Sklearn NN regression Attendance prediction - python
I asked a question about the same problem earlier, but because my approach has changed I now have different questions.
My current code:
from sklearn import preprocessing
from openpyxl import load_workbook
import numpy as np
from numpy import exp, array, random, dot
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report,confusion_matrix
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
#Set sizes
rowSize = 200
numColumns = 4
# read from excel file
wb = load_workbook('python_excel_read.xlsx')
sheet_1 = wb["Sheet1"]
date = np.zeros(rowSize)
day = np.zeros(rowSize)
rain = np.zeros(rowSize)
temp = np.zeros(rowSize)
out = np.zeros(rowSize)
for i in range(0, rowSize):
date[i] = sheet_1.cell(row=i + 1, column=1).value
day[i] = sheet_1.cell(row=i + 1, column=2).value
rain[i] = sheet_1.cell(row=i + 1, column=3).value
temp[i] = sheet_1.cell(row=i + 1, column=4).value
out[i] = sheet_1.cell(row=i + 1, column=5).value
train = np.zeros(shape=(rowSize,numColumns))
t_o = np.zeros(shape=(rowSize,1))
for i in range(0, rowSize):
train[i] = [date[i], day[i], rain[i], temp[i]]
t_o[i] = [out[i]]
X = train
# Output
y = t_o
X_train, X_test, y_train, y_test = train_test_split(X, y)
####Neural Net
nn = MLPRegressor(
hidden_layer_sizes=(3,), activation='relu', solver='adam', alpha=0.001, batch_size='auto',
learning_rate='constant', learning_rate_init=0.01, power_t=0.5, max_iter=10000, shuffle=True,
random_state=9, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True,
early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
nn.fit(X_train, y_train.ravel())
y_pred = nn.predict(X_test)
###Linear Regression
# lm = LinearRegression()
# lm.fit(X_train,y_train)
# y_pred = lm.predict(X_test)
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.scatter(X_test[:,0], y_pred, s=1, c='b', marker="s", label='real')
ax1.scatter(X_test[:,0], y_test, s=10, c='r', marker="o", label='NN Prediction')
plt.show()
#Calc MSE
mse = np.square(y_test-y_pred).mean()
print(mse)
The results from this show a pretty bad prediction of the test data. Because I am new to this, I am not sure if it is my data, the model, or my coding. Based on the plot, I believe the model is wrong for the data (the model seems to predict something near linear or squared, while the actual data seems much more spread out)
Here are some of the data points:
formatted as Day of year(2 is jan 2nd), weekday(1)/weekend(0), rain(1)/no rain(0), Temp in F, attendance (this is output)
2 0 0 51 1366
4 0 0 62 538
5 1 0 71 317
6 1 0 76 174
7 1 0 78 176
8 1 0 68 220
12 1 1 64 256
13 1 1 60 379
14 1 0 64 316
18 0 0 72 758
19 1 0 72 1038
20 1 0 72 405
21 1 0 71 326
24 0 0 74 867
26 1 1 68 521
27 1 0 71 381
28 1 0 72 343
29 1 1 68 266
30 0 1 57 479
31 0 1 57 717
33 1 0 70 542
34 1 0 73 220
35 1 0 74 360
36 1 0 79 444
42 1 0 78 534
45 0 0 80 1572
52 0 0 76 1236
55 1 1 64 689
56 1 0 69 726
59 0 0 67 1188
60 0 0 74 1140
61 1 1 63 979
62 1 1 62 657
63 1 0 67 687
64 1 0 72 615
67 0 0 80 1074
68 1 0 81 1261
71 1 0 83 1332
73 0 0 85 1259
74 0 0 86 1142
76 1 0 88 1207
77 1 1 78 1438
82 1 0 85 1251
83 1 0 83 1019
85 1 0 86 1178
86 0 0 92 1306
87 0 0 92 1273
89 1 0 93 1101
90 1 0 92 1274
93 0 0 83 1548
94 0 0 86 1318
96 1 0 83 1395
97 1 0 81 1338
98 1 0 75 1240
100 0 0 84 1335
102 0 0 83 931
103 1 0 87 746
104 1 0 91 746
105 1 0 81 600
106 1 0 72 852
108 0 1 87 1204
109 0 0 89 1191
110 1 0 90 769
111 1 0 88 642
112 1 0 86 743
114 0 1 75 1085
115 0 1 78 1109
117 1 0 84 871
120 1 0 96 599
123 0 0 93 651
129 0 0 74 1325
133 1 0 88 637
134 1 0 84 470
135 0 1 73 980
136 0 0 72 1096
137 0 0 83 792
138 1 0 87 565
139 1 0 84 501
141 1 0 88 615
142 0 0 79 722
143 0 0 80 1363
144 0 0 82 1506
146 1 0 93 626
147 1 0 94 415
148 1 0 95 596
149 0 0 100 532
150 0 0 102 784
154 1 0 99 514
155 1 0 94 495
156 0 1 87 689
157 0 1 94 931
158 0 0 97 618
161 1 0 92 451
162 1 0 97 574
164 0 0 102 898
165 0 0 104 746
166 1 0 109 587
167 1 0 109 465
174 1 0 108 514
175 1 0 109 572
179 0 0 107 811
181 1 0 104 423
182 1 0 103 526
184 0 1 97 849
185 0 0 103 852
189 1 0 106 728
191 0 0 101 577
194 1 0 105 511
198 0 1 101 616
199 0 1 97 1056
200 0 0 94 740
202 1 0 103 498
205 0 0 101 610
206 0 0 106 944
207 0 0 105 769
208 1 0 103 551
209 1 0 103 624
210 1 0 97 513
212 0 1 107 561
213 0 0 100 905
214 0 0 105 767
215 1 0 107 510
216 1 0 108 406
217 1 0 109 439
218 1 0 103 427
219 0 1 104 460
224 1 0 105 213
227 0 0 112 834
228 0 0 109 615
229 1 0 105 216
230 1 0 104 213
231 1 0 104 256
232 1 0 104 282
235 0 0 104 569
238 1 0 103 165
239 1 1 105 176
241 0 1 108 727
242 0 1 105 652
243 1 1 103 231
244 1 0 96 117
245 1 1 98 168
246 1 1 97 113
247 0 0 95 227
248 0 0 92 1050
249 0 0 101 1274
250 1 1 95 1148
254 0 0 99 180
255 0 0 104 557
258 1 0 94 228
260 1 0 95 133
263 0 0 100 511
264 1 1 89 249
265 1 1 90 245
267 1 0 101 390
272 1 0 100 223
273 1 0 103 194
274 1 0 103 150
275 0 0 95 224
276 0 0 92 705
277 0 1 92 504
279 1 1 77 331
281 1 0 89 268
284 0 0 95 566
285 1 0 94 579
286 1 0 95 420
288 1 0 93 392
289 0 1 94 525
290 0 1 86 670
291 0 1 89 488
294 1 1 74 295
296 0 0 81 314
299 1 0 88 211
301 1 0 84 246
303 0 1 76 433
304 0 0 80 216
307 1 1 80 275
308 1 1 66 319
312 0 0 80 413
313 1 0 78 278
316 1 0 74 305
320 1 1 57 323
324 0 0 76 220
326 0 0 77 461
327 1 0 78 510
331 0 0 60 1701
334 1 0 58 237
335 1 0 62 355
336 1 0 68 266
338 0 0 70 246
342 1 0 72 109
343 1 0 70 103
347 0 0 58 486
349 1 0 52 144
350 1 0 53 209
351 1 0 55 289
354 0 0 62 707
355 1 0 59 903
359 0 0 58 481
360 0 0 53 1342
364 1 0 57 1624
I have over a thousand data points in total, but Im not using them all for training/testing. One thought is I need more, another is that I need more factors because temp/rain/day of week does not affect attendance enough.
Here is the plot:
What can I do to make my model more accurate and give better predictions?
Thanks
EDIT: I added more data points and another factor. I cant seem to upload the excel file so I put the data on here with a better explanation of how it is formatted
EDIT:
Here is the most recent code:
from sklearn import preprocessing
from openpyxl import load_workbook
import numpy as np
from numpy import exp, array, random, dot
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report,confusion_matrix
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_predict
from sklearn import svm
from sklearn.model_selection import cross_val_score
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection import LeaveOneOut
#Set sizes
rowSize = 500
numColumns = 254
# read from excel file
wb = load_workbook('python_excel_read.xlsx')
sheet_1 = wb["Sheet1"]
input = np.zeros(shape=(rowSize,numColumns))
out = np.zeros(rowSize)
for i in range(0, rowSize):
for j in range(0,numColumns):
input[i,j] = sheet_1.cell(row=i + 1, column=j+1).value
out[i] = sheet_1.cell(row=i + 1, column=numColumns+1).value
output = np.zeros(shape=(rowSize,1))
for i in range(0, rowSize):
output[i] = [out[i]]
X = input
# Output
y = output
print(X)
print(y)
y[y < 500] = 0
y[np.logical_and(y >= 500, y <= 1000)] = 1
y[np.logical_and(y > 1000, y <= 1200)] = 2
y[y > 1200] = 3
# Use cross-validation
#kf = KFold(n_splits = 10, random_state=0)
loo = LeaveOneOut()
# Try different models
clf = svm.SVC()
scaler = StandardScaler()
pipe = Pipeline([('scaler', scaler), ('svc', clf)])
accuracy = cross_val_score(pipe, X, y.ravel(), cv = loo, scoring = "accuracy")
print(accuracy.mean())
#y_pred = cross_val_predict(clf, X, y.ravel(), cv = kf)
#cm = confusion_matrix(y, y_pred)
and here is the up to date data with as many features as I could add. note this is a random sample from the full data:
Link to sample data
Current output:
0.6230954290296712
My ultimate goal is to achieve 90% or higher accuracy... I dont believe I can find more features, but will continue to gather as many as possible if helpful
Your question is really general, however I have some suggestions. You could use cross-validation and try different models. Personnaly, I would try SVR,RandomForests and as last choice I would use a MLPR.
I modified a bit your code to show a simple example:
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report,confusion_matrix
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_predict
from sklearn import svm
from sklearn.model_selection import cross_val_score
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection import LeaveOneOut
import pandas as pd
from sklearn.decomposition import PCA
# read the data
df = pd.read_excel('python_excel_read.xlsx', header = None)
rows, cols = df.shape
X = df.iloc[: , 0:(cols - 1)]
y = df.iloc[: , cols - 1 ]
print(X.shape)
print(y.shape)
y[y < 500] = 0
y[np.logical_and(y >= 500, y <= 1000)] = 1
y[np.logical_and(y > 1000, y <= 1200)] = 2
y[y > 1200] = 3
print(np.unique(y))
# We can apply PCA to reduce the dimensions of the data
# pca = PCA(n_components=2)
# pca.fit(X)
# X = pca.fit_transform(X)
# Use cross-validation
#kf = KFold(n_splits = 10, random_state=0)
loo = LeaveOneOut()
# Try different models
clf = svm.SVC(kernel = 'linear')
scaler = StandardScaler()
pipe = Pipeline([('scaler', scaler), ('svc', clf)])
accuracy = cross_val_score(pipe, X, y.ravel(), cv = loo, scoring = "accuracy")
print(accuracy.mean())
#y_pred = cross_val_predict(clf, X, y.ravel(), cv = kf)
#cm = confusion_matrix(y, y_pred)
Related
Trying to predict the next number in cyphertext using tensorflow
I am experimenting with machine learning and I wanted to see how difficult it would be to predict a number given a series of other numbers. I have seen it accomplished with people making vectors such as 1-10. However, I wanted to try to do something more difficult. I wanted to do it based on the ciphertext. Here is what I have tried so far: import numpy as np import matplotlib.pyplot as plt #from sklearn.linear_model import LinearRegression from tensorflow.keras import Sequential from tensorflow.keras import layers from tensorflow.keras.layers import Input, LSTM, Dense from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator from tensorflow.keras.layers import Lambda, SimpleRNN from tensorflow.keras import backend as K from numpy.polynomial import polynomial as poly from sklearn.feature_extraction import DictVectorizer import Pyfhel def generateInput(x, length): return np.append(x, [0 for i in range(length)], axis=0) def main(): HE = Pyfhel.Pyfhel() HE.contextGen(scheme='BFV', n=2048, q=34, t=34, t_bits=35, sec=128) HE.keyGen() a = "Hello" a = np.asarray(bytearray(a, "utf-8")) a = HE.encode(a) ct = HE.encrypt(a).to_bytes('none') ct = np.asarray([c for c in ct]) length = 100 # How many records to take into account batch_size = 1 n_features = 1 epochs = 1 generator = TimeseriesGenerator(ct, ct, stride=length, length=length, batch_size=batch_size) model = Sequential() model.add(SimpleRNN(100, activation='leaky_relu', input_shape=(length, n_features))) model.add(Dense(100, activation='leaky_relu', input_shape=(length, n_features))) model.add(Dense(256, activation='softmax')) model.compile(optimizer='adam', loss="sparse_categorical_crossentropy", metrics=['accuracy']) history = model.fit(generator, epochs=epochs) for i in range(1, length): try: x_input = np.asarray(generateInput(ct[:i], length-len(ct[:i]))).reshape((1, length)) yhat = model.predict(x_input).tolist() yhat_normalized = [float(i)/sum(yhat[0]) for i in yhat[0]] yhat_max = max(yhat_normalized) yhat_index = yhat_normalized.index(yhat_max) print("based on {} actual {} predicted {}".format(ct[:i], ct[i], yhat_index)) except Exception as e: print("Error {}".format(e)) if __name__=="__main__": main() Now the problem is that all of my predictions are 0. Can anyone explain to me why this is happening? How can I fix this? Here's what my current output looks like: based on [94] actual 161 predicted 0 based on [ 94 161] actual 16 predicted 0 based on [ 94 161 16] actual 3 predicted 0 based on [ 94 161 16 3] actual 7 predicted 0 based on [ 94 161 16 3 7] actual 0 predicted 0 based on [ 94 161 16 3 7 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0] actual 105 predicted 0 based on [ 94 161 16 3 7 0 0 0 105] actual 128 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0] actual 78 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78] actual 6 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6] actual 78 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78] actual 65 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65] actual 45 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45] actual 23 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23] actual 12 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12] actual 234 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234] actual 155 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155] actual 45 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45] actual 217 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217] actual 42 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42] actual 230 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230] actual 122 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122] actual 64 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64] actual 99 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99] actual 53 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53] actual 143 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143] actual 104 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104] actual 96 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96] actual 158 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158] actual 146 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0] actual 99 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99] actual 122 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122] actual 217 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217] actual 34 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34] actual 140 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140] actual 238 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238] actual 76 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76] actual 135 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135] actual 237 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0] actual 2 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0] actual 8 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0] actual 1 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0] actual 240 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240] actual 63 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63] actual 94 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94] actual 161 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161] actual 16 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16] actual 3 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16 3] actual 7 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16 3 7] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16 3 7 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16 3 7 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16 3 7 0 0 0] actual 24 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16 3 7 0 0 0 24] actual 128 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16 3 7 0 0 0 24 128] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16 3 7 0 0 0 24 128 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16 3 7 0 0 0 24 128 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16 3 7 0 0 0 24 128 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16 3 7 0 0 0 24 128 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16 3 7 0 0 0 24 128 0 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16 3 7 0 0 0 24 128 0 0 0 0 0 0] actual 0 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16 3 7 0 0 0 24 128 0 0 0 0 0 0 0] actual 16 predicted 0 based on [ 94 161 16 3 7 0 0 0 105 128 0 0 0 0 0 0 78 6 78 65 45 23 12 234 155 45 217 42 230 122 64 99 53 143 104 96 158 146 0 99 122 217 34 140 238 76 135 237 0 2 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 240 63 94 161 16 3 7 0 0 0 24 128 0 0 0 0 0 0 0 16] actual 0 predicted 0
replace specific columns values
I want to loop through dataset and replace specific columns value with one the same [value] The whole dataset has 91164 rows. The case here i need to replace vec_red ,vec_greem, vec_blue with new_data new_data has shape of (91164,) and its number of appearance equals index of my dataframe. For e.g. last item is This 1 need to be value in val_red , val_blue, val_green. So I want to loop through whole dataframe and replace the calues in columns from 3 to 5. What I have is : label_idx = 0 for i in range(321): for j in range(284): (sth here) = new_data[label_idx] label_idx += 1 The case here is that I am updating my pixel values after filtration. Thank you. The shape of 91164 is result of multiplication 321 * 284. These are my pixel values in an RGB image.
Looping over rows of a dataframe is a code smell. If the 3 columns must receive the same values, you can do it in one single operation: df[['vec_red', 'vec_green', 'vec_blue']] = np.transpose( np.array([new_data, new_data, new_data])) Demo: np.random.seed(0) nx = 284 ny = 321 df = pd.DataFrame({'x_indices': [i for j in range(ny) for i in range(nx)], 'y_indices': [j for j in range(ny) for i in range(nx)], 'vec_red': np.random.randint(0, 256, nx * ny), 'vec_green': np.random.randint(0, 256, nx * ny), 'vec_blue': np.random.randint(0, 256, nx * ny) }) new_data = np.random.randint(0, 256, nx * ny) print(df) print(new_data) df[['vec_red', 'vec_green', 'vec_blue']] = np.transpose( np.array([new_data, new_data, new_data])) print(df) It gives as expected: x_indices y_indices vec_red vec_green vec_blue 0 0 0 172 167 100 1 1 0 47 92 124 2 2 0 117 65 174 3 3 0 192 249 72 4 4 0 67 108 144 ... ... ... ... ... ... 91159 279 320 16 162 42 91160 280 320 142 169 145 91161 281 320 225 81 143 91162 282 320 106 93 68 91163 283 320 85 65 130 [91164 rows x 5 columns] [ 32 48 245 ... 26 66 58] x_indices y_indices vec_red vec_green vec_blue 0 0 0 32 32 32 1 1 0 48 48 48 2 2 0 245 245 245 3 3 0 6 6 6 4 4 0 178 178 178 ... ... ... ... ... ... 91159 279 320 27 27 27 91160 280 320 118 118 118 91161 281 320 26 26 26 91162 282 320 66 66 66 91163 283 320 58 58 58 [91164 rows x 5 columns]
Trouble with PyTorchLSTM in Thinc
Running the following code: from thinc.api import chain, PyTorchLSTM, Sigmoid, Embed, with_padded, with_array2d vocab_size = len(vocab_to_int)+1 # +1 for the 0 padding + our word tokens output_size = 1 embedding_dim = 400 hidden_dim = 256 n_layers = 2 model = chain( Embed(nV=vocab_size, nO=embedding_dim), with_padded(PyTorchLSTM(nI=embedding_dim,nO=hidden_dim, depth=n_layers)), with_array2d(Sigmoid(nI=hidden_dim, nO=output_size)) ) model.initialize(X=train_x[:5], Y=train_y[:5]) I get this error: ValueError: Provided 'x' array should be 2-dimensional, but found 3 dimension(s). Here is x[0], y[0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21025 308 6 3 1050 207 8 2138 32 1 171 57 15 49 81 5785 44 382 110 140 15 5194 60 154 9 1 4975 5852 475 71 5 260 12 21025 308 13 1978 6 74 2395 5 613 73 6 5194 1 24103 5 1983 10166 1 5786 1499 36 51 66 204 145 67 1199 5194 19869 1 37442 4 1 221 883 31 2988 71 4 1 5787 10 686 2 67 1499 54 10 216 1 383 9 62 3 1406 3686 783 5 3483 180 1 382 10 1212 13583 32 308 3 349 341 2913 10 143 127 5 7690 30 4 129 5194 1406 2326 5 21025 308 10 528 12 109 1448 4 60 543 102 12 21025 308 6 227 4146 48 3 2211 12 8 215 23] 1 I am relatively new to building these models, but I think it has to do with the fact that the output of the Pytorch LSTM layer has two dimensions. In a typical torch LSTM you'd stack the output from the LSTM layer (I think), but I'm not sure how to do that here. I assumed with_array2d would help but it doesn't seem to.
Renaming a number of columns using for loop (python)
The dataframe below has a number of columns but columns names are random numbers. daily1= 0 1 2 3 4 5 6 7 8 9 ... 11 12 13 14 15 16 17 18 19 20 0 0 0 0 0 0 0 4 0 0 0 ... 640 777 674 842 786 865 809 674 679 852 1 0 0 0 0 0 0 0 0 0 0 ... 108 29 74 102 82 62 83 68 30 61 2 rows × 244 columns I would like to organise columns names in numerical order(from 0 to 243) I tried for i, n in zip(daily1.columns, range(244)): asd=daily1.rename(columns={i:n}) asd but output has not shown... Ideal output is 0 1 2 3 4 5 6 7 8 9 ... 234 235 236 237 238 239 240 241 242 243 0 0 0 0 0 0 0 4 0 0 0 ... 640 777 674 842 786 865 809 674 679 852 1 0 0 0 0 0 0 0 0 0 0 ... 108 29 74 102 82 62 83 68 30 61 Could I get some advice guys? Thank you
If you want to reorder the columns you can try that columns = sorted(list(df.columns), reverse=False) df = df[columns] If you just want to rename the columns then you can try df.columns = [i for i in range(df.shape[1])]
Why am I getting an incorrect dot product of two (supposed) vectors when I try to take the dot product with NumPy?
I just want a dot product. I am unsure of why I can't have it. Here are some print statements that describe my data, which I picture as 60,000 vectors of length 784. However, I will just being using the first of these vectors. print(type(data)) print(data.shape) print(type(data[0])) print(data[0].shape) print(data[0]) print("Result of np.dot: " + str( np.dot(data[0],data[0])) ) print("Result of np.inner: " + str( np.inner(data[0],data[0]) )) Output: <class 'numpy.ndarray'> (60000, 784) <class 'numpy.ndarray'> (784,) [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 13 73 0 0 1 4 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 36 136 127 62 54 0 0 0 1 3 4 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 6 0 102 204 176 134 144 123 23 0 0 0 0 12 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 155 236 207 178 107 156 161 109 64 23 77 130 72 15 0 0 0 0 0 0 0 0 0 0 0 1 0 69 207 223 218 216 216 163 127 121 122 146 141 88 172 66 0 0 0 0 0 0 0 0 0 1 1 1 0 200 232 232 233 229 223 223 215 213 164 127 123 196 229 0 0 0 0 0 0 0 0 0 0 0 0 0 0 183 225 216 223 228 235 227 224 222 224 221 223 245 173 0 0 0 0 0 0 0 0 0 0 0 0 0 0 193 228 218 213 198 180 212 210 211 213 223 220 243 202 0 0 0 0 0 0 0 0 0 0 1 3 0 12 219 220 212 218 192 169 227 208 218 224 212 226 197 209 52 0 0 0 0 0 0 0 0 0 0 6 0 99 244 222 220 218 203 198 221 215 213 222 220 245 119 167 56 0 0 0 0 0 0 0 0 0 4 0 0 55 236 228 230 228 240 232 213 218 223 234 217 217 209 92 0 0 0 1 4 6 7 2 0 0 0 0 0 237 226 217 223 222 219 222 221 216 223 229 215 218 255 77 0 0 3 0 0 0 0 0 0 0 62 145 204 228 207 213 221 218 208 211 218 224 223 219 215 224 244 159 0 0 0 0 0 18 44 82 107 189 228 220 222 217 226 200 205 211 230 224 234 176 188 250 248 233 238 215 0 0 57 187 208 224 221 224 208 204 214 208 209 200 159 245 193 206 223 255 255 221 234 221 211 220 232 246 0 3 202 228 224 221 211 211 214 205 205 205 220 240 80 150 255 229 221 188 154 191 210 204 209 222 228 225 0 98 233 198 210 222 229 229 234 249 220 194 215 217 241 65 73 106 117 168 219 221 215 217 223 223 224 229 29 75 204 212 204 193 205 211 225 216 185 197 206 198 213 240 195 227 245 239 223 218 212 209 222 220 221 230 67 48 203 183 194 213 197 185 190 194 192 202 214 219 221 220 236 225 216 199 206 186 181 177 172 181 205 206 115 0 122 219 193 179 171 183 196 204 210 213 207 211 210 200 196 194 191 195 191 198 192 176 156 167 177 210 92 0 0 74 189 212 191 175 172 175 181 185 188 189 188 193 198 204 209 210 210 211 188 188 194 192 216 170 0 2 0 0 0 66 200 222 237 239 242 246 243 244 221 220 193 191 179 182 182 181 176 166 168 99 58 0 0 0 0 0 0 0 0 0 40 61 44 72 41 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] Result of np.dot: 183 Result of np.inner: 183 I've done the calculation, and 183 is indeed an underestimate. Could I get an explanation as to what is happening here?
The reason for this behavior is integer overflow. print(type(data[0][0])) result: <class 'numpy.uint8'>