How to use Padding in conv2d layer of specific size - python

My input size image is :
256 * 256
Conv2d Kernal Size : 4*4 and strides at 2*2.
The output will be 127*127.
I want to pass to Max Pool for this i want to apply padding to make it 128*128 so that pooling works well and pooling output will be used in other layers.
How i can apply padding for this conv.
conv1 = tf.layers.conv2d(x, 32, (4,4),strides=(2,2), activation=tf.nn.relu)

tf.layers.conv2d has a padding parameter that you can use to do this. The default is "valid" which means no padding is done, so each convolution will slightly shrink the input. You can pass padding="same" instead. This will apply padding such that the output of the convolution is equal in size to the input. This is before strides, so using a stride of 2 will still downsample by a factor 2. In your example, using padding="same" should result in the convolution output to have size 128x128.

Related

Confusion regarding dimensions in CNN

The above picture generated using Matlab's deep learning toolbox shows the architecture of a CNN created for a toy example. The input image is of size 25*20*7, number of filters are 15 each of size 5*5 and padding is same. The output of the first convolution conv1 is 25*20*15 which goes into maxpooling 1 operation of size 2*2 with stride 1 and padding same.
Based on my understanding, the role of maxpooling is to perform dimension reduction. However, in my code since the padding is set to same I understand that the output of maxpooling will preserve the spatial dimension to its input which is 25*20*15. That is why the output of maxpooling1 and the rest of the maxpooling is of the same dimension as its input and there is no change in the dimension in the remaining layers. AS an example, So, the output of maxpooling should have been: (25 - 2 +2*1/1) + 1 = 23+2/1 + 1 = 25. Similarly, for the second dimension maxpooling would yield: (20 - 2 +2*1/1) + 1 = 18+2/1 + 1 = 20. Thus, the output of maxpooling should be 25*20*15.
This implies that maxpooling is not doing dimension reduction. Therefore, should I remove maxpooling if the padding option is set to same?
Please let me know how the dimensions are same after doing maxpooling and if same dimension then should I remove this operation? Or did I do some mistake?
The role of padding is different for convolutional and maxpooling layer. If padding=same in convolutional layer, it means that the output size (primarily height and width) remains the same as the input.
On the other hand, padding in pooling layers has a different functionality. The purpose of pooling layers is to reduce the spatial dimensions (height and width). In pooling layers, padding = same does not mean that the spatial dimensions do not change. Padding in pooling is required to make up for overlaps when the input size and kernel size do not perfectly fit.
tldr: If you want to reduce the image size in every step, use padding=valid. it's default option.
Maxpooilign is generally used for Downsampling and Reducing Overfitting.
If you use padding='same', it will stretch the image to input size, causing no drop in the size.
In the example below, input size is 4 * 4, pool is 2*2 and (default) stride is 2x2, so output is 2 * 2
Find more examples on keras' official site

How do stacked convolutional layers work in a CNN?

I am having trouble understanding the way 2 or more convolutional layers (each followed by a pooling layer) work in a CNN.
Consider the input to be a 3 channel 300x300 image. If the first convolution layer has 32 convolutions and the second layers have 64 convolutional layers, then the first layer creates 32 feature maps. But how many feature maps does the second layer create? Does every convolution out of 64 act on the previously generated 32 feature maps, thus creating 32*64 = 2048 feature maps in total? Or does something else take place?
A simple code relating the question is:
model = keras.models.Sequential([
keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(300, 300, 3)),
keras.layers.MaxPooling2D(2, 2),
keras.layers.Conv2D(64, (3, 3), activation='relu'),
keras.layers.MaxPooling2D(2, 2)])
The number of channels of the input matrix and the number of channels in each filter must match in order to be able to perform element-wise multiplication.
So the main difference between first and second convolutions is that the # of channels in the input matrix in the first convolution is 3 so we will use 32 filters where each filter has 3 channels (depth of kernel matrix).
For the second convolution, the input matrix has 32 channels (feature maps), so each filter for this convolution must have 32 channels as well. For example: each of the 64 filters will have the 32#3x3 shape.
The result of a convolution step for a single filter of 32#3x3 shape will be a single channel of WxH (Width, Height) shape. After applying all 64 filters (where each of them has shape: 32#3x3) we will get 64 channels, where each channel is a result of the convolution of a single filter.
The first convolution layer has 32 filters, but it applies to all THREE channels of the image, so the feature maps after the first Conv2D is 32x3 = 96, then the 64 filters of the second Conv2D each apply to each of that 96 feature maps, so after the 2nd Conv2D it's 64x96 = ... (fill in the blank).
But for simplicity, Keras only shows (..., 32) or (..., 64). You can use model.summary() to check.

Understanding the output shape of conv2d layer in keras

I do not understand why the channel dimension is not included in the output dimension of a conv2D layer in Keras.
I have the following model
def create_model():
image = Input(shape=(128,128,3))
x = Conv2D(24, kernel_size=(8,8), strides=(2,2), activation='relu', name='conv_1')(image)
x = Conv2D(24, kernel_size=(8,8), strides=(2,2), activation='relu', name='conv_2')(x)
x = Conv2D(24, kernel_size=(8,8), strides=(2,2), activation='relu', name='conv_3')(x)
flatten = Flatten(name='flatten')(x)
output = Dense(1, activation='relu', name='output')(flatten)
model = Model(input=image, output=output)
return model
model = create_model()
model.summary()
The model summary is given the figure at the end of my question. The input layer takes RGB images with width = 128 and height = 128. The first conv2D layer tells me the output dimension is (None, 61, 61, 24). I have used the kernel size of (8, 8), a stride of (2, 2) no padding. The values 61 = floor( (128 - 8 + 2 * 0)/2 + 1) and 24 (number of kernels/filters) makes sense. But why isn't the dimension for the different channels included in the dimension? As far as I can see the parameters for the 24 filters on each of the channels is included in the number of the parameters. So I would expect the output dimension to be (None, 61, 61, 24, 3) or (None, 61, 61, 24 * 3). Is this just a strange notation in Keras or am I confused about something else?
This question is asked in various forms all over the internet and has a simple answer which is often missed or confused:
SIMPLE ANSWER:
The Keras Conv2D layer, given a multi-channel input (e.g. a color image), will apply the filter across ALL the color channels and sum the results, producing the equivalent of a monochrome convolved output image.
An example, from a CIFAR-10 CNN example:
(1) You're training with the CIFAR image dataset, which is made up of 32x32 color images, i.e. each image is shape (32,32,3) (RGB = 3 channels)
(2) Your first layer of your network is a Conv2D Layer with 32 filters, each specified as 3x3, so:
Conv2D(32, (3,3), padding='same', input_shape=(32,32,3))
(3) Counter-intuitively, Keras will configure each filter as (3,3,3), i.e. a 3D volume covering the 3x3 pixels PLUS all the color channels. As a minor detail each filter has an additional weight for a BIAS value, as per normal neural network layer arithmetic.
(4) Convolution proceeds absolutely as normal, except a 3x3x3 VOLUME from the input image is convolved at each step with the 3x3x3 filter, and a single (monochrome) output value (i.e. like a pixel) is produced at each step.
(5) The result is a Keras Conv2D convolution of a specified (3,3) filter on a (32,32,3) image produces a (32,32) result because the actual filter used is (3,3,3).
(6) In this example, we have also specified 32 filters in the Conv2D layer, so the actual output is (32,32,32) for each input image (i.e. you might think of this as 32 images, one for each filter, each 32x32 monochrome pixels).
As a check, you can look at the count of weights (Param #) for the layer produced by model.summary():
Layer (type) Output shape Param#
conv2d_1 (Conv2D) (None, 32, 32, 32) 896
There are 32 filters, each 3x3x3 (i.e. 27 weights) plus 1 for the bias (i.e. total 28 weights each). And 32 filters x 28 weights each = 896 Parameters.
Each of the convolutional filters (8 x 8) is connected to a (8 x 8) receptive field for all the channels of the image. That is why we have (61, 61, 24) as the output of the second layer. The different channels are encoded implicitly into the weights of the 24 filters. This means, that each filter does not have 8 x 8 = 64 weights but instead 8 x 8 x Number of channels = 8 x 8 x 3 = 192 weights.
See this quote from CS231
Left: An example input volume in red (e.g. a 32x32x3 CIFAR-10 image),
and an example volume of neurons in the first Convolutional layer.
Each neuron in the convolutional layer is connected only to a local
region in the input volume spatially, but to the full depth (i.e. all
color channels). Note, there are multiple neurons (5 in this example)
along the depth, all looking at the same region in the input - see
discussion of depth columns in the text below. Right: The neurons from the
Neural Network chapter remains unchanged: They still compute a dot
product of their weights with the input followed by a non-linearity,
but their connectivity is now restricted to be local spatially.
My guess is that you're misunderstanding how convolutional layers defined.
My notation for the shape of the convolutional layer is (out_channels, in_channels, k, k) where k is a the size of the kernel. The out_channels is the number of filters (i.e. convolutional neurons). Consider following image:
The 3d convolutional kernel weights in the picture slide across different data windows of A_{i-1}(i.e. input image). Patches of 3D data of that image of shape (in_channels, k, k) are paired with individual 3d convolutional kernels of matching dimensionality. How many such 3d kernels are there? As the number of output channels out_channels. The depth dimension that kernel adopts is the in_channels of A_{i-1}. Therefore, the dimension in_channels of A_{i-1} is contracted away by the depth-wise dot product that builds up the output tensor with out_channels channels. The precise way in which the sliding windows are constructed is defined by the sampling tuple (kernel_size, stride, padding) and results in output tensor with spatial dimensions determined by the formula that you're correctly applied.
If you want to understand more, including backpropagation and implementation take a look at this paper.
The formula you're using is correct. It may be little confusing because many popular tutorial use number of filters equal to number of channels in the image. TensorFlow/Keras implementation produces its output by computing num_input_channels * num_output_channels intermediate feature maps of size (kernel_size[0], kernel_size[1]). So for each input channel it produces num_output_channels feature maps which then get multiplied and concatenated together to create output shape of (kernel_size[0], kernel_size[1], num_output_channels) Hope this clarifies Vlad's detailed answer

tf.nn.conv2d vs tf.layers.conv2d

Is there any advantage in using tf.nn.* over tf.layers.*?
Most of the examples in the doc use tf.nn.conv2d, for instance, but it is not clear why they do so.
As GBY mentioned, they use the same implementation.
There is a slight difference in the parameters.
For tf.nn.conv2d:
filter: A Tensor. Must have the same type as input. A 4-D tensor of shape [filter_height, filter_width, in_channels, out_channels]
For tf.layers.conv2d:
filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
I would use tf.nn.conv2d when loading a pretrained model (example code: https://github.com/ry/tensorflow-vgg16), and tf.layers.conv2d for a model trained from scratch.
For convolution, they are the same. More precisely, tf.layers.conv2d (actually _Conv) uses tf.nn.convolution as the backend. You can follow the calling chain of: tf.layers.conv2d>Conv2D>Conv2D.apply()>_Conv>_Conv.apply()>_Layer.apply()>_Layer.\__call__()>_Conv.call()>nn.convolution()...
As others mentioned the parameters are different especially the "filter(s)". tf.nn.conv2d takes a tensor as a filter, which means you can specify the weight decay (or maybe other properties) like the following in cifar10 code. (Whether you want/need to have weight decay in conv layer is another question.)
kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 3, 64],
stddev=5e-2,
wd=0.0)
conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
I'm not quite sure how to set weight decay in tf.layers.conv2d since it only take an integer as filters. Maybe using kernel_constraint?
On the other hand, tf.layers.conv2d handles activation and bias automatically while you have to write additional codes for these if you use tf.nn.conv2d.
All of these other replies talk about how the parameters are different, but actually, the main difference of tf.nn and tf.layers conv2d is that for tf.nn, you need to create your own filter tensor and pass it in. This filter needs to have the size of: [kernel_height, kernel_width, in_channels, num_filters]
Essentially, tf.nn is lower level than tf.layers. Unfortunately, this answer is not applicable anymore is tf.layers is obselete
DIFFERENCES IN PARAMETER:
Using tf.layer* in a code:
# Convolution Layer with 32 filters and a kernel size of 5
conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv1 = tf.layers.max_pooling2d(conv1, 2, 2)
Using tf.nn* in a code:
( Notice we need to pass weights and biases additionally as parameters )
strides = 1
# Weights matrix looks like: [kernel_size(=5), kernel_size(=5), input_channels (=3), filters (= 32)]
# Similarly bias = looks like [filters (=32)]
out = tf.nn.conv2d(input, weights, padding="SAME", strides = [1, strides, strides, 1])
out = tf.nn.bias_add(out, bias)
out = tf.nn.relu(out)
Take a look here:tensorflow > tf.layers.conv2d
and here: tensorflow > conv2d
As you can see the arguments to the layers version are:
tf.layers.conv2d(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, reuse=None)
and the nn version:
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
I think you can choose the one with the options you want/need/like!

Weights in Convolutional network?

I am currently following the TensorFlow's Multilayer Convolutional Network tutorial.
In various layers weight is initialised as followed :
First Convolutional Layer:
W_conv1 = weight_variable([5, 5, 1, 32])
Second Convolutional Layer:
W_conv2 = weight_variable([5, 5, 32, 64])
Densely Connected Layer:
W_fc1 = weight_variable([7 * 7 * 64, 1024])
Readout Layer:
W_fc2 = weight_variable([1024, 10])
So I am having doubts in how is the shape of the above weight variables known to us ?
Is their any math used to find the shape for them ?
The answer is explained on the same page:
The convolutional will compute 32 features for each 5x5 patch. Its
weight tensor will have a shape of [5, 5, 1, 32]
There is no involved math par say, but these terms need explanation
The size of convolution kernel is 5X5. That means there is a 5X5 matrix that is convolved with an input image by moving it around the image. Check this link for an explanation of how a small 5X5 matrix moves over a 28X28 image and multiplies different cells of the image matrix with itself. This gives us first two dimentsions of [5, 5, 1, 32]
The size of input channels is 1. These are BW images, hence one input channel. Most colored images have 3 channels, so expect a 3 in some other convolution networks working on images. Indeed, for the second layer, W_conv2, the number of input channels is 32, same as number of output channels of layer 1.
The last dimension of the weight matrix is perhaps hardest to visualize. Imagine your 5X5 matrix, and replicate it 32 times!. Each of these 32 things are called channels. To complete the discussion, each of these 32 5X5 matrices are initialized with random weights and trained independently during forward/back propagation of the network. More channels learn different aspects of the image and hence give extra power to your network.
If you summarize these 3 points, you get desired dimensions of layer 1. Subsequent layers are an extension - First two dimensions are kernel sizes (5X5) in this case. Third dimension is equal to size of input channel, which is equal to size of output channel of previous layer. (32, since we declared 32 output channels of layer 1). Final dimension is the size of output channel of current layer (64, even lager for second layer!. Again, keeping a large number of independent 5X5 kernels helps!).
Finally, last two layers: Final dense layer is the only thing that involves some calculation:
For each convolution layer, final size = initial size
For pooling layer of size kXk, final size = initial size / k
So,
For conv1, size remains 28 X 28
pool1 reduces size to 14 X 14
For conv2, size remains 14 X 14
pool2 reduces size to 7 X 7
And ofcourse, we have 64 channels due to conv2 - pooling doesn't affect them. Hence, we get a final dense input of 7X7X64. We then create fully connected 1024 hidden layers and add 10 output classes for 10 digits.

Categories

Resources