ML Engine: Prediction Error while executing local predict command - python

I have uploaded a version of the model in the Google ML Engine with saved_model.pb and a variables folder. When I try to execute the command:
gcloud ml-engine local predict --model-dir=saved_model --json-instances=request.json
It shows the following error:
ERROR: (gcloud.ml-engine.local.predict) 2018-09-11 19:06:39.770396: I tensorflow/core/platform/cpu_feature_guard.cc:141]
Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
Traceback (most recent call last):
File "lib/googlecloudsdk/command_lib/ml_engine/local_predict.py", line 172, in <module>
main()
File "lib/googlecloudsdk/command_lib/ml_engine/local_predict.py", line 167, in main
signature_name=args.signature_name)
File "/usr/lib/google-cloud-sdk/lib/third_party/ml_sdk/cloud/ml/prediction/prediction_lib.py", line 106, in local_predict
predictions = model.predict(instances, signature_name=signature_name)
File "/usr/lib/google-cloud-sdk/lib/third_party/ml_sdk/cloud/ml/prediction/prediction_utils.py", line 230, in predict
preprocessed = self.preprocess(instances, stats=stats, **kwargs)
File "/usr/lib/google-cloud-sdk/lib/third_party/ml_sdk/cloud/ml/prediction/frameworks/tf_prediction_lib.py", line 436, in preprocess
preprocessed = self._canonicalize_input(instances, signature)
File "/usr/lib/google-cloud-sdk/lib/third_party/ml_sdk/cloud/ml/prediction/frameworks/tf_prediction_lib.py", line 453, in _canonicalize_input
return canonicalize_single_tensor_input(instances, tensor_name)
File "/usr/lib/google-cloud-sdk/lib/third_party/ml_sdk/cloud/ml/prediction/frameworks/tf_prediction_lib.py", line 166, in canonicalize_single_tensor_input
instances = [parse_single_tensor(x, tensor_name) for x in instances]
File "/usr/lib/google-cloud-sdk/lib/third_party/ml_sdk/cloud/ml/prediction/frameworks/tf_prediction_lib.py", line 162, in parse_single_tensor
(tensor_name, list(x.keys())))
cloud.ml.prediction.prediction_utils.PredictionError: Invalid inputs: Expected tensor name: inputs, got tensor name: [u'inputs', u'key']. (Error code: 1)
My request.json file is
{"inputs": {"b64": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHVArwDASIAAhEBAxEB/8QAHwAAAQUBAQEBA....."}, "key": "841bananas.jpg"}
Thanks in advance.

It appears your model was exported with only one input named "inputs". In that case, you shouldn't be sending "key" in the JSON, i.e., (scroll to the end to see I've removed "keys"):
{"inputs": {"b64": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHVArwDASIAAhEBAxEB/8QAHwAAAQUBAQEBA....."}}

Related

Train machine learning model with JAX + ObJAX, met 'ValueError: Unable to cast Python instance to C++ type'

When I use JAX + ObJAX framework trained WRN model, there was an error: 'ValueError: Unable to cast Python instance to C++ type (compile in debug mode for details)', I don't know why...
Error information:
Traceback (most recent call last):
File "train.py", line 330, in <module>
app.run(main)
File "/home/shangjing/anaconda/yes/envs/python-tensorflow/lib/python3.6/site-packages/absl/app.py", line 303, in run
_run_main(main, args)
File "/home/shangjing/anaconda/yes/envs/python-tensorflow/lib/python3.6/site-packages/absl/app.py", line 251, in _run_main
sys.exit(main(argv))
File "train.py", line 306, in main
tm.train(FLAGS.epochs, len(xs), train, test, logdir, save_steps=FLAGS.save_steps, patience=FLAGS.patience)
File "train.py", line 91, in train
self.train_step(summary, next(train_iter), progress)
File "train.py", line 65, in train_step
kv = self.train_op(progress, np.array(data['image'].numpy()), np.array(data['label'].numpy()))
File "/home/shangjing/anaconda/yes/envs/python-tensorflow/lib/python3.6/site-packages/objax/module.py", line 258, in __call__
output, changes = self._call(self.vc.tensors(), kwargs, *args)
File "/home/shangjing/anaconda/yes/envs/python-tensorflow/lib/python3.6/site-packages/jax/api.py", line 416, in f_jitted
return cpp_jitted_f(context, *args, **kwargs)
ValueError: Unable to cast Python instance to C++ type (compile in debug mode for details)
The main code: https://github.com/tensorflow/privacy/tree/master/research/mi_lira_2021
I used python3.6.13+tensorflow2.4.0
I didn't change any of the code in train.py. And the command I used is: CUDA_VISIBLE_DEVICES='1' python3 -u train.py --dataset=cifar10 --epochs=100 --save_steps=20 --arch wrn28-2 --num_experiments 16 --expid 0
According to the Error Information, I tried to see line 65 in train.py: kv = self.train_op(progress, data['image'].numpy(), data['label'].numpy()) , and I thought maybe data['image'].numpy(), data['label'].numpy() have something wrong. But useless...

Problem with executing python machine learning code I found on GitHub

I need some clear instructions on how to execute some code.
Context:
This is a python machine learning peptide binding script, but you don't need to know biology to help me.
I am trying to recreate this scientific paper to test its validity and if I can use it. I work in the biotech industry and am only somewhat familiar with C# and python.
The paper is linked to a GitHub page. And the GitHub page has some instructions on how to execute the code. But every time I try to execute this code as instructed, it gives me an error. I already installed its requirements of the most updated pytorch, numpy, scikit-learn; I also switched between GPU and CPU, but no method worked. I don't know what to do at this point.
Paper Title:
"Prediction of Specific TCR-Peptide Binding From Large Dictionaries of TCR-Peptide Pairs" by Ido Springer, Hanan Besser. etc.
Paper's Github8 (found in the paper's abstract):
https://github.com/louzounlab/ERGO
These are the example codes I input in the terminal. The example code was found in a comment at the end of ERGO.py
GPU ver:
python ERGO.py train lstm mcpas specific cuda:0 --model_file=model.pt --train_data_file=train_data --test_data_file=test_data
GPU code results:
Traceback (most recent call last): File "D:\D Download\ERGO-master\ERGO.py", line 437, in <module>
main(args) File "D:\D Download\ERGO-master\ERGO.py", line 141, in main
model, best_auc, best_roc = lstm.train_model(train_batches, test_batches, args.device, arg, params) File "D:\D Download\ERGO-master\lstm_utils.py", line 163, in train_model
model.to(device) File "C:\Users\username\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py", line 927, in to
return self._apply(convert) File "C:\Users\username\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py", line 579, in _apply
module._apply(fn) File "C:\Users\username\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py", line 602, in _apply
param_applied = fn(param) File "C:\Users\username\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py", line 925, in convert
return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking) File "C:\Users\username\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\cuda\__init__.py", line 211, in _lazy_init
raise AssertionError("Torch not compiled with CUDA enabled") AssertionError: Torch not compiled with CUDA enabled
CPU code ver (only replaced specific cuda:0 with specific cpu):
python ERGO.py train lstm mcpas specific cpu --model_file=model.pt --train_data_file=train_data --test_data_file=test_data
CPU code results:
epoch: 1 C:\Users\username\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\functional.py:1960: UserWarning: nn.functional.sigmoid is deprecated. Use torch.sigmoid instead. warnings.warn("nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.") Traceback (most recent call last): File "D:\D Download\ERGO-master\ERGO.py", line 437, in <module>
main(args) File "D:\D Download\ERGO-master\ERGO.py", line 141, in main
model, best_auc, best_roc = lstm.train_model(train_batches, test_batches, args.device, arg, params) File "D:\D Download\ERGO-master\lstm_utils.py", line 173, in train_model
loss = train_epoch(batches, model, loss_function, optimizer, device) File "D:\D Download\ERGO-master\lstm_utils.py", line 137, in train_epoch
loss = loss_function(probs, batch_signs) File "C:\Users\username\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs) File "C:\Users\username\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\loss.py", line 613, in forward
return F.binary_cross_entropy(input, target, weight=self.weight, reduction=self.reduction) File "C:\Users\username\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\functional.py", line 3074, in binary_cross_entropy
raise ValueError( ValueError: Using a target size (torch.Size([50])) that is different to the input size (torch.Size([50, 1])) is deprecated. Please ensure they have the same size.
Looking at the ValueError, it seems that what you're trying to do is deprecated in pytorch, so you have a more recent version of the package than the one it was developed in. I suggest you try
pip install pytorch 1.4.0
in command line.
I'm not familiar with pytorch but menaging tensor shapes in tensorflow is the biggest pain in the a** for me. What it actually looks like to be the problem is that the input has an extra dimension than it should, so you would have to manually reshape it.

OSError: SavedModel file does not exist at: model/CPN_Model.h5\{saved_model.pbtxt|saved_model.pb}

I am using python 3.9.10
Traceback (most recent call last):
File "C:\Users\AbdiShakra\OneDrive\Documents\Diagnosticc-main\server.py", line 4, in
import prediction
File "C:\Users\AbdiShakra\OneDrive\Documents\Diagnosticc-main\prediction.py", line 5, in
model = keras.models.load_model("model/CPN_Model.h5")
File "C:\Users\AbdiShakra\AppData\Local\Programs\Python\Python39\lib\site-packages\keras\saving\save.py", line 205, in load_model
return saved_model_load.load(filepath, compile, options)
File "C:\Users\AbdiShakra\AppData\Local\Programs\Python\Python39\lib\site-packages\keras\saving\saved_model\load.py", line 108, in load
meta_graph_def = tf.internal.saved_model.parse_saved_model(path).meta_graphs[0]
File "C:\Users\AbdiShakra\AppData\Local\Programs\Python\Python39\lib\site-packages\tensorflow\python\saved_model\loader_impl.py", line 118, in parse_saved_model
raise IOError(
OSError: SavedModel file does not exist at: model/CPN_Model.h5{saved_model.pbtxt|saved_model.pb}
To load a model with tf.keras only pass the directory which contains the model, instead of the .pb or .h5 file itself. /tmp/saved_model may be a valid path, while /tmp/saved_model/mymodel.pb is not. Check the documentation to see some example code.

pyspark unable load pipelineModel

I met a problem, unable to load PipelineModel
I test my model in practice environment, but unable to apply this model and code on production environment
Traceback (most recent call last):
File "/home/fwfx_yaofei/telbd-yjy/src/ml/complain_user_it/predict/model_predict.py", line 228, in <module>
main(xdr_input_file,model_file,xdr_output_file)
File "/home/fwfx_yaofei/telbd-yjy/src/ml/complain_user_it/predict/model_predict.py", line 215, in main
xdr_df_predict = xdr_predict(xdr_df,model_file)
File "/home/fwfx_yaofei/telbd-yjy/src/ml/complain_user_it/predict/model_predict.py", line 193, in xdr_predict
loadmodel = PipelineModel.load(model_input_path)
File "/usr/bch/1.5.0/spark/python/lib/pyspark.zip/pyspark/ml/util.py", line 257, in load
File "/usr/bch/1.5.0/spark/python/lib/pyspark.zip/pyspark/ml/util.py", line 197, in load
File "/usr/bch/1.5.0/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py", line 1133, in __call__
File "/usr/bch/1.5.0/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 79, in deco
pyspark.sql.utils.IllegalArgumentException: 'requirement failed: Error loading metadata: Expected class name org.apache.spark.ml.PipelineModel but found class name pyspark.ml.pipeline.PipelineModel'
21/12/01 12:01:06 INFO SparkContext: Invoking stop() from shutdown hook
Thanks all the help.I am a intern in bigdata industry.This is my first time to post in stackoverflow,i am sorry to post in unreguired method.
Finally,i sovled this problem to adjust my code from spark2.4 to spark2.2.
Here is details about this tracesback:
I test my code in test environment under the version of spark2.4 and python3.7; i meet error when i deploy it in product environment under the version of spark2.2 and python3.7.
I train model under product envirenment, this si Model generate error:
Traceback (most recent call last):
File "/home/fwfx_yaofei/telbd-yjy/src/ml/complain_user_it/train/model_generate.py", line 331, in
main(xdr_file_path,jingfeng_file_path,save_model_path)
File "/home/fwfx_yaofei/telbd-yjy/src/ml/complain_user_it/train/model_generate.py", line 318, in main
tvs_piplineModel, gbdt_bestModel = generate_model(label_col, xdr_75109_String_title, union_df, save_model_path)
File "/home/fwfx_yaofei/telbd-yjy/src/ml/complain_user_it/train/model_generate.py", line 310, in generate_model
tvs_piplineModel.save(save_model_path)
File "/usr/bch/1.5.0/spark/python/lib/pyspark.zip/pyspark/ml/pipeline.py", line 217, in save
File "/usr/bch/1.5.0/spark/python/lib/pyspark.zip/pyspark/ml/pipeline.py", line 212, in write
File "/usr/bch/1.5.0/spark/python/lib/pyspark.zip/pyspark/ml/util.py", line 100, in init
File "/usr/bch/1.5.0/spark/python/lib/pyspark.zip/pyspark/ml/pipeline.py", line 249, in _to_java
AttributeError: 'TrainValidationSplitModel' object has no attribute '_to_java'
when i skip model generate to model predict in model which i trained in test envirenment,this is Model predict error:
Traceback (most recent call last):
File "/home/fwfx_yaofei/telbd-yjy/src/ml/complain_user_it/predict/model_predict.py", line 228, in
main(xdr_input_file,model_file,xdr_output_file)
File "/home/fwfx_yaofei/telbd-yjy/src/ml/complain_user_it/predict/model_predict.py", line 215, in main
xdr_df_predict = xdr_predict(xdr_df,model_file)
File "/home/fwfx_yaofei/telbd-yjy/src/ml/complain_user_it/predict/model_predict.py", line 193, in xdr_predict
loadmodel = PipelineModel.load(model_input_path)
File "/usr/bch/1.5.0/spark/python/lib/pyspark.zip/pyspark/ml/util.py", line 257, in load
File "/usr/bch/1.5.0/spark/python/lib/pyspark.zip/pyspark/ml/util.py", line 197, in load
File "/usr/bch/1.5.0/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py", line 1133, in call
File "/usr/bch/1.5.0/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 79, in deco
pyspark.sql.utils.IllegalArgumentException: 'requirement failed: Error loading metadata: Expected class name org.apache.spark.ml.PipelineModel but found class name pyspark.ml.pipeline.PipelineModel'
I check official document it explains ML persistence:version changes of ML persistence
So the error might casused by the vision of spark.
I ignore the "TrainValidationSplitModel" function which mention in first traceback,and it does work.My code run successfully.
Success run screenshot
Conclusion, my code aim to deploy a machine-learning classificaiton model in product environment. So i import pyspark.ml.gbdt to process dataframe. But i ignore the vision of test and product envirenoment.Thanks for all the help,this is the experience of an chinese intern.Forgive my pool expressive ability.

Error while exporting inference graph in Object Detection

I am a beginner in machine learning and currently trying to follow the tutorial by #sentdex for tracking Custom Objects.
I had completed training a model which gave me model.ckpt files. (https://pythonprogramming.net/training-custom-objects-tensorflow-object-detection-api-tutorial/)
Now for testing the model we need to export the inference graph. (https://pythonprogramming.net/testing-custom-object-detector-tensorflow-object-detection-api-tutorial/)
I run the following command from the models/research/object-detection folder (https://github.com/tensorflow/models/) on the Command Prompt:
export_inference_graph.py --input_type image_tensor --pipeline_config_path training\ssd_mobilenet_v1_pets.config --trained_checkpoint_prefix training\model.ckpt-292 --output_directory mac_n_cheese_inference_graph
And obtain the following errors: ( the cmd screen is attached)
Traceback (most recent call last):
File "C:\Users\user\AppData\Local\Programs\Python\Python36\models\research\object_detection\export_inference_graph.py", line 149, in <module>
tf.app.run()
File "C:\Users\user\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\platform\app.py", line 126, in run
_sys.exit(main(argv))
File "C:\Users\user\AppData\Local\Programs\Python\Python36\models\research\object_detection\export_inference_graph.py", line 145, in main
FLAGS.output_directory, input_shape)
File "C:/Users/user/AppData/Local/Programs/Python/Python36/models/research/object_detection\exporter.py", line 452, in export_inference_graph
is_training=False)
File "C:/Users/user/AppData/Local/Programs/Python/Python36/models/research/object_detection/builders\model_builder.py", line 91, in build
return _build_ssd_model(model_config.ssd, is_training, add_summaries)
File "C:/Users/user/AppData/Local/Programs/Python/Python36/models/research/object_detection/builders\model_builder.py", line 152, in _build_ssd_model
is_training)
File "C:/Users/user/AppData/Local/Programs/Python/Python36/models/research/object_detection/builders\model_builder.py", line 118, in _build_ssd_feature_extractor
use_explicit_padding = feature_extractor_config._use_explicit_padding
AttributeError: 'SsdFeatureExtractor' object has no attribute '_use_explicit_padding'
Please help correct the issue

Categories

Resources