Approximation and modification of dictionary variables - python

I have a question
I have a dictionary called (plane) where I can call variables such as 'name' or 'speed'.
These values ​​give me this kind of output for example:
print(plane.get('name'))
print(plane.get('altitude'))
Output:
'name'= FLRDD8EFC
'speed'= 136.054323
My question is, how can I approximate the values ​​as follows?
'name'= DD8EFC (Always deleting the first three lines)
'speed'= 136. (Approximate whole)
Thank you so much for your help!
G

My question is, how can I approximate the values ​​as follows?
You have to write the code explicitly.
'name'= DD8EFC (Always deleting the first three lines)
Fetch the string, then slice it:
name = plane.get('name')[3:]
print(f"'name' = {name}'")
However, the fact that you're using get rather than [] implies that you're expecting to handle the possibility that name doesn't exist in plane.
If that isn't a possibility, you should just use []:
name = plane['name'][3:]
If it is, you'll need to provide a default that can be sliced:
name = plane.get('name', '')[3:]
'speed'= 136. (Approximate whole)
It looks like you want to round to 0 fractional digits, but keep it a float? Call round with 0 digits on it. And again, either you don't need get, or you need a different default:
speed = round(plane['speed'], 0)
… or:
speed = round(plane.get('speed', 0.0), 0)
As for printing it: Python doesn't like to print a . after a float without also printing any fractional values. You can monkey with format fields, but it's probably simpler to just put the . in manually:
print(f"'speed': {speed}.")

>>> plane.get('name')[3:]
'DD8EFC'
>>> round(plane.get('speed'))
136

You could, possibly, subclass collections.UserDict (or maybe dict as #abamert suggested), and code some sort of switch/filter/formatter in the special method__getitem__:
something like this, maybe:
from collections import UserDict
class MyDict(UserDict):
def __getitem__(self, key):
if key == 'name':
return self.data[key][3:]
if key == 'speed':
return round(self.data[key], 3)
return self.data[key]
if __name__ == '__main__':
mydata = MyDict({'name': 'ABCDEF', 'speed': 12.123456})
print(mydata['name'], mydata['speed'])
output:
DEF 12.123
or subclassing dict:
class MyDict(dict):
def __getitem__(self, key):
if key == 'name':
return self.get(key)[3:]
if key == 'speed':
return round(self.get(key), 3)
return self[key]
Disclaimer: This is more a proof of concept than anything; I do not recommend this approach; the 'switch' is ugly and could get out of hand as soon as the list of constraints grows a bit.

Related

Python construct for naming string constants

Often I use string constants such as:
DICT_KEY1 = 'DICT_KEY1'
DICT_KEY2 = 'DICT_KEY2'
...
Many of those times I don't mind what the actual literals are, as long as they're unique and understandable to the human reader.
This way it is easier to refactor and change a literal across the project.
So my question is, is there a standard way to make these string constants declarations simpler? I don't want to repeat writing the literal 'DICT_KEYn'.
For example, something like this could work:
#string_consts
class DictKeys:
DICT_KEY1: str
DICT_KEY2: str
...
assert DictKeys.DICT_KEY1 == 'DICT_KEY1'
If it helps, the implementation for your string_consts decorator would be
def string_consts(cls):
for key, value in cls.__annotations__.items():
if value is str:
setattr(cls, key, key)
return cls
This makes
#string_consts
class DictKeys:
DICT_KEY1: str
DICT_KEY2: str
assert DictKeys.DICT_KEY1 == 'DICT_KEY1'
as in your example work OOTB.
When at global level, you could do something like this:
for i in range(100):
globals()['DICT_KEY'+str(i)] = 'DICT_KEY'+str(i)
At class level, setattr could be used in the same way:
for i in range(100):
setattr(self, 'DICT_KEY'+str(i), 'DICT_KEY'+str(i))
If your keys are not a numeric list as suggested by your question, you could still do this:
for key in ['KEY', 'OTHERKEY', 'SOMEOTHERKEY']:
globals()[key] = key
In my opinion, this is way easier to understand than using the decorator solution - and does the job.

Mixing ints and function pointers in python dict values

I'm making a finite state machine to iterate over some text for speaker, verb, and quote identification. Everything is going fine, but I'm frustrated I cannot get my dictionary to work just the way I want it to. I want to use a dictionary like this, that has both function pointers and ints as values:
chars = ['a','b','c']
whatever = ['cheese']
state = 0
def function():
# don't know what's going on, ask user to check
transitions = {
0: {chars: 1, whatever: 2, '“': 4},
1: {chars: 3, '“': function},
etc.
}
for item in data:
for transition in transitions[state]:
if item in transition or transition in item:
state = transitions[state][item]
However, this code doesn't call the function if it finds it, or if I have it call the function, it errors on calling an int.
PS I'm not looking to use a library, etc.
You can use the object type to decide what to do with it. I don't want to get into other issues with the code, but for the basic idea, here's a function that returns an int or calls a function depending on the value type.
def action(value):
if isinstance(value, int):
return value
elif callable(value):
return value()
else:
raise ValueError("action does not work with %s objects" % type(value))

Python 3 changing value of dictionary key in for loop not working

I have python 3 code that is not working as expected:
def addFunc(x,y):
print (x+y)
def subABC(x,y,z):
print (x-y-z)
def doublePower(base,exp):
print(2*base**exp)
def RootFunc(inputDict):
for k,v in inputDict.items():
if v[0]==1:
d[k] = addFunc(*v[1:])
elif v[0] ==2:
d[k] = subABC(*v[1:])
elif v[0]==3:
d[k] = doublePower(*v[1:])
d={"s1_7":[1,5,2],"d1_6":[2,12,3,3],"e1_3200":[3,40,2],"s2_13":[1,6,7],"d2_30":[2,42,2,10]}
RootFunc(d)
#test to make sure key var assignment works
print(d)
I get:
{'d2_30': None, 's2_13': None, 's1_7': None, 'e1_3200': None, 'd1_6': None}
I expected:
{'d2_30': 30, 's2_13': 13, 's1_7': 7, 'e1_3200': 3200, 'd1_6': 6}
What's wrong?
Semi related: I know dictionaries are unordered but is there any reason why python picked this order? Does it run the keys through a randomizer?
print does not return a value. It returns None, so every time you call your functions, they're printing to standard output and returning None. Try changing all print statements to return like so:
def addFunc(x,y):
return x+y
This will give the value x+y back to whatever called the function.
Another problem with your code (unless you meant to do this) is that you define a dictionary d and then when you define your function, you are working on this dictionary d and not the dictionary that is 'input':
def RootFunc(inputDict):
for k,v in inputDict.items():
if v[0]==1:
d[k] = addFunc(*v[1:])
Are you planning to always change d and not the dictionary that you are iterating over, inputDict?
There may be other issues as well (accepting a variable number of arguments within your functions, for instance), but it's good to address one problem at a time.
Additional Notes on Functions:
Here's some sort-of pseudocode that attempts to convey how functions are often used:
def sample_function(some_data):
modified_data = []
for element in some_data:
do some processing
add processed crap to modified_data
return modified_data
Functions are considered 'black box', which means you structure them so that you can dump some data into them and they always do the same stuff and you can call them over and over again. They will either return values or yield values or update some value or attribute or something (the latter are called 'side effects'). For the moment, just pay attention to the return statement.
Another interesting thing is that functions have 'scope' which means that when I just defined it with a fake-name for the argument, I don't actually have to have a variable called "some_data". I can pass whatever I want to the function, but inside the function I can refer to the fake name and create other variables that really only matter within the context of the function.
Now, if we run my function above, it will go ahead and process the data:
sample_function(my_data_set)
But this is often kind of pointless because the function is supposed to return something and I didn't do anything with what it returned. What I should do is assign the value of the function and its arguments to some container so I can keep the processed information.
my_modified_data = sample_function(my_data_set)
This is a really common way to use functions and you'll probably see it again.
One Simple Way to Approach Your Problem:
Taking all this into consideration, here is one way to solve your problem that comes from a really common programming paradigm:
def RootFunc(inputDict):
temp_dict = {}
for k,v in inputDict.items():
if v[0]==1:
temp_dict[k] = addFunc(*v[1:])
elif v[0] ==2:
temp_dict[k] = subABC(*v[1:])
elif v[0]==3:
temp_dict[k] = doublePower(*v[1:])
return temp_dict
inputDict={"s1_7":[1,5,2],"d1_6":[2,12,3,3],"e1_3200":[3,40,2],"s2_13":[1,6,7],"d2_30"[2,42,2,10]}
final_dict = RootFunc(inputDict)
As erewok stated, you are using "print" and not "return" which may be the source of your error. And as far as the ordering is concerned, you already know that dictionaries are unordered, according to python doc at least, the ordering is not random, but rather implemented as hash tables.
Excerpt from the python doc: [...]A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only one standard mapping type, the dictionary. [...]
Now key here is that the order of the element is not really random. I have often noticed that the order stays the same no matter how I construct a dictionary on some values... using lambda or just creating it outright, the order has always remained the same, so it can't be random, but it's definitely arbitrary.

Hashing a dictionary?

For caching purposes I need to generate a cache key from GET arguments which are present in a dict.
Currently I'm using sha1(repr(sorted(my_dict.items()))) (sha1() is a convenience method that uses hashlib internally) but I'm curious if there's a better way.
Using sorted(d.items()) isn't enough to get us a stable repr. Some of the values in d could be dictionaries too, and their keys will still come out in an arbitrary order. As long as all the keys are strings, I prefer to use:
json.dumps(d, sort_keys=True)
That said, if the hashes need to be stable across different machines or Python versions, I'm not certain that this is bulletproof. You might want to add the separators and ensure_ascii arguments to protect yourself from any changes to the defaults there. I'd appreciate comments.
If your dictionary is not nested, you could make a frozenset with the dict's items and use hash():
hash(frozenset(my_dict.items()))
This is much less computationally intensive than generating the JSON string or representation of the dictionary.
UPDATE: Please see the comments below, why this approach might not produce a stable result.
EDIT: If all your keys are strings, then before continuing to read this answer, please see Jack O'Connor's significantly simpler (and faster) solution (which also works for hashing nested dictionaries).
Although an answer has been accepted, the title of the question is "Hashing a python dictionary", and the answer is incomplete as regards that title. (As regards the body of the question, the answer is complete.)
Nested Dictionaries
If one searches Stack Overflow for how to hash a dictionary, one might stumble upon this aptly titled question, and leave unsatisfied if one is attempting to hash multiply nested dictionaries. The answer above won't work in this case, and you'll have to implement some sort of recursive mechanism to retrieve the hash.
Here is one such mechanism:
import copy
def make_hash(o):
"""
Makes a hash from a dictionary, list, tuple or set to any level, that contains
only other hashable types (including any lists, tuples, sets, and
dictionaries).
"""
if isinstance(o, (set, tuple, list)):
return tuple([make_hash(e) for e in o])
elif not isinstance(o, dict):
return hash(o)
new_o = copy.deepcopy(o)
for k, v in new_o.items():
new_o[k] = make_hash(v)
return hash(tuple(frozenset(sorted(new_o.items()))))
Bonus: Hashing Objects and Classes
The hash() function works great when you hash classes or instances. However, here is one issue I found with hash, as regards objects:
class Foo(object): pass
foo = Foo()
print (hash(foo)) # 1209812346789
foo.a = 1
print (hash(foo)) # 1209812346789
The hash is the same, even after I've altered foo. This is because the identity of foo hasn't changed, so the hash is the same. If you want foo to hash differently depending on its current definition, the solution is to hash off whatever is actually changing. In this case, the __dict__ attribute:
class Foo(object): pass
foo = Foo()
print (make_hash(foo.__dict__)) # 1209812346789
foo.a = 1
print (make_hash(foo.__dict__)) # -78956430974785
Alas, when you attempt to do the same thing with the class itself:
print (make_hash(Foo.__dict__)) # TypeError: unhashable type: 'dict_proxy'
The class __dict__ property is not a normal dictionary:
print (type(Foo.__dict__)) # type <'dict_proxy'>
Here is a similar mechanism as previous that will handle classes appropriately:
import copy
DictProxyType = type(object.__dict__)
def make_hash(o):
"""
Makes a hash from a dictionary, list, tuple or set to any level, that
contains only other hashable types (including any lists, tuples, sets, and
dictionaries). In the case where other kinds of objects (like classes) need
to be hashed, pass in a collection of object attributes that are pertinent.
For example, a class can be hashed in this fashion:
make_hash([cls.__dict__, cls.__name__])
A function can be hashed like so:
make_hash([fn.__dict__, fn.__code__])
"""
if type(o) == DictProxyType:
o2 = {}
for k, v in o.items():
if not k.startswith("__"):
o2[k] = v
o = o2
if isinstance(o, (set, tuple, list)):
return tuple([make_hash(e) for e in o])
elif not isinstance(o, dict):
return hash(o)
new_o = copy.deepcopy(o)
for k, v in new_o.items():
new_o[k] = make_hash(v)
return hash(tuple(frozenset(sorted(new_o.items()))))
You can use this to return a hash tuple of however many elements you'd like:
# -7666086133114527897
print (make_hash(func.__code__))
# (-7666086133114527897, 3527539)
print (make_hash([func.__code__, func.__dict__]))
# (-7666086133114527897, 3527539, -509551383349783210)
print (make_hash([func.__code__, func.__dict__, func.__name__]))
NOTE: all of the above code assumes Python 3.x. Did not test in earlier versions, although I assume make_hash() will work in, say, 2.7.2. As far as making the examples work, I do know that
func.__code__
should be replaced with
func.func_code
The code below avoids using the Python hash() function because it will not provide hashes that are consistent across restarts of Python (see hash function in Python 3.3 returns different results between sessions). make_hashable() will convert the object into nested tuples and make_hash_sha256() will also convert the repr() to a base64 encoded SHA256 hash.
import hashlib
import base64
def make_hash_sha256(o):
hasher = hashlib.sha256()
hasher.update(repr(make_hashable(o)).encode())
return base64.b64encode(hasher.digest()).decode()
def make_hashable(o):
if isinstance(o, (tuple, list)):
return tuple((make_hashable(e) for e in o))
if isinstance(o, dict):
return tuple(sorted((k,make_hashable(v)) for k,v in o.items()))
if isinstance(o, (set, frozenset)):
return tuple(sorted(make_hashable(e) for e in o))
return o
o = dict(x=1,b=2,c=[3,4,5],d={6,7})
print(make_hashable(o))
# (('b', 2), ('c', (3, 4, 5)), ('d', (6, 7)), ('x', 1))
print(make_hash_sha256(o))
# fyt/gK6D24H9Ugexw+g3lbqnKZ0JAcgtNW+rXIDeU2Y=
Here is a clearer solution.
def freeze(o):
if isinstance(o,dict):
return frozenset({ k:freeze(v) for k,v in o.items()}.items())
if isinstance(o,list):
return tuple([freeze(v) for v in o])
return o
def make_hash(o):
"""
makes a hash out of anything that contains only list,dict and hashable types including string and numeric types
"""
return hash(freeze(o))
MD5 HASH
The method which resulted in the most stable results for me was using md5 hashes and json.stringify
from typing import Dict, Any
import hashlib
import json
def dict_hash(dictionary: Dict[str, Any]) -> str:
"""MD5 hash of a dictionary."""
dhash = hashlib.md5()
# We need to sort arguments so {'a': 1, 'b': 2} is
# the same as {'b': 2, 'a': 1}
encoded = json.dumps(dictionary, sort_keys=True).encode()
dhash.update(encoded)
return dhash.hexdigest()
While hash(frozenset(x.items()) and hash(tuple(sorted(x.items())) work, that's doing a lot of work allocating and copying all the key-value pairs. A hash function really should avoid a lot of memory allocation.
A little bit of math can help here. The problem with most hash functions is that they assume that order matters. To hash an unordered structure, you need a commutative operation. Multiplication doesn't work well as any element hashing to 0 means the whole product is 0. Bitwise & and | tend towards all 0's or 1's. There are two good candidates: addition and xor.
from functools import reduce
from operator import xor
class hashable(dict):
def __hash__(self):
return reduce(xor, map(hash, self.items()), 0)
# Alternative
def __hash__(self):
return sum(map(hash, self.items()))
One point: xor works, in part, because dict guarantees keys are unique. And sum works because Python will bitwise truncate the results.
If you want to hash a multiset, sum is preferable. With xor, {a} would hash to the same value as {a, a, a} because x ^ x ^ x = x.
If you really need the guarantees that SHA makes, this won't work for you. But to use a dictionary in a set, this will work fine; Python containers are resiliant to some collisions, and the underlying hash functions are pretty good.
Updated from 2013 reply...
None of the above answers seem reliable to me. The reason is the use of items(). As far as I know, this comes out in a machine-dependent order.
How about this instead?
import hashlib
def dict_hash(the_dict, *ignore):
if ignore: # Sometimes you don't care about some items
interesting = the_dict.copy()
for item in ignore:
if item in interesting:
interesting.pop(item)
the_dict = interesting
result = hashlib.sha1(
'%s' % sorted(the_dict.items())
).hexdigest()
return result
Use DeepHash from DeepDiff Module
from deepdiff import DeepHash
obj = {'a':'1',b:'2'}
hashes = DeepHash(obj)[obj]
To preserve key order, instead of hash(str(dictionary)) or hash(json.dumps(dictionary)) I would prefer quick-and-dirty solution:
from pprint import pformat
h = hash(pformat(dictionary))
It will work even for types like DateTime and more that are not JSON serializable.
You can use the maps library to do this. Specifically, maps.FrozenMap
import maps
fm = maps.FrozenMap(my_dict)
hash(fm)
To install maps, just do:
pip install maps
It handles the nested dict case too:
import maps
fm = maps.FrozenMap.recurse(my_dict)
hash(fm)
Disclaimer: I am the author of the maps library.
You could use the third-party frozendict module to freeze your dict and make it hashable.
from frozendict import frozendict
my_dict = frozendict(my_dict)
For handling nested objects, you could go with:
import collections.abc
def make_hashable(x):
if isinstance(x, collections.abc.Hashable):
return x
elif isinstance(x, collections.abc.Sequence):
return tuple(make_hashable(xi) for xi in x)
elif isinstance(x, collections.abc.Set):
return frozenset(make_hashable(xi) for xi in x)
elif isinstance(x, collections.abc.Mapping):
return frozendict({k: make_hashable(v) for k, v in x.items()})
else:
raise TypeError("Don't know how to make {} objects hashable".format(type(x).__name__))
If you want to support more types, use functools.singledispatch (Python 3.7):
#functools.singledispatch
def make_hashable(x):
raise TypeError("Don't know how to make {} objects hashable".format(type(x).__name__))
#make_hashable.register
def _(x: collections.abc.Hashable):
return x
#make_hashable.register
def _(x: collections.abc.Sequence):
return tuple(make_hashable(xi) for xi in x)
#make_hashable.register
def _(x: collections.abc.Set):
return frozenset(make_hashable(xi) for xi in x)
#make_hashable.register
def _(x: collections.abc.Mapping):
return frozendict({k: make_hashable(v) for k, v in x.items()})
# add your own types here
One way to approach the problem is to make a tuple of the dictionary's items:
hash(tuple(my_dict.items()))
This is not a general solution (i.e. only trivially works if your dict is not nested), but since nobody here suggested it, I thought it might be useful to share it.
One can use a (third-party) immutables package and create an immutable 'snapshot' of a dict like this:
from immutables import Map
map = dict(a=1, b=2)
immap = Map(map)
hash(immap)
This seems to be faster than, say, stringification of the original dict.
I learned about this from this nice article.
For nested structures, having string keys at the top level dict, you can use pickle(protocol=5) and hash the bytes object. If you need safety, you can use a safe serializer.
I do it like this:
hash(str(my_dict))

What do I do when I need a self referential dictionary?

I'm new to Python, and am sort of surprised I cannot do this.
dictionary = {
'a' : '123',
'b' : dictionary['a'] + '456'
}
I'm wondering what the Pythonic way to correctly do this in my script, because I feel like I'm not the only one that has tried to do this.
EDIT: Enough people were wondering what I'm doing with this, so here are more details for my use cases. Lets say I want to keep dictionary objects to hold file system paths. The paths are relative to other values in the dictionary. For example, this is what one of my dictionaries may look like.
dictionary = {
'user': 'sholsapp',
'home': '/home/' + dictionary['user']
}
It is important that at any point in time I may change dictionary['user'] and have all of the dictionaries values reflect the change. Again, this is an example of what I'm using it for, so I hope that it conveys my goal.
From my own research I think I will need to implement a class to do this.
No fear of creating new classes -
You can take advantage of Python's string formating capabilities
and simply do:
class MyDict(dict):
def __getitem__(self, item):
return dict.__getitem__(self, item) % self
dictionary = MyDict({
'user' : 'gnucom',
'home' : '/home/%(user)s',
'bin' : '%(home)s/bin'
})
print dictionary["home"]
print dictionary["bin"]
Nearest I came up without doing object:
dictionary = {
'user' : 'gnucom',
'home' : lambda:'/home/'+dictionary['user']
}
print dictionary['home']()
dictionary['user']='tony'
print dictionary['home']()
>>> dictionary = {
... 'a':'123'
... }
>>> dictionary['b'] = dictionary['a'] + '456'
>>> dictionary
{'a': '123', 'b': '123456'}
It works fine but when you're trying to use dictionary it hasn't been defined yet (because it has to evaluate that literal dictionary first).
But be careful because this assigns to the key of 'b' the value referenced by the key of 'a' at the time of assignment and is not going to do the lookup every time. If that is what you are looking for, it's possible but with more work.
What you're describing in your edit is how an INI config file works. Python does have a built in library called ConfigParser which should work for what you're describing.
This is an interesting problem. It seems like Greg has a good solution. But that's no fun ;)
jsbueno as a very elegant solution but that only applies to strings (as you requested).
The trick to a 'general' self referential dictionary is to use a surrogate object. It takes a few (understatement) lines of code to pull off, but the usage is about what you want:
S = SurrogateDict(AdditionSurrogateDictEntry)
d = S.resolve({'user': 'gnucom',
'home': '/home/' + S['user'],
'config': [S['home'] + '/.emacs', S['home'] + '/.bashrc']})
The code to make that happen is not nearly so short. It lives in three classes:
import abc
class SurrogateDictEntry(object):
__metaclass__ = abc.ABCMeta
def __init__(self, key):
"""record the key on the real dictionary that this will resolve to a
value for
"""
self.key = key
def resolve(self, d):
""" return the actual value"""
if hasattr(self, 'op'):
# any operation done on self will store it's name in self.op.
# if this is set, resolve it by calling the appropriate method
# now that we can get self.value out of d
self.value = d[self.key]
return getattr(self, self.op + 'resolve__')()
else:
return d[self.key]
#staticmethod
def make_op(opname):
"""A convience class. This will be the form of all op hooks for subclasses
The actual logic for the op is in __op__resolve__ (e.g. __add__resolve__)
"""
def op(self, other):
self.stored_value = other
self.op = opname
return self
op.__name__ = opname
return op
Next, comes the concrete class. simple enough.
class AdditionSurrogateDictEntry(SurrogateDictEntry):
__add__ = SurrogateDictEntry.make_op('__add__')
__radd__ = SurrogateDictEntry.make_op('__radd__')
def __add__resolve__(self):
return self.value + self.stored_value
def __radd__resolve__(self):
return self.stored_value + self.value
Here's the final class
class SurrogateDict(object):
def __init__(self, EntryClass):
self.EntryClass = EntryClass
def __getitem__(self, key):
"""record the key and return"""
return self.EntryClass(key)
#staticmethod
def resolve(d):
"""I eat generators resolve self references"""
stack = [d]
while stack:
cur = stack.pop()
# This just tries to set it to an appropriate iterable
it = xrange(len(cur)) if not hasattr(cur, 'keys') else cur.keys()
for key in it:
# sorry for being a duche. Just register your class with
# SurrogateDictEntry and you can pass whatever.
while isinstance(cur[key], SurrogateDictEntry):
cur[key] = cur[key].resolve(d)
# I'm just going to check for iter but you can add other
# checks here for items that we should loop over.
if hasattr(cur[key], '__iter__'):
stack.append(cur[key])
return d
In response to gnucoms's question about why I named the classes the way that I did.
The word surrogate is generally associated with standing in for something else so it seemed appropriate because that's what the SurrogateDict class does: an instance replaces the 'self' references in a dictionary literal. That being said, (other than just being straight up stupid sometimes) naming is probably one of the hardest things for me about coding. If you (or anyone else) can suggest a better name, I'm all ears.
I'll provide a brief explanation. Throughout S refers to an instance of SurrogateDict and d is the real dictionary.
A reference S[key] triggers S.__getitem__ and SurrogateDictEntry(key) to be placed in the d.
When S[key] = SurrogateDictEntry(key) is constructed, it stores key. This will be the key into d for the value that this entry of SurrogateDictEntry is acting as a surrogate for.
After S[key] is returned, it is either entered into the d, or has some operation(s) performed on it. If an operation is performed on it, it triggers the relative __op__ method which simple stores the value that the operation is performed on and the name of the operation and then returns itself. We can't actually resolve the operation because d hasn't been constructed yet.
After d is constructed, it is passed to S.resolve. This method loops through d finding any instances of SurrogateDictEntry and replacing them with the result of calling the resolve method on the instance.
The SurrogateDictEntry.resolve method receives the now constructed d as an argument and can use the value of key that it stored at construction time to get the value that it is acting as a surrogate for. If an operation was performed on it after creation, the op attribute will have been set with the name of the operation that was performed. If the class has a __op__ method, then it has a __op__resolve__ method with the actual logic that would normally be in the __op__ method. So now we have the logic (self.op__resolve) and all necessary values (self.value, self.stored_value) to finally get the real value of d[key]. So we return that which step 4 places in the dictionary.
finally the SurrogateDict.resolve method returns d with all references resolved.
That'a a rough sketch. If you have any more questions, feel free to ask.
If you, just like me wandering how to make #jsbueno snippet work with {} style substitutions, below is the example code (which is probably not much efficient though):
import string
class MyDict(dict):
def __init__(self, *args, **kw):
super(MyDict,self).__init__(*args, **kw)
self.itemlist = super(MyDict,self).keys()
self.fmt = string.Formatter()
def __getitem__(self, item):
return self.fmt.vformat(dict.__getitem__(self, item), {}, self)
xs = MyDict({
'user' : 'gnucom',
'home' : '/home/{user}',
'bin' : '{home}/bin'
})
>>> xs["home"]
'/home/gnucom'
>>> xs["bin"]
'/home/gnucom/bin'
I tried to make it work with the simple replacement of % self with .format(**self) but it turns out it wouldn't work for nested expressions (like 'bin' in above listing, which references 'home', which has it's own reference to 'user') because of the evaluation order (** expansion is done before actual format call and it's not delayed like in original % version).
Write a class, maybe something with properties:
class PathInfo(object):
def __init__(self, user):
self.user = user
#property
def home(self):
return '/home/' + self.user
p = PathInfo('thc')
print p.home # /home/thc
As sort of an extended version of #Tony's answer, you could build a dictionary subclass that calls its values if they are callables:
class CallingDict(dict):
"""Returns the result rather than the value of referenced callables.
>>> cd = CallingDict({1: "One", 2: "Two", 'fsh': "Fish",
... "rhyme": lambda d: ' '.join((d[1], d['fsh'],
... d[2], d['fsh']))})
>>> cd["rhyme"]
'One Fish Two Fish'
>>> cd[1] = 'Red'
>>> cd[2] = 'Blue'
>>> cd["rhyme"]
'Red Fish Blue Fish'
"""
def __getitem__(self, item):
it = super(CallingDict, self).__getitem__(item)
if callable(it):
return it(self)
else:
return it
Of course this would only be usable if you're not actually going to store callables as values. If you need to be able to do that, you could wrap the lambda declaration in a function that adds some attribute to the resulting lambda, and check for it in CallingDict.__getitem__, but at that point it's getting complex, and long-winded, enough that it might just be easier to use a class for your data in the first place.
This is very easy in a lazily evaluated language (haskell).
Since Python is strictly evaluated, we can do a little trick to turn things lazy:
Y = lambda f: (lambda x: x(x))(lambda y: f(lambda *args: y(y)(*args)))
d1 = lambda self: lambda: {
'a': lambda: 3,
'b': lambda: self()['a']()
}
# fix the d1, and evaluate it
d2 = Y(d1)()
# to get a
d2['a']() # 3
# to get b
d2['b']() # 3
Syntax wise this is not very nice. That's because of us needing to explicitly construct lazy expressions with lambda: ... and explicitly evaluate lazy expression with ...(). It's the opposite problem in lazy languages needing strictness annotations, here in Python we end up needing lazy annotations.
I think with some more meta-programmming and some more tricks, the above could be made more easy to use.
Note that this is basically how let-rec works in some functional languages.
The jsbueno answer in Python 3 :
class MyDict(dict):
def __getitem__(self, item):
return dict.__getitem__(self, item).format(self)
dictionary = MyDict({
'user' : 'gnucom',
'home' : '/home/{0[user]}',
'bin' : '{0[home]}/bin'
})
print(dictionary["home"])
print(dictionary["bin"])
Her ewe use the python 3 string formatting with curly braces {} and the .format() method.
Documentation : https://docs.python.org/3/library/string.html

Categories

Resources