I want to update the Column with 0 or 1, where for each empID the month is minimum and Sal Hike is Max:
I have written the code to find Min Month and Max Sal Hike for each employee.
df.sort_values(['salhike','month'],ascending=[False,True]).groupby("empid").head(1)
How can I update this in "Yes_or_No" with 1 col'n?
Input DF:
empid age salhike month YES_or_NO
123 23 12 1 0
123 23 24 2 0
123 23 87 3 0
123 23 35 4 0
111 23 87 1 0
111 23 35 2 0
111 23 14 3 0
111 23 12 4 0
I am trying to get output table is:
empid age salhike month YES_or_NO
123 23 12 1 0
123 23 24 2 0
123 23 87 3 1
123 23 35 4 0
111 23 87 1 1
111 23 35 2 0
111 23 14 3 0
111 23 12 4 0
Try, using sort_values, then duplicated with subset on empid and convert boolean series to integer and assign back to column in dataframe:
df.assign(YES_or_NO = (~df.sort_values(['empid','salhike'])
.duplicated(subset='empid', keep='last')).astype(int))
df.assign(YES_or_NO = (~df.sort_values(['salhike','month'],
ascending=['True','False','False'])
.duplicated(subset='empid', keep='last')).astype(int))
Output:
empid age salhike month YES_or_NO
0 123 23 12 1 0
1 123 23 24 2 0
2 123 23 87 3 1
3 123 23 35 4 0
4 111 23 87 1 1
5 111 23 35 2 0
6 111 23 14 3 0
7 111 23 12 4 0
Using groupby transform max
df['YES_or_NO']=df.salhike.eq(df.groupby('empid')['salhike'].transform('max')).astype(int)
df
Out[380]:
empid age salhike month YES_or_NO
0 123 23 12 1 0
1 123 23 24 2 0
2 123 23 87 3 1
3 123 23 35 4 0
4 111 23 87 1 1
5 111 23 35 2 0
6 111 23 14 3 0
7 111 23 12 4 0
Update
df['YES_or_NO']=0
df.loc[df.groupby('empid')['salhike'].idxmax(),'YES_or_NO']=1
Related
I having a data csv file containing some data. In which i have some data within semi colons. In these semi colon there is some specific id numbers and i need to replace it with the specific location name.
Available data
24CFA4A-12L - GF Electrical corridor
Replacing data within semicolons of id number
1;1;35;;1/2/1/37 24CFA4A;;;0;;;
Files with data - https://gofile.io/d/bQDppz
Thank you if anyone have solution.
[![Main data to replaced after finding id number and replacing with location ][3]][3]
Supposing you have dataframes:
df1 = pd.read_excel("ID_list.xlsx", header=None)
df2 = pd.read_excel("location.xlsx", header=None)
df1:
0
0 1;1;27;;1/2/1/29 25BAB3D;;;0;;;
1 1;1;27;1;;;;0;;;
2 1;1;28;;1/2/1/30 290E6D2;;;0;;;
3 1;1;28;1;;;;0;;;
4 1;1;29;;1/2/1/31 28BA737;;;0;;;
5 1;1;29;1;;;;0;;;
6 1;1;30;;1/2/1/32 2717823;;;0;;;
7 1;1;30;1;;;;0;;;
8 1;1;31;;1/2/1/33 254DEAA;;;0;;;
9 1;1;31;1;;;;0;;;
10 1;1;32;;1/2/1/34 28AE041;;;0;;;
11 1;1;32;1;;;;0;;;
12 1;1;33;;1/2/1/35 254DE82;;;0;;;
13 1;1;33;1;;;;0;;;
14 1;1;34;;1/2/1/36 2539D70;;;0;;;
15 1;1;34;1;;;;0;;;
16 1;1;35;;1/2/1/37 24CFA4A;;;0;;;
17 1;1;35;1;;;;0;;;
18 1;1;36;;1/2/1/39 28F023E;;;0;;;
19 1;1;36;1;;;;0;;;
20 1;1;37;;1/2/1/40 2717831;;;0;;;
21 1;1;37;1;;;;0;;;
22 1;1;38;;1/2/1/41 2397D75;;;0;;;
23 1;1;38;1;;;;0;;;
24 1;1;39;;1/2/1/42 287844C;;;0;;;
25 1;1;39;1;;;;0;;;
26 1;1;40;;1/2/1/43 28784F0;;;0;;;
27 1;1;40;1;;;;0;;;
28 1;1;41;;1/2/1/44 2865B67;;;0;;;
29 1;1;41;1;;;;0;;;
30 1;1;42;;1/2/1/45 2865998;;;0;;;
31 1;1;42;1;;;;0;;;
32 1;1;43;;1/2/1/46 287852F;;;0;;;
33 1;1;43;1;;;;0;;;
34 1;1;44;;1/2/1/47 287AC43;;;0;;;
35 1;1;44;1;;;;0;;;
36 1;1;45;;1/2/1/48 287ACF8;;;0;;;
37 1;1;45;1;;;;0;;;
38 1;1;46;;1/2/1/49 2878586;;;0;;;
39 1;1;46;1;;;;0;;;
40 1;1;47;;1/2/1/50 2878474;;;0;;;
41 1;1;47;1;;;;0;;;
42 1;1;48;;1/2/1/51 2846315;;;0;;;
df2:
0 1
0 GF General Dining TC 254DEAA-02L
1 GF General Dining TC 2717823-26L
2 GF General Dining FC 28BA737-50L
3 GF Preparation FC 25BAB3D-10L
4 GF Preparation TC 290E6D2-01M
5 GF Hospital Kitchen FC 25BAB2F-10L
6 GF Hospital Kitchen TC 2906F5C-01M
7 GF Food Preparation FC 25F5723-10L
8 GF Food Preparation TC 29070D6-01M
9 GF KITCHEN Corridor 254DF5D-02L
Then:
df1 = df1[0].str.split(";", expand=True)
df1[4] = df1[4].apply(lambda x: v[-1] if (v := x.split()) else "")
df2[1] = df2[1].apply(lambda x: x.split("-")[0])
df1:
0 1 2 3 4 5 6 7 8 9 10
0 1 1 27 25BAB3D 0
1 1 1 27 1 0
2 1 1 28 290E6D2 0
3 1 1 28 1 0
4 1 1 29 28BA737 0
5 1 1 29 1 0
6 1 1 30 2717823 0
7 1 1 30 1 0
8 1 1 31 254DEAA 0
9 1 1 31 1 0
10 1 1 32 28AE041 0
11 1 1 32 1 0
12 1 1 33 254DE82 0
13 1 1 33 1 0
14 1 1 34 2539D70 0
15 1 1 34 1 0
16 1 1 35 24CFA4A 0
17 1 1 35 1 0
18 1 1 36 28F023E 0
19 1 1 36 1 0
20 1 1 37 2717831 0
21 1 1 37 1 0
22 1 1 38 2397D75 0
23 1 1 38 1 0
24 1 1 39 287844C 0
25 1 1 39 1 0
26 1 1 40 28784F0 0
27 1 1 40 1 0
28 1 1 41 2865B67 0
29 1 1 41 1 0
30 1 1 42 2865998 0
31 1 1 42 1 0
32 1 1 43 287852F 0
33 1 1 43 1 0
34 1 1 44 287AC43 0
35 1 1 44 1 0
36 1 1 45 287ACF8 0
37 1 1 45 1 0
38 1 1 46 2878586 0
39 1 1 46 1 0
40 1 1 47 2878474 0
41 1 1 47 1 0
42 1 1 48 2846315 0
df2:
0 1
0 GF General Dining TC 254DEAA
1 GF General Dining TC 2717823
2 GF General Dining FC 28BA737
3 GF Preparation FC 25BAB3D
4 GF Preparation TC 290E6D2
5 GF Hospital Kitchen FC 25BAB2F
6 GF Hospital Kitchen TC 2906F5C
7 GF Food Preparation FC 25F5723
8 GF Food Preparation TC 29070D6
9 GF KITCHEN Corridor 254DF5D
To replace the values:
m = dict(zip(df2[1], df2[0]))
df1[4] = df1[4].replace(m)
df1:
0 1 2 3 4 5 6 7 8 9 10
0 1 1 27 GF Preparation FC 0
1 1 1 27 1 0
2 1 1 28 GF Preparation TC 0
3 1 1 28 1 0
4 1 1 29 GF General Dining FC 0
5 1 1 29 1 0
6 1 1 30 GF General Dining TC 0
7 1 1 30 1 0
8 1 1 31 GF General Dining TC 0
9 1 1 31 1 0
10 1 1 32 28AE041 0
11 1 1 32 1 0
12 1 1 33 254DE82 0
13 1 1 33 1 0
14 1 1 34 2539D70 0
15 1 1 34 1 0
16 1 1 35 24CFA4A 0
17 1 1 35 1 0
18 1 1 36 28F023E 0
19 1 1 36 1 0
20 1 1 37 2717831 0
21 1 1 37 1 0
22 1 1 38 2397D75 0
23 1 1 38 1 0
24 1 1 39 287844C 0
25 1 1 39 1 0
26 1 1 40 28784F0 0
27 1 1 40 1 0
28 1 1 41 2865B67 0
29 1 1 41 1 0
30 1 1 42 2865998 0
31 1 1 42 1 0
32 1 1 43 287852F 0
33 1 1 43 1 0
34 1 1 44 287AC43 0
35 1 1 44 1 0
36 1 1 45 287ACF8 0
37 1 1 45 1 0
38 1 1 46 2878586 0
39 1 1 46 1 0
40 1 1 47 2878474 0
41 1 1 47 1 0
42 1 1 48 2846315 0
I am new to python and I was facing some issue solving the following problem.
I have the following dataframe:
SoldDate CountSoldperMonth
2019-06-01 20
5
10
12
33
16
50
27
2019-05-01 2
5
11
13
2019-04-01 32
35
39
42
47
55
61
80
I need to add a Target column such that for the top 5 values in 'CountSoldperMonth' for a particular SoldDate, target should be 1 else 0. If the number of rows in 'CountSoldperMonth' for a particular 'SoldDate' is less than 5 then only the row with highest count will be marked as 1 in the Target and rest as 0. The resulting dataframe should look as below.
SoldDate CountSoldperMonth Target
2019-06-01 20 1
5 0
10 0
12 0
33 1
16 1
50 1
27 1
2019-05-01 2 0
5 0
11 0
13 1
2019-04-01 32 0
35 0
39 0
42 1
47 1
55 1
61 1
80 1
How do I do this?
In your case , using groupby with your rules chain with apply if...else
df.groupby('SoldDate').CountSoldperMonth.\
apply(lambda x : x==max(x) if len(x)<=5 else x.isin(sorted(x)[-5:])).astype(int)
Out[346]:
0 1
1 0
2 0
3 0
4 1
5 1
6 1
7 1
8 0
9 0
10 0
11 1
12 0
13 0
14 0
15 1
16 1
17 1
18 1
19 1
Name: CountSoldperMonth, dtype: int32
I just worked on creating some columns using .transform() to count some entries.
I used this reference.
For example:
userID deviceName POWER_DOWN USER LOW_RSSI NONE CMD_SUCCESS
0 24 IR_00 85 0 39 0 0
1 24 IR_00 85 0 39 0 0
2 24 IR_00 85 0 39 0 0
3 24 IR_00 85 0 39 0 0
4 25 BED_08 0 109 78 0 0
5 25 BED_08 0 109 78 0 0
6 25 BED_08 0 109 78 0 0
7 24 IR_00 85 0 39 0 0
8 23 IR_09 2 0 0 0 0
9 23 V33_17 3 0 2 0 134
10 23 V33_17 3 0 2 0 134
11 23 V33_17 3 0 2 0 134
12 23 V33_17 3 0 2 0 134
I want to group them by userID and deviceName?
So that it would look like:
userID deviceName POWER_DOWN USER LOW_RSSI NONE CMD_SUCCESS
0 23 IR_09 2 0 0 0 0
1 V33_17 3 0 2 0 134
2 24 IR_00 85 0 39 0 0
3 25 BED_08 0 109 78 0 0
I also want them to be sorted by userID and maybe make userID and deviceName as multi-index.
I tried the df = df.groupby(['userID', 'deviceName'])
but returned a
<pandas.core.groupby.DataFrameGroupBy object at0x00000249BBB13DD8>.
not the dataframe.
By the way, Im sorry. I dont know how to copy a Jupyter notebook In and Out.
I believe need drop_duplicates with sort_values:
df1 = df.drop_duplicates(['userID', 'deviceName']).sort_values('userID')
print (df1)
userID deviceName POWER_DOWN USER LOW_RSSI NONE CMD_SUCCESS
8 23 IR_09 2 0 0 0 0
9 23 V33_17 3 0 2 0 134
0 24 IR_00 85 0 39 0 0
4 25 BED_08 0 109 78 0 0
If want create MultiIndex add set_index:
df1 = (df.drop_duplicates(['userID', 'deviceName'])
.sort_values('userID')
.set_index(['userID', 'deviceName']))
print (df1)
POWER_DOWN USER LOW_RSSI NONE CMD_SUCCESS
userID deviceName
23 IR_09 2 0 0 0 0
V33_17 3 0 2 0 134
24 IR_00 85 0 39 0 0
25 BED_08 0 109 78 0 0
I have a dataframe that has values of the different column numbers for another dataframe. Is there a way that I can just return the value from the other dataframe instead of just having the column index.
I basically want to match up the index between the Push and df dataframes. The values in the Push dataframe contain what column I want to return from the df dataframe.
Push dataframe:
0 1
0 1 2
1 0 3
2 0 3
3 1 3
4 0 2
df dataframe:
0 1 2 3 4
0 10 11 22 33 44
1 10 11 22 33 44
2 10 11 22 33 44
3 10 11 22 33 44
4 10 11 22 33 44
return:
0 1
0 11 22
1 10 33
2 10 33
3 11 33
4 10 22
You can do it with np.take ; However this function works on the flattened array. push must be shift like that :
In [285]: push1 = push.values+np.arange(0,25,5)[:,None]
In [229]: pd.DataFrame(df.values.take(push1))
EDIT
No, I just reinvent np.choose :
In [24]: df
Out[24]:
0 1 2 3 4
0 0 1 2 3 4
1 10 11 12 13 14
2 20 21 22 23 24
3 30 31 32 33 34
4 40 41 42 43 44
In [25]: push
Out[25]:
0 1
0 1 2
1 0 3
2 0 3
3 1 3
4 0 2
In [27]: np.choose(push.T,df).T
Out[27]:
0 1
0 1 2
1 10 13
2 20 23
3 31 33
4 40 42
We using melt then replace notice (df1 is your push , df2 is your df)
df1.astype(str).replace(df2.melt().drop_duplicates().set_index('variable').value.to_dict())
Out[31]:
0 1
0 11 22
1 10 33
2 10 33
3 11 33
4 10 22
New to pandas, I'm trying to sum up all previous values of a column. In SQL I did this by joining the table to itself, so I've been taking the same approach in pandas, but having some issues.
Original Data Frame
TeamName PlayerCount Goals CalMonth
0 A 25 126 1
1 A 25 100 2
2 A 25 156 3
3 B 22 205 1
4 B 30 300 2
5 B 28 189 3
Code
prev_month = np.where(df3['CalMonth'] == 12, df3['CalMonth'] - 11, df3['CalMonth'] + 1)
df4 = pd.merge(df3, df3, how='left', left_on=['TeamName','CalMonth'], right_on=['TeamName', prev_month])
print(df4.head(20))
Output
TeamName PlayerCount_x Goals_x CalMonth_x
0 A 25 126 1
1 A 25 100 2
2 A 25 156 3
3 B 22 205 1
4 B 22 300 2
5 B 22 189 3
PlayerCount_y Goals_y CalMonth_y
NaN NaN NaN
25 126 1
25 100 2
22 NaN NaN
22 205 1
22 100 2
The output is what I had in mind, but what I want now is to create a column that is YTD and sum up all Goals from previous months. Here are my desired results (can either include the current month or not, that can be done in an additional step):
TeamName PlayerCount_x Goals_x CalMonth_x
0 A 25 126 1
1 A 25 100 2
2 A 25 156 3
3 B 22 205 1
4 B 22 300 2
5 B 22 189 3
PlayerCount_y Goals_y CalMonth_y Goals_YTD
NaN NaN NaN NaN
25 126 1 126
25 100 2 226
22 NaN NaN NaN
22 205 1 205
22 100 2 305