Fitting data with a custom distribution using scipy.stats - python

So I noticed that there is no implementation of the Skewed generalized t distribution in scipy. It would be useful for me to fit this is distribution to some data I have. Unfortunately fit doesn't seem to be working in this case for me. To explain further I have implemented it like so
import numpy as np
import pandas as pd
import scipy.stats as st
from scipy.special import beta
class sgt(st.rv_continuous):
def _pdf(self, x, mu, sigma, lam, p, q):
v = q ** (-1 / p) * \
((3 * lam ** 2 + 1) * (
beta(3 / p, q - 2 / p) / beta(1 / p, q)) - 4 * lam ** 2 *
(beta(2 / p, q - 1 / p) / beta(1 / p, q)) ** 2) ** (-1 / 2)
m = 2 * v * sigma * lam * q ** (1 / p) * beta(2 / p, q - 1 / p) / beta(
1 / p, q)
fx = p / (2 * v * sigma * q ** (1 / p) * beta(1 / p, q) * (
abs(x - mu + m) ** p / (q * (v * sigma) ** p) * (
lam * np.sign(x - mu + m) + 1) ** p + 1) ** (
1 / p + q))
return fx
def _argcheck(self, mu, sigma, lam, p, q):
s = sigma > 0
l = -1 < lam < 1
p_bool = p > 0
q_bool = q > 0
all_bool = s & l & p_bool & q_bool
return all_bool
This all works fine and I can generate random variables with given parameters no problem. The _argcheck is required as a simple positive params only check is not suitable.
sgt_inst = sgt(name='sgt')
vars = sgt_inst.rvs(mu=1, sigma=3, lam = -0.1, p = 2, q = 50, size = 100)
However, when I try fit these parameters I get an error
sgt_inst.fit(vars)
RuntimeWarning: invalid value encountered in subtract
numpy.max(numpy.abs(fsim[0] - fsim[1:])) <= fatol):
and it just returns
What I find strange is that when I implement the example custom Gaussian distribution as shown in the docs, it has no problem running the fit method.
Any ideas?

As fit docstring says,
Starting estimates for the fit are given by input arguments; for any arguments not provided with starting estimates, self._fitstart(data) is called to generate such.
Calling sgt_inst._fitstart(data) returns (1.0, 1.0, 1.0, 1.0, 1.0, 0, 1) (the first five are shape parameters, the last two are loc and scale). Looks like _fitstart is not a sophisticated process. The parameter l it picks does not meet your argcheck requirement.
Conclusion: provide your own starting parameters for fit, e.g.,
sgt_inst.fit(data, 0.5, 0.5, -0.5, 2, 10)
returns (1.4587093459289049, 5.471769032259468, -0.02391466905874927, 7.07289326147152
4, 0.741434497805832, -0.07012808188413872, 0.5308181287869771) for my random data.

Related

how to pass two arrays into a fuction

I have a function that typically takes in constant args and calculates volatility. I want to pass in a vector of different C's and K's to get an array of volatilities each associated with C[i], K[i]
def vol_calc(S, T, C, K, r, q, sigma):
d1 = (np.log(S / K) + (r - q + 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T))
vega = (1 / np.sqrt(2 * np.pi)) * np.exp(-q * T) * np.sqrt(T) * np.exp((-si.norm.cdf(d1, 0.0, 1.0) ** 2) * 0.5)
tolerance = 0.000001
x0 = sigma
xnew = x0
xold = x0 - 1
while abs(xnew - xold) > tolerance:
xold = xnew
xnew = (xnew - fx - C) / vega
return abs(xnew)
but if I want to pass two arrays without turning into a nested loop, I thought I could just do:
def myfunction(S, T, r, q, sigma):
for x in K,C:
return same size as K,C
but I can't get it to work
How about this?
def vol_calc(S, T, C, K, r, q, sigma):
import numpy as np
output = np.zeros(len(C))
for num, (c, k) in enumerate(zip(C, K)):
d1 = (np.log(S / k) + (r - q + 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T))
vega = (1 / np.sqrt(2 * np.pi)) * np.exp(-q * T) * np.sqrt(T) * np.exp((-si.norm.cdf(d1, 0.0, 1.0) ** 2) * 0.5)
tolerance = 0.000001
x0 = sigma
xnew = x0
xold = x0 - 1
while abs(xnew - xold) > tolerance:
xold = xnew
xnew = (xnew - fx - c) / vega
output[num] = abs(xnew)
return output

How calculate a double integral accurately using python

I'm trying to calculate a double integral given by :
import scipy.special as sc
from numpy.lib.scimath import sqrt as csqrt
from scipy.integrate import dblquad
def g_re(alpha, beta, k, m):
psi = csqrt(alpha ** 2 + beta ** 2 - k ** 2)
return np.real(
sc.jv(m, alpha)
* sc.jv(m, beta)
* sc.jv(m, alpha)
* np.sin(beta)
* sc.jv(m, -1j * psi)
* np.exp(-psi)
/ (alpha ** 2 * psi)
)
def g_im(alpha, beta, k, m):
psi = csqrt(alpha ** 2 + beta ** 2 - k ** 2)
return np.imag(
sc.jv(m, alpha)
* sc.jv(m, beta)
* sc.jv(m, alpha)
* np.sin(beta)
* sc.jv(m, -1j * psi)
* np.exp(-psi)
/ (alpha ** 2 * psi)
)
k = 5
m = 0
tuple_args = (k, m)
ans = dblquad(g_re, 0.0, np.inf, 0, np.inf, args=tuple_args)[0]
ans += 1j * dblquad(g_im, 0.0, np.inf, 0, np.inf, args=tuple_args)[0]
The integration intervals are along the positive real axes ([0, np.inf[). When calculating I got the following warning :
/tmp/a.py:10: RuntimeWarning: invalid value encountered in multiply
sc.jv(m, alpha)
g/home/nschloe/.local/lib/python3.9/site-packages/scipy/integrate/quadpack.py:879: IntegrationWarning: The maximum number of subdivisions (50) has been achieved.
If increasing the limit yields no improvement it is advised to analyze
the integrand in order to determine the difficulties. If the position of a
local difficulty can be determined (singularity, discontinuity) one will
probably gain from splitting up the interval and calling the integrator
on the subranges. Perhaps a special-purpose integrator should be used.
quad_r = quad(f, low, high, args=args, full_output=self.full_output,
I subdivided the domain of integration but I still got the same warning. Could you help me please.

overflow in exponential function while trying to integrate

I want to numerically integrate a discrete dataset (given ad pandas series) -here orange- which is multiplied with a given analytical exponential function (derivative of a Fermi-Dirac-Distribution) -here blue-. However I fail when the exponent becomes large (e.g. for small T) and thus the derivative fermi_dT(E, mu, T)explodes. I couldn't find a way to rewrite fermi_dT(E, mu, T)in an appropriate way to get it done.
Below is a minimal example (not with pandas series), where I simulated the dataset by a Gaussian.
If T<30. I'll get an overflow. Does anyone see a clever way to get around?
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
scale_plot = 1e6
kB = 8.618292134831462e-5 #in eV
Ef = 2.0
def gaussian(E, amp, E0, sig):
return amp * np.exp(-(E-E0)**2 / sig)
def fermi_dT(E, mu, T):
return ((np.exp((E - mu) / (kB * T))*(E-mu)) / ((1 + np.exp((E - mu) / (kB * T)))**2*kB*T**2))
T = 100.0
energies = np.arange(1.,3.,0.001)
plt.plot(energies, (energies-Ef)*fermi_dT(energies, Ef, T))
plt.plot(energies, gaussian(energies, 1e-5, 1.8, .01))
plt.plot(energies, gaussian(energies, 1e-5, 1.8, .01)*(energies-Ef)*fermi_dT(energies, Ef, T)*scale_plot)
plt.show()
cum = integrate.cumtrapz(gaussian(energies, 1e-5, 1.8, .01)*(energies-Ef)*fermi_dT(energies, Ef, T), energies)
print(cum[-1])
This kind of numerical issue is quite usual when dealing with exponential derivatives. The trick is to compute first the log, and only after to apply the exponential:
log(a*exp(b) / (1 + c*exp(d)) ** k) = log(a) + b - k * log(1 + exp(log(c) + d)))
Now, you need to find a way to compute log(1 + exp(x)) accurately. Lucky for you, people have done it before, according to this post. So maybe you could rewrite fermi_dT using log1p:
import numpy as np
def softplus(x, limit=30):
val = np.empty_like(x)
val[x>=limit] = x[x>=limit]
val[x<limit] = np.log1p(np.exp(x[x<limit]))
return val
def fermi_dT(E, mu, T):
a = (E - mu) / (kB * T ** 2)
b = d = (E - mu) / (kB * T)
k = 2
val = np.empty_like(E)
val[E-mu>=0] = np.exp(np.log(a[E-mu>=0]) + b[E-mu>=0] - k * softplus(d[E-mu>=0]))
val[E-mu<0] = -np.exp(np.log(-a[E-mu<0]) + b[E-mu<0] - k * softplus(d[E-mu<0]))
return val

Error: TypeError: can't multiply sequence by non-int of type 'numpy.float64' <Figure size 432x288 with 0 Axes> (don't know what to do)

I'm trying to plot an equation that contains and definite integral. It is a photoionisation cross section associated with the intersubband transitions in a two-dimensional quantum ring. I made the angular part analytically, and I'm trying to calculate numerically the radial part.
Here's my attempt to implement this in a Python code:
from scipy.integrate import quad
import numpy as np
from scipy.special import gamma
from scipy.constants import alpha
import matplotlib.pyplot as plt
#Constants
epsilon = 13.1 #dielectric constant of the material
gamma_C = 0.5 # donor impurity linewidth
nr = 3.2 #refractive index of semiconductor
flux = 0 # Phi in eqn 8 magnetic flux
R = 5 #radius of the qunatum ring in nm
r = np.linspace(0, 6 * R)
rho = r / R
m_0 = 0.0067*0.511 # electron effective mass
h = 4.13e-15 # Planck constant in eV
hbar = 6.58e-16 # reduced Planck constant in eV
#Photon energy
hnu = np.linspace(0, 100) #in eV
#Function that calculates the integrand
def func(rho):
betai = np.sqrt( gama**4/4)
betaf = np.sqrt(1+gama**4/2)
return ((gama * rho)**(betai + betaf) *
np.exp(-1/2*(gama * rho)**2)
* (gama * rho)**2/2 )
def cross_section(hnu, gama):
#function that calculates the photoionisation cross section
betai = np.sqrt( gama**4/4)
betaf = np.sqrt(1+gama**4/2)
Ei = gama**2*(1+betai)-gama**4/2
Ef = gama**2*(3+betaf)-gama**4/2
return (nr/epsilon * 4*np.pi/3 * alpha * hnu *
(abs(R * np.sqrt(1/2**betai*gamma(betai + 1))*
np.sqrt(1/2**betaf*gamma(betaf + 1)) *
quad(func, 0, np.infty))**2 *
hbar * gamma_C/(Ef - Ei - hnu)**2 + ( hbar * gamma_C)**2))
#Plot
plt.figure();plt.clf()
for gama in [1.0, 1.5, 2.0]:
plt.plot(hnu, cross_section(hnu, gama))
But I keep receiving this error
TypeError: can't multiply sequence by non-int of type 'numpy.float64'
Anyone knows the cause and how can avoid this?
Take another look at the docstring for scipy.integrate.quad. In particular, look at the 'Returns' section. You'll see that it returns multiple values. More precisely, it returns a tuple of values. The actual number of values depends on the parameter full_output, but it always includes at least two values, the numerically computed integral and the error estimate.
In this code
return (nr/epsilon * 4*np.pi/3 * alpha * hnu *
(abs(R * np.sqrt(1/2**betai*gamma(betai + 1))*
np.sqrt(1/2**betaf*gamma(betaf + 1)) *
quad(func, 0, np.infty))**2 *
hbar * gamma_C/(Ef - Ei - hnu)**2 + ( hbar * gamma_C)**2))
you use the return value of quad, but that is a tuple, so it won't work correctly in that expression. To fix it, just pull out the first value of the tuple returned by quad. That is, replace quad(func, 0, np.infty) with quad(func, 0, np.infty)[0]:
return (nr/epsilon * 4*np.pi/3 * alpha * hnu *
(abs(R * np.sqrt(1/2**betai*gamma(betai + 1))*
np.sqrt(1/2**betaf*gamma(betaf + 1)) *
quad(func, 0, np.infty)[0])**2 *
hbar * gamma_C/(Ef - Ei - hnu)**2 + ( hbar * gamma_C)**2))

Chaotic billiards simulation

I came to ask for some help with maths and programming.
What am I trying to do? I'm trying to implement a simulation of a chaotic billiard system, following the algorithm in this excerpt.
How am I trying it? Using numpy and matplotlib, I implemented the following code
def boundaryFunction(parameter):
return 1 + 0.1 * np.cos(parameter)
def boundaryDerivative(parameter):
return -0.1 * np.sin(parameter)
def trajectoryFunction(parameter):
aux = np.sin(beta - phi) / np.sin(beta - parameter)
return boundaryFunction(phi) * aux
def difference(parameter):
return trajectoryFunction(parameter) - boundaryFunction(parameter)
def integrand(parameter):
rr = boundaryFunction(parameter)
dd = boundaryDerivative (parameter)
return np.sqrt(rr ** 2 + dd ** 2)
##### Main #####
length_vals = np.array([], dtype=np.float64)
alpha_vals = np.array([], dtype=np.float64)
# nof initial phi angles, alpha angles, and nof collisions for each.
n_phi, n_alpha, n_cols, count = 10, 10, 10, 0
# Length of the boundary
total_length, err = integrate.quad(integrand, 0, 2 * np.pi)
for phi in np.linspace(0, 2 * np.pi, n_phi):
for alpha in np.linspace(0, 2 * np.pi, n_alpha):
for n in np.arange(1, n_cols):
nu = np.arctan(boundaryFunction(phi) / boundaryDerivative(phi))
beta = np.pi + phi + alpha - nu
# Determines next impact coordinate.
bnds = (0, 2 * np.pi)
phi_new = optimize.minimize_scalar(difference, bounds=bnds, method='bounded').x
nu_new = np.arctan(boundaryFunction(phi_new) / boundaryDerivative(phi_new))
# Reflection angle with relation to tangent.
alpha_new = phi_new - phi + nu - nu_new - alpha
# Arc length for current phi value.
arc_length, err = integrate.quad(integrand, 0, phi_new)
# Append values to list
length_vals = np.append(length_vals, arc_length / total_length)
alpha_vals = np.append(alpha_vals, alpha)
count += 1
print "{}%" .format(100 * count / (n_phi * n_alpha))
What is the problem? When calculating phi_new, the equation has two solutions (assuming the boundary is convex, which is.) I must enforce that phi_new is the solution which is different from phi, but I don't know how to do that. Are there more issues with the code?
What should the output be? A phase space diagram of S x Alpha, looking like this.
Any help is very appreciated! Thanks in advance.
One way you could try would be (given there really are only two solutions) would be
epsilon = 1e-7 # tune this
delta = 1e-4 # tune this
# ...
bnds = (0, 2 * np.pi)
phi_new = optimize.minimize_scalar(difference, bounds=bnds, method='bounded').x
if abs(phi_new - phi) < epsilon:
bnds_1 = (0, phi - delta)
phi_new_1 = optimize.minimize_scalar(difference, bounds=bnds_1, method='bounded').x
bnds_2 = (phi + delta, 2 * np.pi)
phi_new_2 = optimize.minimize_scalar(difference, bounds=bnds_2, method='bounded').x
if difference(phi_new_1) < difference(phi_new_2):
phi_new = phi_new_1
else:
phi_new = phi_new_2
Alternatively, you could introduce a penalty-term, e.g. delta*exp(eps/(x-phi)^2) with appropriate choices of epsilon and delta.

Categories

Resources