As an example of network, I used the first example here
I would like to use tensorboard with this network. After read this documentation about how to use TensorBoard, I added these commands to the code:
from keras.callbacks import TensorBoard
TensorBoard("Directory path that contains the log files")
The output sounds correct:
Out[3]: <keras.callbacks.TensorBoard at 0x7f14730e79b0>
But there is nothing in the directory...
What I did wrong ?
Here is the complete code:
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.callbacks import TensorBoard
# Generate dummy data
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
model.fit(x_train, y_train,
epochs=20,
batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)
TensorBoard("Directory path that contains the log files")
You need to pass the callback to model.fit:
tb = TensorBoard('log_dir')
model.fit(x_train, y_train,
epochs=20,
batch_size=128,
callbacks=[tb])
Related
I have a classified network for the MNIST dataset (csv) with 10 labels which are numbers (0,1,2,3,4,5,6,7,8,9) and after training the network, I run the predict_classes for test_data. I want to know for each of the data in test_set what is the score of every label(0,1,2,3,4,5,6,7,8,9) in y_pred.
for example if predict_classes say that for first data the label is "7" what is the score of 7 and what is the scores of other labels such (0,1,2,3,4,5,6,8,9)
How can I write its code?
from keras import models
import numpy as np
from keras import layers
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, LSTM, BatchNormalization
mnist = tf.keras.datasets.mnist
#Load dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
#normalizing data
x_train = x_train / 255.0
x_test = x_test / 255.0
# bulid model
model = Sequential()
model.add(LSTM(15, input_shape=(x_train.shape[1:]), return_sequences=True, activation="tanh", unroll=True))
model.add(LSTM(15, dropout=0.2, activation="tanh", unroll=True))
#model.add(LSTM(1, activation='tanh'))
#model.add(LSTM(2, activation='tanh'))
model.add(Dense(5, activation='tanh' ))
model.add(Dense(10, activation='sigmoid'))
model.summary()
opt = tf.keras.optimizers.Adam(lr=1e-3, decay=1e-5)
model.compile(loss='sparse_categorical_crossentropy', optimizer=opt,
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=2, validation_data=(x_test, y_test))
y_pred = model.predict_classes(x_test)
print(y_pred)
Instead of using model.predict_classes(), you can use model.predict() (https://www.tensorflow.org/api_docs/python/tf/keras/Model#predict).
This returns an array with the probability for all of the possible classes.
I have the following LSTM model.
How I can check the MSE or MAPE metrics on the test data?
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow import keras
from keras.models import Sequential
from keras.layers import LSTM, Dense, Dropout
X_train = np.random.randn(100, 5, 1)
Y_train = np.random.randn(100, 1)
X_test = np.random.randn(20, 1)
model = Sequential()
model.add(LSTM(64, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2]), return_sequences=True))
model.add(LSTM(32, activation='relu', return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(Y_train.shape[1]))
model.compile(optimizer='adam', loss='mse')
history = model.fit(X_train, Y_train, epochs=2, batch_size=100, validation_split=0.1, verbose=1)
prediction = model.predict(X_test)
Something like this should work:
mape_loss = keras.metrics.mean_absolute_percentage_error(Y_test, prediction)
mse_loss = keras.metrics.mean_squared_error(Y_test, prediction)
Documentation
When using tf.data.Dataset.from_generator API to generate train and test datasets. Not able to pass the appropriate shape to the Tensorflow model.
Following is my code
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import train_test_split
import pandas as pd
def fetchValuesFromDatabase(path):
df = pd.read_csv(path, header=None)
rows_from_csv = df.values[:]
rows_list = rows_from_csv.tolist()
rows_list = rows_list[1:]
def castFunction(val):
try:
return int(val)
except:
return int(float(val))
result_column = [list(map(lambda x: castFunction(x), value[-1])) for value in rows_list]
train_columns = [list(map(lambda x: castFunction(x), value[3:-1])) for value in rows_list]
print(train_columns)
X_train, X_test, y_train, y_test = train_test_split(train_columns, result_column, test_size=0.20, shuffle=True)
train_dataset = tf.data.Dataset.from_tensor_slices((X_train, y_train)).batch(32)
test_dataset = tf.data.Dataset.from_tensor_slices((X_test, y_test)).batch(32)
return train_dataset, test_dataset
def createModel():
model = Sequential()
model.add(Dense(10, input_shape=(10,), activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
model = createModel()
train_dataset, test_dataset = fetchValuesFromDatabase("ModifiedHrTrainData.csv")
model.fit(train_dataset, epochs=10, validation_data=test_dataset)
Getting following error.
ValueError: Input 0 of layer sequential is incompatible with the layer: expected axis -1 of input shape to have value 10 but received input with shape [10, 1]
The same error doesn't occur if tf.data.Dataset.from_tensor_slices is used and passed to the model. Need help in achieving the same with tf.data.Dataset.from_generator API.
Following is the dataset link
https://mega.nz/file/DZkVWSTT#MhjiuFcDMbe80gZ34AkMCjWD3h3y87ytpn9q4AT1bu4
Please help me understand the issue.
Add keras_input function to your model tf.keras.Input(shape=(10,))`
model = tf.keras.models.Sequential()
model.add(tf.keras.Input(shape=(10,)))
model.add(Dense(10, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
I'm new with Keras and I'm trying to build a model for personal use/future learning. I've just started with python and I came up with this code (with help of videos and tutorials). I have a data of 16324 instances, each instance consists of 18 features and 1 dependent variable.
import pandas as pd
import os
import time
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, LSTM, BatchNormalization
from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint
EPOCHS = 10
BATCH_SIZE = 64
NAME = f"-TEST-{int(time.time())}"
df = pd.read_csv("EntryData.csv", names=['1SH5', '1SHA', '1SA5', '1SAA', '1WH5', '1WHA', '2SA5', '2SAA', '2SH5', '2SHA', '2WA5', '2WAA', '3R1', '3R2', '3R3', '3R4', '3R5', '3R6', 'Target'])
df_val = 14554
validation_df = df[df.index > df_val]
df = df[df.index <= df_val]
train_x = df.drop(columns=['Target'])
train_y = df[['Target']]
validation_x = validation_df.drop(columns=['Target'])
validation_y = validation_df[['Target']]
model = Sequential()
model.add(LSTM(128, input_shape=(train_x.shape[1:]), return_sequences=True))
model.add(Dropout(0.2))
model.add(BatchNormalization())
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(0.1))
model.add(BatchNormalization())
model.add(LSTM(128))
model.add(Dropout(0.2))
model.add(BatchNormalization())
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(2, activation='softmax'))
opt = tf.keras.optimizers.Adam(lr=0.001, decay=1e-6)
model.compile(loss='sparse_categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
tensorboard = TensorBoard(log_dir=f'logs/{NAME}')
filepath = "RNN_Final-{epoch:02d}-{val_acc:.3f}"
checkpoint = ModelCheckpoint("models/{}.model".format(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')) # saves only the best ones
history = model.fit(
train_x, train_y,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
validation_data=(validation_x, validation_y),
callbacks=[tensorboard, checkpoint],)
score = model.evaluate(validation_x, validation_y, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
model.save("models/{}".format(NAME))
In line
model.add(LSTM(128, input_shape=(train_x.shape[1:]), return_sequences=True))
is throwing an error:
ValueError: Input 0 of layer lstm is incompatible with the layer:
expected ndim=3, found ndim=2. Full shape received: [None, 18]
I was searching for solution on this site and on google for few hours now and I was not able to find proper answer for this or I was not able to implement the solution for similar problem.
Thank you for any tips.
An LSTM network expects three dimensional input of this format:
(n_samples, time_steps, features)
There are two main ways this can be a problem.
Your input is 2D
You have stacked (multiple) LSTM layers
1. Your input is 2D
You need to turn your input to 3D.
x = x.reshape(len(x), 1, x.shape[1])
# or
x = np.expand_dims(x, 1)
Then, specify the right input shape in the first layer:
LSTM(64, input_shape=(x.shape[1:]))
2. You have stacked LSTM layers
By default, LSTM layers will not return sequences, i.e., they will return 2D output. This means that the second LSTM layer will not have the 3D input it needs. To address this, you need to set the return_sequences=True:
tf.keras.layers.LSTM(8, return_sequences=True),
tf.keras.layers.LSTM(8)
Here's how to reproduce and solve the 2D input problem:
import tensorflow as tf
import numpy as np
x = np.random.rand(100, 10)
# x = np.expand_dims(x, 1) # uncomment to solve the problem
y = np.random.randint(0, 2, 100)
model = tf.keras.Sequential([
tf.keras.layers.LSTM(8),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
history = model.fit(x, y, validation_split=0.1)
Here's how to reproduce and solve the stacked LSTM layers problem:
import tensorflow as tf
import numpy as np
x = np.random.rand(100, 1, 10)
y = np.random.randint(0, 2, 100)
model = tf.keras.Sequential([
tf.keras.layers.LSTM(8), # use return_sequences=True to solve the problem
tf.keras.layers.LSTM(8),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
history = model.fit(x, y, validation_split=0.1)
I used the first example here as an example of network.
How to stop the training when the loss reach a fixed value ?
So, for example, I would like to fix a maximum of 3000 epochs and the training will stop when the loss will be under 0.2.
I read this topic but it is not the solution I found.
I would want to stop the training when the loss reach a value, not when there is no improvement like with this function proposed in the precedent topic.
Here is the code:
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
# Generate dummy data
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
model.fit(x_train, y_train,
epochs=3000,
batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)
You can use some method like this if you would switch to TensorFlow 2.0:
class haltCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
if(logs.get('loss') <= 0.05):
print("\n\n\nReached 0.05 loss value so cancelling training!\n\n\n")
self.model.stop_training = True
You just need to create a callback like that and then add that callback to your model.fit so it becomes something like this:
model.fit(x_train, y_train,
epochs=3000,
batch_size=128,
callbacks=['trainingStopCallback'])
This way, the fitting should stop whenever it reaches down below 0.05 (or whatever value you put on while defining it).
Also, since it's been a long time you asked this question but it still has no actual answer for using it with TensorFlow 2.0, I updated your code snippet to TensorFlow 2.0 so everyone can now easily find and use it with their new projects.
import tensorflow as tf
# Generate dummy data
import numpy as np
x_train = np.random.random((1000, 20))
y_train = tf.keras.utils.to_categorical(
np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = tf.keras.utils.to_categorical(
np.random.randint(10, size=(100, 1)), num_classes=10)
model = tf.keras.models.Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(tf.keras.layers.Dense(64, activation='relu', input_dim=20))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
class haltCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
if(logs.get('loss') <= 0.05):
print("\n\n\nReached 0.05 loss value so cancelling training!\n\n\n")
self.model.stop_training = True
trainingStopCallback = haltCallback()
sgd = tf.keras.optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy', 'loss'])
model.fit(x_train, y_train,
epochs=3000,
batch_size=128,
callbacks=['trainingStopCallback'])
score = model.evaluate(x_test, y_test, batch_size=128)
Documentation here : EarlyStopping
keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto', baseline=None)
I solved it by doing this:
history = model.fit(training1, training2, epochs=100, verbose=True)
loss=history.history["loss"]
for x in loss:
if x <= 1:
print("Reached 1 loss value, cancelling training")
model.stop_training = True
break