFrames[src] = cv.undistort(frames[src], camMats[src], distCoeffs[src])
R1,R2,P1,P2,Q,roi1,roi2 = cv.stereoRectify(
cameraMatrix1 =camMats[0],
cameraMatrix2 =camMats[1],
distCoeffs1 =distCoeffs1,
distCoeffs2 =distCoeffs2,
imageSize = (w,h),
R=R,
T=T,
alpha=1
)
# show camera images
cv.namedWindow("RectFrames")
cv.moveWindow("RectFrames", xOff, 532)
cv.imshow('RectFrames', np.hstack([rectFrames[0],rectFrames[1]]))
# switch from BGR to gray
grayFrame1 = cv.cvtColor(rectFrames[0], cv.COLOR_BGR2GRAY)
grayFrame3 = cv.cvtColor(rectFrames[1], cv.COLOR_BGR2GRAY)
# disparity params
stereo = cv.StereoBM_create(numDisparities=16, blockSize=15)
# calculate both variants (Camera 1 Left, Camera 2 Right and Camera 1 right, Camera 2 left)
disparity = stereo.compute(grayFrame1,grayFrame3)
disparity2 = stereo.compute(grayFrame3,grayFrame1)
# Should have been 65535 from int16 to int8, but 4095 works..
res = cv.convertScaleAbs(disparity, alpha=(255.0/(div-1)))
res2= cv.convertScaleAbs(disparity2, alpha=(255.0/(div-1)))
# Show disparity map
cv.namedWindow("Disparity")
cv.moveWindow("Disparity", xOff, 20)
cv.imshow('Disparity', np.hstack([res,res2]))
keyboard = cv.waitKey(30)
if keyboard == 'q' or keyboard == 27:
break
cap.release()
cv.destroyAllWindows()
I can see, that the images are being undistorted. https://imgur.com/a/SBmv7IY
But I am still doing something wrong.
The R and T are made up, as they look parallel (No Rotation) and are 9.8cm apart from another.
The Values for R and T calculated via the script from StereoCalibration in OpenCV on Python resulted in the unity-matrix for R and an empty vector for T. The latter cannot be right.
I now got the R and T values for a given calibration of the cameras. But it does in fact not solve my problem. So either there is still an error in that calculation or this problem has to be solved differently.
I rewrote the entire script, to see at which step it misbehaves - and do tidy things up. At is stands, the calibration works up to the cv2.initUndistortRectifyMap , if I use this map with cv2.remap onto my camera image, I just get a black image.
import numpy as np
import cv2
from VideoCapture import Device
from PIL import Image
import glob
print("Importing Images")
image_listR = []
image_listL = []
w = 640
h = 480
for filename in glob.glob('StereoCalibrate\imageR*'): #assuming gif
im=Image.open(filename).convert('RGB')
cvim= np.array(im)
cvim = cvim[:, :, ::-1].copy()
image_listR.append(cvim)
for filename in glob.glob('StereoCalibrate\imageL*'): #assuming gif
im=Image.open(filename).convert('RGB')
cvim= np.array(im)
cvim = cvim[:, :, ::-1].copy()
image_listL.append(cvim)
imagesR = len(image_listR)
imagesL = len(image_listL)
print("Found {%d} images for Left camera" % imagesL)
print("Found {%d} images for Right camera" % imagesR)
if imagesR == imagesL:
print("Number of Images match")
else:
print("Number of Images do not match")
print("Using loaded images")
board_w = 8
board_h = 5
board_sz = (8,5)
board_n = board_w*board_h
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# Arrays to store object points and image points from all the images.
object_points = [] # 3d point in real world space
imagePoints1 = [] # 2d points in image plane.
imagePoints2 = [] # 2d points in image plane.
corners1 = []
corners2 = []
obj = np.zeros((5*8,3), np.float32)
obj[:,:2] = np.mgrid[0:8,0:5].T.reshape(-1,2)
vidStreamL = cv2.VideoCapture(1) # index of your camera
vidStreamR = cv2.VideoCapture(0) # index of your camera
success = 0
found1 = False
found2 = False
i=0
while (success < imagesR*0.9):
#Loop through the image list
if i >= imagesL:
i = 0
img1 = image_listL[i]
img2 = image_listR[i]
#Convert images to grayscale
gray1 = cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)
#Check for Chessboard Pattern
found1, corners1 = cv2.findChessboardCorners(img1, board_sz)
found2, corners2 = cv2.findChessboardCorners(img2, board_sz)
#Draw Chessboard in image
if (found1):
cv2.cornerSubPix(gray1, corners1, (11, 11), (-1, -1),criteria)
cv2.drawChessboardCorners(gray1, board_sz, corners1, found1)
if (found2):
cv2.cornerSubPix(gray2, corners2, (11, 11), (-1, -1), criteria)
cv2.drawChessboardCorners(gray2, board_sz, corners2, found2)
#Show grayscale image with chessboard marker
cv2.imshow('image1', gray1)
cv2.imshow('image2', gray2)
if (found1 != 0 and found2 != 0):
#Remove successful detected images from list
image_listL.pop(i)
image_listR.pop(i)
imagesL-=1
imagePoints1.append(corners1);
imagePoints2.append(corners2);
object_points.append(obj);
success+=1
print("{", success, "} / {",imagesR*0.9,"} calibration images detected")
if (success >= imagesR*0.9):
break
i = i + 1
cv2.waitKey(1)
cv2.destroyAllWindows()
print("Calibrating")
cx1 = 327.0
cy1 = 247.9
fx1 = 608.3
fy1 = 607.7
rx1 = 0.129
ry1 = -0.269
tx1 = 0.00382
ty1 = -0.00151
camMat1 = np.array(
[[fx1, 0, cx1],
[0, fy1, cy1],
[0, 0, 1]])
cx2 = 329.8
cy2 = 249.0
fx2 = 601.7
fy2 = 601.1
rx2 = 0.149
ry2 = -0.322
tx2 = 0.0039
ty2 = -0.000837
camMat2 = np.array(
[[fx2, 0, cx2],
[0, fy2, cy2],
[0, 0, 1]])
disCoe1 = np.array([[0.0,0.0,0.0,0.0,0.0]])
disCoe2 = np.array([[0.0,0.0,0.0,0.0,0.0]])
R = np.zeros(shape=(3,3))
T = np.zeros(shape=(3,3))
E = np.zeros(shape=(3,3))
F = np.zeros(shape=(3,3))
retval, camMat1, disCoe1, camMat2, disCoe2, R, T, E, F = cv2.stereoCalibrate(object_points, imagePoints1, imagePoints2, camMat1, disCoe1, camMat2, disCoe2, (w, h), flags = cv2.CALIB_USE_INTRINSIC_GUESS)
print("Done Calibration\n")
R1 = np.zeros(shape=(3,3))
R2 = np.zeros(shape=(3,3))
P1 = np.zeros(shape=(3,4))
P2 = np.zeros(shape=(3,4))
print("T:")
print('\n'.join([' '.join(['{:4}'.format(item) for item in row])
for row in T]))
print("E:")
print('\n'.join([' '.join(['{:4}'.format(item) for item in row])
for row in E]))
print("F:")
print('\n'.join([' '.join(['{:4}'.format(item) for item in row])
for row in F]))
print("R:")
print('\n'.join([' '.join(['{:4}'.format(item) for item in row])
for row in R]))
print("CAM1:")
print('\n'.join([' '.join(['{:4}'.format(item) for item in row])
for row in camMat1]))
print("CAM2:")
print('\n'.join([' '.join(['{:4}'.format(item) for item in row])
for row in camMat2]))
print("DIS1:")
print('\n'.join([' '.join(['{:4}'.format(item) for item in row])
for row in disCoe1]))
print("DIS2:")
print('\n'.join([' '.join(['{:4}'.format(item) for item in row])
for row in disCoe2]))
print("Rectifying cameras")
cv2.stereoRectify(camMat1, disCoe1, camMat2, disCoe2,(w, h), R, T)
#print("Undistort image")
#map1x, map1y = cv2.initUndistortRectifyMap(camMat1, disCoe1, R1, camMat1, (w, h), cv2.CV_32FC1)
#map2x, map2y = cv2.initUndistortRectifyMap(camMat2, disCoe2, R2, camMat2, (w, h), cv2.CV_32FC1)
print("Settings complete\n")
i = 1
j = 1
while(True):
retL, img1 = vidStreamL.read()
retR, img2 = vidStreamR.read()
img1 = cv2.undistort(img1, camMat1, disCoe1)
img2 = cv2.undistort(img2, camMat2, disCoe2)
cv2.imshow("ImgCam", np.hstack([img1,img2]));
#imgU1 = np.zeros((h,w,3), np.uint8)
#imgU2 = np.zeros((h,w,3), np.uint8)
#imgU1 = cv2.remap(img1, map1x, map1y, cv2.INTER_LINEAR, imgU1, cv2.BORDER_CONSTANT, 0)
#imgU2 = cv2.remap(img2, map2x, map2y, cv2.INTER_LINEAR, imgU2, cv2.BORDER_CONSTANT, 0)
#cv2.imshow("ImageCam", np.hstack([imgU1,imgU2]));
#imgU1 = cv2.cvtColor(imgU1, cv2.COLOR_BGR2GRAY)
#imgU2 = cv2.cvtColor(imgU2, cv2.COLOR_BGR2GRAY)
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
stereo = cv2.StereoBM_create(numDisparities=16, blockSize=15)
disparity = stereo.compute(img1,img2)
disparit2 = stereo.compute(img2,img1)
res = cv2.convertScaleAbs(disparity, alpha=(255.0/512.0))
re2 = cv2.convertScaleAbs(disparit2, alpha=(255.0/512.0))
cv2.namedWindow("Disparity")
cv2.imshow('Disparity', np.hstack([res,re2]))
cv2.waitKey(1)
Output:
Importing Images
Found {90} images for Left camera
Found {90} images for Right camera
Number of Images match
Using loaded images
{ 1 } / { 81.0 } calibration images detected
{ 2 } / { 81.0 } calibration images detected
...
{ 81 } / { 81.0 } calibration images detected
Calibrating
Done Calibration
T:
-3.4549164747952514
-0.15507627811210184
-0.058176064658149625
E:
0.0009397723130476023 0.05762864132890782 -0.15527769659160615
-0.01780225919479015 0.01349075458635349 3.455334047732434
-0.008356129824974412 -3.458367965240172 0.010848591597549652
F:
3.59441069386539e-08 2.1966757991956236e-06 -0.0032581679670958268
-6.799554333159719e-07 5.135279707045414e-07 0.060534502577423176
6.856712419870922e-06 -0.061575681061419536 1.0
R:
0.9988149170858261 -0.0472903202575948 -0.01150595570860947
0.047251107481307925 0.998876350140538 -0.0036564971909233096
0.011665943966274269 0.0031084947887139625 0.9999271188499311
CAM1:
457.8949692862012 0.0 333.02411929079784
0.0 459.45537763505865 239.7961684844508
0.0 0.0 1.0
CAM2:
460.4374113961873 0.0 342.68117331116434
0.0 461.07367491328057 244.62051778708334
0.0 0.0 1.0
DIS1:
0.06391854958023913 -0.2191286122082927 -0.000947168228999159 0.004660285089171575 0.08044318478168837
DIS2:
0.011643796283126952 0.14239490114798584 0.001548517080560543 0.011862118627062223 -0.5191998209097282
Rectifying cameras
Settings complete
You missed the Calibration and Rectification process, which is the first step of a disparity algorithm.
Below steps help you get your disparity map:
Calibrate your camera and find the intrinsic and extrinsic of the camera.
With the available camera and distortion matrix from the calibration, rectify your images.
Pass the images to your algorithm.
Get the disparity map.
Note: raw disparity map will be bad in a textureless region.

Getting this error "ValueError: not enough values to unpack (expected 3, got 2)" while compiling opencv contours

I'm going to run an openCV people counting tutorial code. tutorials are available here. https://fedemejia.com/?p=68
but while i'm running the following code by cmd. I'm getting this error
File "VideoCapture.py", line 25, in
_, contours0, hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
ValueError: not enough values to unpack (expected 3, got 2)
my python version is 3.6.8
opencv 4.0.0
import numpy as np
import cv2
cap = cv2.VideoCapture('peopleCounter.avi') #Open video file
fgbg = cv2.createBackgroundSubtractorMOG2(detectShadows = True) #Create the background substractor
kernelOp = np.ones((3,3),np.uint8)
kernelCl = np.ones((11,11),np.uint8)
areaTH = 500
while(cap.isOpened()):
ret, frame = cap.read() #read a frame
fgmask = fgbg.apply(frame) #Use the substractor
try:
ret,imBin= cv2.threshold(fgmask,200,255,cv2.THRESH_BINARY)
#Opening (erode->dilate) para quitar ruido.
mask = cv2.morphologyEx(imBin, cv2.MORPH_OPEN, kernelOp)
#Closing (dilate -> erode) para juntar regiones blancas.
mask = cv2.morphologyEx(mask , cv2.MORPH_CLOSE, kernelCl)
except:
#if there are no more frames to show...
print('EOF')
break
_, contours0, hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
for cnt in contours0:
cv2.drawContours(frame, cnt, -1, (0,255,0), 3, 8)
area = cv2.contourArea(cnt)
print area
if area > areaTH:
#################
# TRACKING #
#################
M = cv2.moments(cnt)
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
x,y,w,h = cv2.boundingRect(cnt)
cv2.circle(frame,(cx,cy), 5, (0,0,255), -1)
img = cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2)
cv2.imshow('Frame',frame)
#Abort and exit with 'Q' or ESC
k = cv2.waitKey(30) & 0xff
if k == 27:
break
cap.release() #release video file
cv2.destroyAllWindows() #close all openCV windows
It was supposed to give the result describe in the tutorial.
In OpenCV 4.0, cv2.findContour() returns only 2 values. So it should be contours0, hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE). See here https://docs.opencv.org/master/df/d0d/tutorial_find_contours.html

Disparity Map won't show/ not sure if calibrating properly

I wrote this code using other code that I found online. I don't get any errors, however I can't get the disparity map to show up using imshow. I saved the image and it is just black so I'm not doing something properly. Could someone please look through my code and see what's wrong with it? I may not be doing the stereocalibration properly but I am not sure.
Thank you!
import numpy as np
import cv2
import glob
import os
from matplotlib import pyplot as plt
print 'program starts'
from matplotlib import pyplot as plt
#termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 20, 0.001)
#-------------------------------------------------------------------------
#INITIALIZATION VARIABLES
#prepare object points
objp = np.zeros((6*9,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2)
#Arrays to store object points and image points from all the images.
objpoints = [] #3D points in real world space
imgpointsL = [] #2D points in image plane.
imgpointsR = []
#-------------------------------------------------------------------------
os.chdir('/home/pi/Desktop/LeftImg')
images = sorted(glob.glob('*.png'))
#print images
for fname in images:
img = cv2.imread(fname)
grayL = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# find chess board corners
ret, cornersL = cv2.findChessboardCorners(grayL, (9,6))
# if found, add object points, image points (after refining them)
if ret == True:
objpoints.append(objp)
cv2.cornerSubPix(grayL, cornersL, (11,11),(-1,-1), criteria)
imgpointsL.append(cornersL)
print len(objpoints)
os.chdir('/home/pi/Desktop/RightImg')
images = sorted(glob.glob('*.png'))
#print images
for fname in images:
img = cv2.imread(fname)
grayR = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# find chess board corners
ret, cornersR = cv2.findChessboardCorners(grayR, (9,6))
# if found, add object points, image points (after refining them)
if ret == True:
prevobjp = objp
objpoints.append(objp)
cv2.cornerSubPix(grayR, cornersR,(11,11),(-1,-1), criteria)
imgpointsR.append(cornersR)
c[prevobjp & objp]
if c.all():
print 'True'
else:
print 'False'
#print len(objpointsR)
#Draw and display corners
#img = cv2.drawChessboardCorners(img, (9,6), cornersR,ret)
# cv2.drawChessboardCorners(img, (9,6), cornersR,ret)
# plt.imshow(img)
# plt.show()
# print type(img)
# cv2.imshow('img', img)
# cv2.waitKey(500)
print 'start'
cameraMatrix1 = cv2.cv.CreateMat(3,3, cv2.CV_64FC1)
cameraMatrix2 = cv2.cv.CreateMat(3,3, cv2.CV_64FC1)
retval, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F = cv2.stereoCalibrate(objpoints, imgpointsL, imgpointsR, (384,288))
print cameraMatrix1, cameraMatrix2
print 'over'
R1= np.zeros(shape=(3,3))
R2= np.zeros(shape=(3,3))
P1= np.zeros(shape=(3,4))
P2= np.zeros(shape=(3,4))
Q= np.zeros(shape=(4,4))
map1x=[]
map1y=[]
map2x=[]
map2y=[]
#imgU1=[]
#imgU2=[]
#print cameraMatrix1
#print cameraMatrix1
os.chdir('/home/pi/Desktop')
imgL=cv2.imread('calLeft1.png')
imgR=cv2.imread('calRight1.png')
imgL = cv2.cvtColor(imgL, cv2.COLOR_BGR2GRAY)
imgR = cv2.cvtColor(imgR, cv2.COLOR_BGR2GRAY)
cv2.stereoRectify(cameraMatrix1,distCoeffs1,cameraMatrix2,distCoeffs2,(384,288),R,T,R1,R2,P1,P2,Q,flags=cv2.cv.CV_CALIB_ZERO_DISPARITY,alpha=-1,newImageSize=(0,0))
#cv2.reprojectImageTo3D(disp,points,Q)
print Q
map1x,map1y=cv2.initUndistortRectifyMap(cameraMatrix1,distCoeffs1,R1,P1,(384,288),cv2.CV_32FC1)
map2x,map2y=cv2.initUndistortRectifyMap(cameraMatrix2,distCoeffs2,R2,P2,(384,288),cv2.CV_32FC1)
#cv2.remap(imgL,map1x,map1y,cv2.INTER_LINEAR, imgU1, cv2.BORDER_CONSTANT,0)
#cv2.remap(imgR,map2x,map2y,cv2.INTER_LINEAR, imgU2, cv2.BORDER_CONSTANT,0)
imgU1 = cv2.remap(imgL,map1x,map1y,cv2.INTER_LINEAR)
imgU2 = cv2.remap(imgR,map2x,map2y,cv2.INTER_LINEAR)
#imgU1 = imgU1.astype(np.uint8)
#imgU2 = imgU2.astype(np.uint8)
stereo = cv2.StereoBM(1,16,15)
disp=stereo.compute(imgU1,imgU2,disptype=cv2.CV_32FC1)
norm_coeff = 255/disp.max()
cv2.imshow('disp', disp*norm_coeff/255)
cv2.imwrite('dispimage.png', disp*norm_coeff/255)
# When everything done, release the capture
#cap.release()
#cv2.destroyAllWindows()

Categories

Resources