Pyspark - Calculate number of null values in each dataframe column - python

I have a dataframe with many columns. My aim is to produce a dataframe thats lists each column name, along with the number of null values in that column.
Example:
+-------------+-------------+
| Column_Name | NULL_Values |
+-------------+-------------+
| Column_1 | 15 |
| Column_2 | 56 |
| Column_3 | 18 |
| ... | ... |
+-------------+-------------+
I have managed to get the number of null values for ONE column like so:
df.agg(F.count(F.when(F.isnull(c), c)).alias('NULL_Count'))
where c is a column in the dataframe. However, it does not show the name of the column. The output is:
+------------+
| NULL_Count |
+------------+
| 15 |
+------------+
Any ideas?

You can use a list comprehension to loop over all of your columns in the agg, and use alias to rename the output column:
import pyspark.sql.functions as F
df_agg = df.agg(*[F.count(F.when(F.isnull(c), c)).alias(c) for c in df.columns])
However, this will return the results in one row as shown below:
df_agg.show()
#+--------+--------+--------+
#|Column_1|Column_2|Column_3|
#+--------+--------+--------+
#| 15| 56| 18|
#+--------+--------+--------+
If you wanted the results in one column instead, you could union each column from df_agg using functools.reduce as follows:
from functools import reduce
df_agg_col = reduce(
lambda a, b: a.union(b),
(
df_agg.select(F.lit(c).alias("Column_Name"), F.col(c).alias("NULL_Count"))
for c in df_agg.columns
)
)
df_agg_col.show()
#+-----------+----------+
#|Column_Name|NULL_Count|
#+-----------+----------+
#| Column_1| 15|
#| Column_2| 56|
#| Column_3| 18|
#+-----------+----------+
Or you can skip the intermediate step of creating df_agg and do:
df_agg_col = reduce(
lambda a, b: a.union(b),
(
df.agg(
F.count(F.when(F.isnull(c), c)).alias('NULL_Count')
).select(F.lit(c).alias("Column_Name"), "NULL_Count")
for c in df.columns
)
)

Scala alternative could be
case class Test(id:Int, weight:Option[Int], age:Int, gender: Option[String])
val df1 = Seq(Test(1, Some(100), 23, Some("Male")), Test(2, None, 25, None), Test(3, None, 33, Some("Female"))).toDF()
df1.show()
+---+------+---+------+
| id|weight|age|gender|
+---+------+---+------+
| 1| 100| 23| Male|
| 2| null| 25| null|
| 3| null| 33|Female|
+---+------+---+------+
val s = df1.columns.map(c => sum(col(c).isNull.cast("integer")).alias(c))
val df2 = df1.agg(s.head, s.tail:_*)
val t = df2.columns.map(c => df2.select(lit(c).alias("col_name"), col(c).alias("null_count")))
val df_agg_col = t.reduce((df1, df2) => df1.union(df2))
df_agg_col.show()

Related

How do I filter the column in pyspark?

I am new to pyspark. I want to compare two tables. If the the value in one of the column does not match, I want to print out that column name in a new column. Using, Compare two dataframes Pyspark link, I am able to get that result. Now, I want to filter the new table based on the newly created column.
df1 = spark.createDataFrame([
[1, "ABC", 5000, "US"],
[2, "DEF", 4000, "UK"],
[3, "GHI", 3000, "JPN"],
[4, "JKL", 4500, "CHN"]
], ["id", "name", "sal", "Address"])
df2 = spark.createDataFrame([
[1, "ABC", 5000, "US"],
[2, "DEF", 4000, "CAN"],
[3, "GHI", 3500, "JPN"],
[4, "JKL_M", 4800, "CHN"]
], ["id", "name", "sal", "Address"])
from pyspark.sql.functions import *
#from pyspark.sql.functions import col, array, when, array_remove
# get conditions for all columns except id
conditions_ = [when(df1[c]!=df2[c], lit(c)).otherwise("") for c in df1.columns if c != 'id']
select_expr =[
col("id"),
*[df2[c] for c in df2.columns if c != 'id'],
array_remove(array(*conditions_), "").alias("column_names")
]
df3 = df1.join(df2, "id").select(*select_expr)
df3.show()
DF3:
+------+---------+--------+------+--------------+
| id | |name | sal | Address | column_names |
+------+---------+--------+------+--------------+
| 1| ABC | 5000 | US | [] |
| 2| DEF | 4000 | CAN | [address] |
| 3| GHI | 3500 | JPN | [sal] |
| 4| JKL_M | 4800 | CHN | [name,sal] |
+------+---------+--------+------+--------------+
This is the step where I am getting an error message.
df3.filter(df3.column_names!="")
Error: cannot resolve '(column_names = '')' due to data type mismatch: differing types in '(column_names = '')' (array<string> and string).
I want the following result
DF3:
+------+---------+--------+------+--------------+
| id | |name | sal | Address | column_names |
+------+---------+--------+------+--------------+
| 1| DEF | 4000 | CAN | [address] |
| 2| GHI | 3500 | JPN | [sal] |
| 3| JKL_M | 4800 | CHN | [name,sal] |
+------+---------+--------+------+--------------+
you are getting error because you are comparing array type to string, you should first convert column_names array type to string then it will work
df3 = df3.withColumn('column_names',concat_ws(";",col("column_names")))
You can create a udf to filter and pass the relevant column name to it, I hope below code will help.
from pyspark.sql import functions
simple filter function
#udf(returnType=BooleanType())
def my_filter(col1):
return True if len(col1) > 0 else False
df3.filter(my_filter(col('column_names'))).show()
Another way
#Do an outer join
new = df1.join(df2.alias('df2'), how='outer', on=['id','name','sal','Address'])
#Count disntict values in in each column per id
new1 =new.groupBy('id').agg(*[countDistinct(x).alias(f'{x}') for x in new.drop('id').columns])
#Using case when, where there is more than one distinct value, append column to new column
new2 = new1.select('id',array_except(array((*[when(col(c) != 1, lit(c)) for c in new1.drop('id').columns])),array(lit(None).cast('string'))).alias('column_names'))
#Join back to df2
df2.join(new2,how='right', on='id').show()
+---+-----+----+-------+------------+
| id| name| sal|Address|column_names|
+---+-----+----+-------+------------+
| 1| ABC|5000| US| []|
| 2| DEF|4000| CAN| [Address]|
| 3| GHI|3500| JPN| [sal]|
| 4|JKL_M|4800| CHN| [name, sal]|
+---+-----+----+-------+------------+
Use filter('array_column != array()'). See below example that filters out the empty arrays.
spark.sparkContext.parallelize([([],), (['blah', 'bleh'],)]).toDF(['arrcol']). \
show()
# +------------+
# | arrcol|
# +------------+
# | []|
# |[blah, bleh]|
# +------------+
spark.sparkContext.parallelize([([],), (['blah', 'bleh'],)]).toDF(['arrcol']). \
filter('arrcol != array()'). \
show()
# +------------+
# | arrcol|
# +------------+
# |[blah, bleh]|
# +------------+

How to get Weighted Average for a column in pyspark

Here i need to find exponential moving average in spark dataframe :
Table :
ab = spark.createDataFrame(
[(1,"1/1/2020", 41.0,0.5, 0.5 ,1, '10.22'),
(1,"10/3/2020",24.0,0.3, 0.7 ,2, '' ),
(1,"21/5/2020",32.0,0.4, 0.6 ,3, '' ),
(2,"3/1/2020", 51.0,0.22, 0.78,1, '34.78'),
(2,"10/5/2020",14.56,0.333,0.66,2, '' ),
(2,"30/9/2020",17.0,0.66, 0.34,3, '' )],["CID","date","A","B","C","Row","SMA"] )
ab.show()
+---+---------+-----+-----+----+---+-----+
|CID| date| A| B| C| Row| SMA|
+---+---------+-----+-----+----+---+-----+
| 1| 1/1/2020| 41.0| 0.5| 0.5| 1|10.22|
| 1|10/3/2020| 24.0| 0.3| 0.7| 2| |
| 1|21/5/2020| 32.0| 0.4| 0.6| 3| |
| 2| 3/1/2020| 51.0| 0.22|0.78| 1|34.78|
| 2|10/5/2020|14.56|0.333|0.66| 2| |
| 2|30/9/2020| 17.0| 0.66|0.34| 3| |
+---+---------+-----+-----+----+---+-----+
Expected Output :
+---+---------+-----+-----+----+---+-----+----------+
|CID| date| A| B| C|Row| SMA| EMA|
+---+---------+-----+-----+----+---+-----+----------+
| 1| 1/1/2020| 41.0| 0.5| 0.5| 1|10.22| 10.22|
| 1|10/3/2020| 24.0| 0.3| 0.7| 2| | 14.354|
| 1|21/5/2020| 32.0| 0.4| 0.6| 3| | 21.4124|
| 2| 3/1/2020| 51.0| 0.22|0.78| 1|34.78| 34.78|
| 2|10/5/2020|14.56|0.333|0.66| 2| | 28.04674|
| 2|30/9/2020| 17.0| 0.66|0.34| 3| |20.7558916|
+---+---------+-----+-----+----+---+-----+----------+
Logic :
For every customer
if row == 1 then
SMA as EMA
else ( C * LAG(EMA) + A * B ) as EMA
The problem here is that a freshly calculated value of a previous row is used as input for the current row. That means that it is not possible to parallelize the calculations for a single customer.
For Spark 3.0+, it is possible to get the required result with a pandas udf using grouped map
ab = spark.createDataFrame(
[(1,"1/1/2020", 41.0,0.5, 0.5 ,1, '10.22'),
(1,"10/3/2020",24.0,0.3, 0.7 ,2, '' ),
(1,"21/5/2020",32.0,0.4, 0.6 ,3, '' ),
(2,"3/1/2020", 51.0,0.22, 0.78,1, '34.78'),
(2,"10/5/2020",14.56,0.333,0.66,2, '' ),
(2,"30/9/2020",17.0,0.66, 0.34,3, '' )],\
["CID","date","A","B","C","Row","SMA"] ) \
.withColumn("SMA", F.col('SMA').cast(T.DoubleType())) \
.withColumn("date", F.to_date(F.col("date"), "d/M/yyyy"))
import pandas as pd
def calc(df: pd.DataFrame):
# df is a pandas.DataFrame
df = df.sort_values('date').reset_index(drop=True)
df.loc[0, 'EMA'] = df.loc[0, 'SMA']
for i in range(1, len(df)):
df.loc[i, 'EMA'] = df.loc[i, 'C'] * df.loc[i-1, 'EMA'] + \
df.loc[i, 'A'] * df.loc[i, 'B']
return df
ab.groupBy("CID").applyInPandas(calc,
schema = "CID long, date date, A double, B double, C double, Row long, SMA double, EMA double")\
.show()
Output:
+---+----------+-----+-----+----+---+-----+------------------+
|CID| date| A| B| C|Row| SMA| EMA|
+---+----------+-----+-----+----+---+-----+------------------+
| 1|2020-01-01| 41.0| 0.5| 0.5| 1|10.22| 10.22|
| 1|2020-03-10| 24.0| 0.3| 0.7| 2| null| 14.354|
| 1|2020-05-21| 32.0| 0.4| 0.6| 3| null|21.412399999999998|
| 2|2020-01-03| 51.0| 0.22|0.78| 1|34.78| 34.78|
| 2|2020-05-10|14.56|0.333|0.66| 2| null| 27.80328|
| 2|2020-09-30| 17.0| 0.66|0.34| 3| null| 20.6731152|
+---+----------+-----+-----+----+---+-----+------------------+
The idea is to use a Pandas dataframe for each group. This Pandas dataframe contains all values of the current partition and is ordered by date. During the iteration over the Pandas dataframe we can now access the value of EMA of the previous row (which is not possible for a Spark dataframe).
There are some caveats:
all rows of one partition should fit into the memory of a single executor. Partial aggregation is not possible here
iterating over a Pandas dataframe is discouraged

Compare two dataframes Pyspark

I'm trying to compare two data frames with have same number of columns i.e. 4 columns with id as key column in both data frames
df1 = spark.read.csv("/path/to/data1.csv")
df2 = spark.read.csv("/path/to/data2.csv")
Now I want to append new column to DF2 i.e. column_names which is the list of the columns with different values than df1
df2.withColumn("column_names",udf())
DF1
+------+---------+--------+------+
| id | |name | sal | Address |
+------+---------+--------+------+
| 1| ABC | 5000 | US |
| 2| DEF | 4000 | UK |
| 3| GHI | 3000 | JPN |
| 4| JKL | 4500 | CHN |
+------+---------+--------+------+
DF2:
+------+---------+--------+------+
| id | |name | sal | Address |
+------+---------+--------+------+
| 1| ABC | 5000 | US |
| 2| DEF | 4000 | CAN |
| 3| GHI | 3500 | JPN |
| 4| JKL_M | 4800 | CHN |
+------+---------+--------+------+
Now I want DF3
DF3:
+------+---------+--------+------+--------------+
| id | |name | sal | Address | column_names |
+------+---------+--------+------+--------------+
| 1| ABC | 5000 | US | [] |
| 2| DEF | 4000 | CAN | [address] |
| 3| GHI | 3500 | JPN | [sal] |
| 4| JKL_M | 4800 | CHN | [name,sal] |
+------+---------+--------+------+--------------+
I saw this SO question, How to compare two dataframe and print columns that are different in scala. Tried that, however the result is different.
I'm thinking of going with a UDF function by passing row from each dataframe to udf and compare column by column and return column list. However for that both the data frames should be in sorted order so that same id rows will be sent to udf. Sorting is costly operation here. Any solution?
Assuming that we can use id to join these two datasets I don't think that there is a need for UDF. This could be solved just by using inner join, array and array_remove functions among others.
First let's create the two datasets:
df1 = spark.createDataFrame([
[1, "ABC", 5000, "US"],
[2, "DEF", 4000, "UK"],
[3, "GHI", 3000, "JPN"],
[4, "JKL", 4500, "CHN"]
], ["id", "name", "sal", "Address"])
df2 = spark.createDataFrame([
[1, "ABC", 5000, "US"],
[2, "DEF", 4000, "CAN"],
[3, "GHI", 3500, "JPN"],
[4, "JKL_M", 4800, "CHN"]
], ["id", "name", "sal", "Address"])
First we do an inner join between the two datasets then we generate the condition df1[col] != df2[col] for each column except id. When the columns aren't equal we return the column name otherwise an empty string. The list of conditions will consist the items of an array from which finally we remove the empty items:
from pyspark.sql.functions import col, array, when, array_remove
# get conditions for all columns except id
conditions_ = [when(df1[c]!=df2[c], lit(c)).otherwise("") for c in df1.columns if c != 'id']
select_expr =[
col("id"),
*[df2[c] for c in df2.columns if c != 'id'],
array_remove(array(*conditions_), "").alias("column_names")
]
df1.join(df2, "id").select(*select_expr).show()
# +---+-----+----+-------+------------+
# | id| name| sal|Address|column_names|
# +---+-----+----+-------+------------+
# | 1| ABC|5000| US| []|
# | 3| GHI|3500| JPN| [sal]|
# | 2| DEF|4000| CAN| [Address]|
# | 4|JKL_M|4800| CHN| [name, sal]|
# +---+-----+----+-------+------------+
Here is your solution with UDF, I have changed first dataframe name dynamically so that it will be not ambiguous during check. Go through below code and let me know in case any concerns.
>>> from pyspark.sql.functions import *
>>> df.show()
+---+----+----+-------+
| id|name| sal|Address|
+---+----+----+-------+
| 1| ABC|5000| US|
| 2| DEF|4000| UK|
| 3| GHI|3000| JPN|
| 4| JKL|4500| CHN|
+---+----+----+-------+
>>> df1.show()
+---+----+----+-------+
| id|name| sal|Address|
+---+----+----+-------+
| 1| ABC|5000| US|
| 2| DEF|4000| CAN|
| 3| GHI|3500| JPN|
| 4|JKLM|4800| CHN|
+---+----+----+-------+
>>> df2 = df.select([col(c).alias("x_"+c) for c in df.columns])
>>> df3 = df1.join(df2, col("id") == col("x_id"), "left")
//udf declaration
>>> def CheckMatch(Column,r):
... check=''
... ColList=Column.split(",")
... for cc in ColList:
... if(r[cc] != r["x_" + cc]):
... check=check + "," + cc
... return check.replace(',','',1).split(",")
>>> CheckMatchUDF = udf(CheckMatch)
//final column that required to select
>>> finalCol = df1.columns
>>> finalCol.insert(len(finalCol), "column_names")
>>> df3.withColumn("column_names", CheckMatchUDF(lit(','.join(df1.columns)),struct([df3[x] for x in df3.columns])))
.select(finalCol)
.show()
+---+----+----+-------+------------+
| id|name| sal|Address|column_names|
+---+----+----+-------+------------+
| 1| ABC|5000| US| []|
| 2| DEF|4000| CAN| [Address]|
| 3| GHI|3500| JPN| [sal]|
| 4|JKLM|4800| CHN| [name, sal]|
+---+----+----+-------+------------+
Python: PySpark version of my previous scala code.
import pyspark.sql.functions as f
df1 = spark.read.option("header", "true").csv("test1.csv")
df2 = spark.read.option("header", "true").csv("test2.csv")
columns = df1.columns
df3 = df1.alias("d1").join(df2.alias("d2"), f.col("d1.id") == f.col("d2.id"), "left")
for name in columns:
df3 = df3.withColumn(name + "_temp", f.when(f.col("d1." + name) != f.col("d2." + name), f.lit(name)))
df3.withColumn("column_names", f.concat_ws(",", *map(lambda name: f.col(name + "_temp"), columns))).select("d1.*", "column_names").show()
Scala: Here is my best approach for your problem.
val df1 = spark.read.option("header", "true").csv("test1.csv")
val df2 = spark.read.option("header", "true").csv("test2.csv")
val columns = df1.columns
val df3 = df1.alias("d1").join(df2.alias("d2"), col("d1.id") === col("d2.id"), "left")
columns.foldLeft(df3) {(df, name) => df.withColumn(name + "_temp", when(col("d1." + name) =!= col("d2." + name), lit(name)))}
.withColumn("column_names", concat_ws(",", columns.map(name => col(name + "_temp")): _*))
.show(false)
First, I join two dataframe into df3 and used the columns from df1. By folding left to the df3 with temp columns that have the value for column name when df1 and df2 has the same id and other column values.
After that, concat_ws for those column names and the null's are gone away and only the column names are left.
+---+----+----+-------+------------+
|id |name|sal |Address|column_names|
+---+----+----+-------+------------+
|1 |ABC |5000|US | |
|2 |DEF |4000|UK |Address |
|3 |GHI |3000|JPN |sal |
|4 |JKL |4500|CHN |name,sal |
+---+----+----+-------+------------+
The only thing different from your expected result is that the output is not a list but string.
p.s. I forgot to use PySpark but this is the normal spark, sorry.
You can get that query build for you in PySpark and Scala by the spark-extension package.
It provides the diff transformation that does exactly that.
from gresearch.spark.diff import *
options = DiffOptions().with_change_column('changes')
df1.diff_with_options(df2, options, 'id').show()
+----+-----------+---+---------+----------+--------+---------+------------+-------------+
|diff| changes| id|left_name|right_name|left_sal|right_sal|left_Address|right_Address|
+----+-----------+---+---------+----------+--------+---------+------------+-------------+
| N| []| 1| ABC| ABC| 5000| 5000| US| US|
| C| [Address]| 2| DEF| DEF| 4000| 4000| UK| CAN|
| C| [sal]| 3| GHI| GHI| 3000| 3500| JPN| JPN|
| C|[name, sal]| 4| JKL| JKL_M| 4500| 4800| CHN| CHN|
+----+-----------+---+---------+----------+--------+---------+------------+-------------+
While this is a simple example, diffing DataFrames can become complicated when wide schemas, insertions, deletions and null values are involved. That package is well-tested, so you don't have to worry about getting that query right yourself.
There is a wonderful package for pyspark that compares two dataframes. The name of the package is datacompy
https://capitalone.github.io/datacompy/
example code:
import datacompy as dc
comparison = dc.SparkCompare(spark, base_df=df1, compare_df=df2, join_columns=common_keys, match_rates=True)
comparison.report()
The above code will generate a summary report, and the one below it will give you the mismatches.
comparison.rows_both_mismatch.display()
There are also more fearures that you can explore.

Pyspark - Select the distinct values from each column

I am trying to find all of the distinct values in each column in a dataframe and show in one table.
Example data:
|-----------|-----------|-----------|
| COL_1 | COL_2 | COL_3 |
|-----------|-----------|-----------|
| A | C | D |
| A | C | D |
| A | C | E |
| B | C | E |
| B | C | F |
| B | C | F |
|-----------|-----------|-----------|
Example output:
|-----------|-----------|-----------|
| COL_1 | COL_2 | COL_3 |
|-----------|-----------|-----------|
| A | C | D |
| B | | E |
| | | F |
|-----------|-----------|-----------|
Is this even possible? I have been able to do it in separate tables, but it would be much better all in one table.
Any ideas?
The simplest thing here would be to use pyspark.sql.functions.collect_set on all of the columns:
import pyspark.sql.functions as f
df.select(*[f.collect_set(c).alias(c) for c in df.columns]).show()
#+------+-----+---------+
#| COL_1|COL_2| COL_3|
#+------+-----+---------+
#|[B, A]| [C]|[F, E, D]|
#+------+-----+---------+
Obviously, this returns the data as one row.
If instead you want the output as you wrote in your question (one row per unique value for each column), it's doable but requires quite a bit of pyspark gymnastics (and any solution likely will be much less efficient).
Nevertheless, I present you some options:
Option 1: Explode and Join
You can use pyspark.sql.functions.posexplode to explode the elements in the set of values for each column along with the index in the array. Do this for each column separately and then outer join the resulting list of DataFrames together using functools.reduce:
from functools import reduce
unique_row = df.select(*[f.collect_set(c).alias(c) for c in df.columns])
final_df = reduce(
lambda a, b: a.join(b, how="outer", on="pos"),
(unique_row.select(f.posexplode(c).alias("pos", c)) for c in unique_row.columns)
).drop("pos")
final_df.show()
#+-----+-----+-----+
#|COL_1|COL_2|COL_3|
#+-----+-----+-----+
#| A| null| E|
#| null| null| D|
#| B| C| F|
#+-----+-----+-----+
Option 2: Select by position
First compute the size of the maximum array and store this in a new column max_length. Then select elements from each array if a value exists at that index.
Once again we use pyspark.sql.functions.posexplode but this time it's just to create a column to represent the index in each array to extract.
Finally we use this trick that allows you to use a column value as a parameter.
final_df= df.select(*[f.collect_set(c).alias(c) for c in df.columns])\
.withColumn("max_length", f.greatest(*[f.size(c) for c in df.columns]))\
.select("*", f.expr("posexplode(split(repeat(',', max_length-1), ','))"))\
.select(
*[
f.expr(
"case when size({c}) > pos then {c}[pos] else null end AS {c}".format(c=c))
for c in df.columns
]
)
final_df.show()
#+-----+-----+-----+
#|COL_1|COL_2|COL_3|
#+-----+-----+-----+
#| B| C| F|
#| A| null| E|
#| null| null| D|
#+-----+-----+-----+

Transpose column to row with Spark

I'm trying to transpose some columns of my table to row.
I'm using Python and Spark 1.5.0. Here is my initial table:
+-----+-----+-----+-------+
| A |col_1|col_2|col_...|
+-----+-------------------+
| 1 | 0.0| 0.6| ... |
| 2 | 0.6| 0.7| ... |
| 3 | 0.5| 0.9| ... |
| ...| ...| ...| ... |
I would like to have somthing like this:
+-----+--------+-----------+
| A | col_id | col_value |
+-----+--------+-----------+
| 1 | col_1| 0.0|
| 1 | col_2| 0.6|
| ...| ...| ...|
| 2 | col_1| 0.6|
| 2 | col_2| 0.7|
| ...| ...| ...|
| 3 | col_1| 0.5|
| 3 | col_2| 0.9|
| ...| ...| ...|
Does someone know haw I can do it? Thank you for your help.
Spark >= 3.4
You can use built-in melt method. With Python:
df.melt(
ids=["A"], values=["col_1", "col_2"],
variableColumnName="key", valueColumnName="val"
)
with Scala
df.melt(Array($"A"), Array($"col_1", $"col_2"), "key", "val")
Spark < 3.4
It is relatively simple to do with basic Spark SQL functions.
Python
from pyspark.sql.functions import array, col, explode, struct, lit
df = sc.parallelize([(1, 0.0, 0.6), (1, 0.6, 0.7)]).toDF(["A", "col_1", "col_2"])
def to_long(df, by):
# Filter dtypes and split into column names and type description
cols, dtypes = zip(*((c, t) for (c, t) in df.dtypes if c not in by))
# Spark SQL supports only homogeneous columns
assert len(set(dtypes)) == 1, "All columns have to be of the same type"
# Create and explode an array of (column_name, column_value) structs
kvs = explode(array([
struct(lit(c).alias("key"), col(c).alias("val")) for c in cols
])).alias("kvs")
return df.select(by + [kvs]).select(by + ["kvs.key", "kvs.val"])
to_long(df, ["A"])
Scala:
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.functions.{array, col, explode, lit, struct}
val df = Seq((1, 0.0, 0.6), (1, 0.6, 0.7)).toDF("A", "col_1", "col_2")
def toLong(df: DataFrame, by: Seq[String]): DataFrame = {
val (cols, types) = df.dtypes.filter{ case (c, _) => !by.contains(c)}.unzip
require(types.distinct.size == 1, s"${types.distinct.toString}.length != 1")
val kvs = explode(array(
cols.map(c => struct(lit(c).alias("key"), col(c).alias("val"))): _*
))
val byExprs = by.map(col(_))
df
.select(byExprs :+ kvs.alias("_kvs"): _*)
.select(byExprs ++ Seq($"_kvs.key", $"_kvs.val"): _*)
}
toLong(df, Seq("A"))
One way to solve with pyspark sql using functions create_map and explode.
from pyspark.sql import functions as func
#Use `create_map` to create the map of columns with constant
df = df.withColumn('mapCol', \
func.create_map(func.lit('col_1'),df.col_1,
func.lit('col_2'),df.col_2,
func.lit('col_3'),df.col_3
)
)
#Use explode function to explode the map
res = df.select('*',func.explode(df.mapCol).alias('col_id','col_value'))
res.show()
The Spark local linear algebra libraries are presently very weak: and they do not include basic operations as the above.
There is a JIRA for fixing this for Spark 2.1 - but that will not help you today.
Something to consider: performing a transpose will likely require completely shuffling the data.
For now you will need to write RDD code directly. I have written transpose in scala - but not in python. Here is the scala version:
def transpose(mat: DMatrix) = {
val nCols = mat(0).length
val matT = mat
.flatten
.zipWithIndex
.groupBy {
_._2 % nCols
}
.toSeq.sortBy {
_._1
}
.map(_._2)
.map(_.map(_._1))
.toArray
matT
}
So you can convert that to python for your use. I do not have bandwidth to write/test that at this particular moment: let me know if you were unable to do that conversion.
At the least - the following are readily converted to python.
zipWithIndex --> enumerate() (python equivalent - credit to #zero323)
map --> [someOperation(x) for x in ..]
groupBy --> itertools.groupBy()
Here is the implementation for flatten which does not have a python equivalent:
def flatten(L):
for item in L:
try:
for i in flatten(item):
yield i
except TypeError:
yield item
So you should be able to put those together for a solution.
You could use the stack function:
for example:
df.selectExpr("stack(2, 'col_1', col_1, 'col_2', col_2) as (key, value)")
where:
2 is the number of columns to stack (col_1 and col_2)
'col_1' is a string for the key
col_1 is the column from which to take the values
if you have several columns, you could build the whole stack string iterating the column names and pass that to selectExpr
Use flatmap. Something like below should work
from pyspark.sql import Row
def rowExpander(row):
rowDict = row.asDict()
valA = rowDict.pop('A')
for k in rowDict:
yield Row(**{'A': valA , 'colID': k, 'colValue': row[k]})
newDf = sqlContext.createDataFrame(df.rdd.flatMap(rowExpander))
I took the Scala answer that #javadba wrote and created a Python version for transposing all columns in a DataFrame. This might be a bit different from what OP was asking...
from itertools import chain
from pyspark.sql import DataFrame
def _sort_transpose_tuple(tup):
x, y = tup
return x, tuple(zip(*sorted(y, key=lambda v_k: v_k[1], reverse=False)))[0]
def transpose(X):
"""Transpose a PySpark DataFrame.
Parameters
----------
X : PySpark ``DataFrame``
The ``DataFrame`` that should be tranposed.
"""
# validate
if not isinstance(X, DataFrame):
raise TypeError('X should be a DataFrame, not a %s'
% type(X))
cols = X.columns
n_features = len(cols)
# Sorry for this unreadability...
return X.rdd.flatMap( # make into an RDD
lambda xs: chain(xs)).zipWithIndex().groupBy( # zip index
lambda val_idx: val_idx[1] % n_features).sortBy( # group by index % n_features as key
lambda grp_res: grp_res[0]).map( # sort by index % n_features key
lambda grp_res: _sort_transpose_tuple(grp_res)).map( # maintain order
lambda key_col: key_col[1]).toDF() # return to DF
For example:
>>> X = sc.parallelize([(1,2,3), (4,5,6), (7,8,9)]).toDF()
>>> X.show()
+---+---+---+
| _1| _2| _3|
+---+---+---+
| 1| 2| 3|
| 4| 5| 6|
| 7| 8| 9|
+---+---+---+
>>> transpose(X).show()
+---+---+---+
| _1| _2| _3|
+---+---+---+
| 1| 4| 7|
| 2| 5| 8|
| 3| 6| 9|
+---+---+---+
A very handy way to implement:
from pyspark.sql import Row
def rowExpander(row):
rowDict = row.asDict()
valA = rowDict.pop('A')
for k in rowDict:
yield Row(**{'A': valA , 'colID' : k, 'colValue' : row[k]})
newDf = sqlContext.createDataFrame(df.rdd.flatMap(rowExpander)
To transpose Dataframe in pySpark, I use pivot over the temporary created column, which I drop at the end of the operation.
Say, we have a table like this. What we wanna do is to find all users over each listed_days_bin value.
+------------------+-------------+
| listed_days_bin | users_count |
+------------------+-------------+
|1 | 5|
|0 | 2|
|0 | 1|
|1 | 3|
|1 | 4|
|2 | 5|
|2 | 7|
|2 | 2|
|1 | 1|
+------------------+-------------+
Create new temp column - 'pvt_value', aggregate over it and pivot results
import pyspark.sql.functions as F
agg_df = df.withColumn('pvt_value', lit(1))\
.groupby('pvt_value')\
.pivot('listed_days_bin')\
.agg(F.sum('users_count')).drop('pvt_value')
New Dataframe should look like:
+----+---+---+
| 0 | 1 | 2 | # Columns
+----+---+---+
| 3| 13| 14| # Users over the bin
+----+---+---+
I found PySpark to be too complicated to transpose so I just convert my dataframe to Pandas and use the transpose() method and convert the dataframe back to PySpark if required.
dfOutput = spark.createDataFrame(dfPySpark.toPandas().transpose())
dfOutput.display()

Categories

Resources