Shape Error in Andrew NG Logistic Regression using Scipy.opt - python

I've been trying to write Andrew NG's Logistic Regression Problem Using python and Scipy.opt for optimizing the function. However, I get a VALUE ERROR that says I have mismatching dimensions. I've tried to flatten() my theta array as scipy.opt doesn't seem to work very well with single column/row vector, however the problem still persists.
Kindly point me in the right direction as to what is causing the problem and how to avoid it.
Thanks a million!
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize as opt
dataset = pd.read_csv("Students Exam Dataset.txt", names=["Exam 1", "Exam 2", "Admitted"])
print(dataset.head())
positive = dataset[dataset["Admitted"] == 1]
negative = dataset[dataset["Admitted"] == 0]
#Visualizing Dataset
plt.scatter(positive["Exam 1"], positive["Exam 2"], color="blue", marker="o", label="Admitted")
plt.scatter(negative["Exam 1"], negative["Exam 2"], color="red", marker="x", label="Not Admitted")
plt.xlabel("Exam 1 Score")
plt.ylabel("Exam 2 Score")
plt.title("Admission Graph")
plt.legend()
#plt.show()
#Preprocessing Data
dataset.insert(0, "x0", 1)
col = len(dataset.columns)
x = dataset.iloc[:,0:col-1].values
y = dataset.iloc[:,col-1:col].values
b = np.zeros([1,col-1])
m = len(y)
print(f"X Shape: {x.shape} Y Shape: {y.shape} B Shape: {b.shape}")
#Defining Functions
def hypothesis(x, y, b):
h = 1 / (1+np.exp(-x # b.T))
return h
def cost(x, y, b):
first = (y.T # np.log(hypothesis(x, y, b)))
second = (1-y).T # np.log(1 - hypothesis(x, y, b))
j = (-1/m) * np.sum(first+second)
return j
def gradient(x, y, b):
grad_step = ((hypothesis(x, y, b) - y) # x.T) / m
return b
#Output
initial_cost = cost(x, y, b)
print(f"\nInitial Cost = {initial_cost}")
final_cost = opt.fmin_tnc(func=cost, x0=b.flatten() , fprime=gradient, args=(x,y))
print(f"Final Cost = {final_cost} \nTheta = {b}")
Dataset Used: ex2.txt
34.62365962451697,78.0246928153624,0
30.28671076822607,43.89499752400101,0
35.84740876993872,72.90219802708364,0
60.18259938620976,86.30855209546826,1
79.0327360507101,75.3443764369103,1
45.08327747668339,56.3163717815305,0
61.10666453684766,96.51142588489624,1
75.02474556738889,46.55401354116538,1
76.09878670226257,87.42056971926803,1
84.43281996120035,43.53339331072109,1
95.86155507093572,38.22527805795094,0
75.01365838958247,30.60326323428011,0
82.30705337399482,76.48196330235604,1
69.36458875970939,97.71869196188608,1
39.53833914367223,76.03681085115882,0
53.9710521485623,89.20735013750205,1
69.07014406283025,52.74046973016765,1
67.94685547711617,46.67857410673128,0
70.66150955499435,92.92713789364831,1
76.97878372747498,47.57596364975532,1
67.37202754570876,42.83843832029179,0
89.67677575072079,65.79936592745237,1
50.534788289883,48.85581152764205,0
34.21206097786789,44.20952859866288,0
77.9240914545704,68.9723599933059,1
62.27101367004632,69.95445795447587,1
80.1901807509566,44.82162893218353,1
93.114388797442,38.80067033713209,0
61.83020602312595,50.25610789244621,0
38.78580379679423,64.99568095539578,0
61.379289447425,72.80788731317097,1
85.40451939411645,57.05198397627122,1
52.10797973193984,63.12762376881715,0
52.04540476831827,69.43286012045222,1
40.23689373545111,71.16774802184875,0
54.63510555424817,52.21388588061123,0
33.91550010906887,98.86943574220611,0
64.17698887494485,80.90806058670817,1
74.78925295941542,41.57341522824434,0
34.1836400264419,75.2377203360134,0
83.90239366249155,56.30804621605327,1
51.54772026906181,46.85629026349976,0
94.44336776917852,65.56892160559052,1
82.36875375713919,40.61825515970618,0
51.04775177128865,45.82270145776001,0
62.22267576120188,52.06099194836679,0
77.19303492601364,70.45820000180959,1
97.77159928000232,86.7278223300282,1
62.07306379667647,96.76882412413983,1
91.56497449807442,88.69629254546599,1
79.94481794066932,74.16311935043758,1
99.2725269292572,60.99903099844988,1
90.54671411399852,43.39060180650027,1
34.52451385320009,60.39634245837173,0
50.2864961189907,49.80453881323059,0
49.58667721632031,59.80895099453265,0
97.64563396007767,68.86157272420604,1
32.57720016809309,95.59854761387875,0
74.24869136721598,69.82457122657193,1
71.79646205863379,78.45356224515052,1
75.3956114656803,85.75993667331619,1
35.28611281526193,47.02051394723416,0
56.25381749711624,39.26147251058019,0
30.05882244669796,49.59297386723685,0
44.66826172480893,66.45008614558913,0
66.56089447242954,41.09209807936973,0
40.45755098375164,97.53518548909936,1
49.07256321908844,51.88321182073966,0
80.27957401466998,92.11606081344084,1
66.74671856944039,60.99139402740988,1
32.72283304060323,43.30717306430063,0
64.0393204150601,78.03168802018232,1
72.34649422579923,96.22759296761404,1
60.45788573918959,73.09499809758037,1
58.84095621726802,75.85844831279042,1
99.82785779692128,72.36925193383885,1
47.26426910848174,88.47586499559782,1
50.45815980285988,75.80985952982456,1
60.45555629271532,42.50840943572217,0
82.22666157785568,42.71987853716458,0
88.9138964166533,69.80378889835472,1
94.83450672430196,45.69430680250754,1
67.31925746917527,66.58935317747915,1
57.23870631569862,59.51428198012956,1
80.36675600171273,90.96014789746954,1
68.46852178591112,85.59430710452014,1
42.0754545384731,78.84478600148043,0
75.47770200533905,90.42453899753964,1
78.63542434898018,96.64742716885644,1
52.34800398794107,60.76950525602592,0
94.09433112516793,77.15910509073893,1
90.44855097096364,87.50879176484702,1
55.48216114069585,35.57070347228866,0
74.49269241843041,84.84513684930135,1
89.84580670720979,45.35828361091658,1
83.48916274498238,48.38028579728175,1
42.2617008099817,87.10385094025457,1
99.31500880510394,68.77540947206617,1
55.34001756003703,64.9319380069486,1
74.77589300092767,89.52981289513276,1

Okay! So I figured out the answer myself after scouring through the depths of Github. The Value error has nothing to do with the shapes of your array. First I had to modify my Optimization function to:
from scipy.optimize import minimize
results = minimize(cost, b, args = (x,y),
method = 'CG', jac = compute_gradient,
options = {"maxiter": 400, "disp" : True})
The code still didn't work because the arguments to my functions were in the order (X,y,theta). In order to get the function to work correctly I had to change the order of the arguments to (theta, X, y). It made me wonder if this order mattered. So I applied this change to my function and immediately the optimization worked!
In retrospect, I understand why theta must be the first argument that is passed into the cost and gradient functions. This is because the interface of the minimize function in scipy.optimize expects its x0 argument to be the initial guess, ie. the initialized parameter values.

Related

How to plot 2 trendlines on a single scatterplot? (python)

I want to plot 2 trendlines for one scatterplot using Matplotlib in Python but I don't know how. The graph should be similar to this target plot (from here, fig.2).
I managed to plot 1 trendline on a scatterplot here but can't figure out how to plot another trend.
Underneath is what I tried until now:
This proved ok for other parameters that I plotted, but not for this case, which led me to the conclusion that it's not too correct.
X = vO2.reshape(-1, 1)
Y = ve.reshape(-1, 1)
linear_regressor = LinearRegression()
linear_regressor.fit(X, Y)
y_pred = linear_regressor.predict(X)
x_pred = linear_regressor.predict(Y)
plt.scatter(X, Y)
plt.plot(X, y_pred, '-*',label="O2")
plt.plot(x_pred, Y, '-*',label="vent")
plt.xlabel("VO2 (L/min)")
plt.ylabel("VE (L/min)")
plt.show()
and also
z1 = np.polyfit(vO2, ve, 1)
p1 = np.poly1d(z1)
z2 = np.polyfit(ve, vO2, 1)
p2 = np.poly1d(z2)
plt.scatter(vO2, ref_vent, label='original')
plt.plot(vO2, p1(vO2), label='trendline')
plt.plot(ve, p2(ve), label='trendline')
plt.show()
which also didn't look similar to the target plot.
I don't know how to continue. Thanks in advance!
example dataset:
vo2 = [1.673925 1.9015125 1.981775 2.112875 2.1112625 2.086375 2.13475
2.1777 2.176975 2.1857125 2.258925 2.2718375 2.3381 2.3330875
2.353725 2.4879625 2.448275 2.4829875 2.5084375 2.511275 2.5511
2.5678375 2.5844625 2.6101875 2.6457375 2.6602125 2.6939875 2.7210625
2.720475 2.767025 2.751375 2.7771875 2.776025 2.7319875 2.564
2.3977625 2.4459125 2.42965 2.401275 2.387175 2.3544375]
ve = [ 3.93125 7.1975 9.04375 14.06125 14.11875 13.24375
14.6625 15.3625 15.2 15.035 17.7625 17.955
19.2675 19.875 21.1575 22.9825 23.75625 23.30875
25.9925 25.6775 27.33875 27.7775 27.9625 29.35
31.86125 32.2425 33.7575 34.69125 36.20125 38.6325
39.4425 42.085 45.17 47.18 42.295 37.5125
38.84375 37.4775 34.20375 33.18 32.67708333]
OK, so you need to find the point, where slope of line changes. I tried 2nd derivative, but it was noisy and I coulnd't find the right spot.
Another way is to try all possible points, calculate left and right regression lines and find pair with best fit (r2 coeff). Give this code a try. It is not complete. I do not know, how to force regression lines to go through point in the middle. And it might be better to work with interpolated data, if there are not enough datapoints.
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score
vo2 = [1.673925,1.9015125,1.981775,2.112875,2.1112625,2.086375,2.13475,2.1777,2.176975,2.1857125,2.258925,2.2718375,2.3381,2.3330875,2.353725,2.4879625,2.448275,2.4829875,2.5084375,2.511275,2.5511,2.5678375,2.5844625,2.6101875,2.6457375,2.6602125,2.6939875,2.7210625,2.720475,2.767025,2.751375,2.7771875,2.776025,2.7319875,2.564,2.3977625,2.4459125,2.42965,2.401275,2.387175,2.3544375]
ve = [ 3.93125,7.1975,9.04375,14.06125,14.11875,13.24375,14.6625,15.3625,15.2,15.035,17.7625,17.955,19.2675,19.875,21.1575,22.9825,23.75625,23.30875,25.9925,25.6775,27.33875,27.7775,27.9625,29.35,31.86125,32.2425,33.7575,34.69125,36.20125,38.6325,39.4425,42.085,45.17,47.18,42.295,37.5125,38.84375,37.4775,34.20375,33.18,32.67708333]
x = np.array(vo2)
y = np.array(ve)
sort_idx = x.argsort()
x = x[sort_idx]
y = y[sort_idx]
assert len(x) == len(y)
def fit(x,y):
p = np.polyfit(x, y, 1)
f = np.poly1d(p)
r2 = r2_score(y, f(x))
return p, f, r2
skip = 5 # minimal length of split data
r2 = [0] * len(x)
funcs = {}
for i in range(len(x)):
if i < skip or i > len(x) - skip:
continue
_, f_left, r2_left = fit(x[:i], y[:i])
_, f_right, r2_right = fit(x[i:], y[i:])
r2[i] = r2_left * r2_right
funcs[i] = (f_left, f_right)
split_ix = np.argmax(r2) # index of split
f_left,f_right = funcs[split_ix]
print(f"split point index: {split_ix}, x: {x[split_ix]}, y: {y[split_ix]}")
xd = np.linspace(min(x), max(x), 100)
plt.plot(x, y, "o")
plt.plot(xd, f_left(xd))
plt.plot(xd, f_right(xd))
plt.plot(x[split_ix], y[split_ix], "x")
plt.show()

Python Polynomial Regression with Gradient Descent

I try to implement Polynomial Regression with Gradient Descent. I want to fit the following function:
The code I use is:
import numpy as np
import matplotlib.pyplot as plt
import scipy.linalg
from sklearn.preprocessing import PolynomialFeatures
np.random.seed(seed=42)
def create_data():
x = PolynomialFeatures(degree=5).fit_transform(np.linspace(-10,10,100).reshape(100,-1))
l = lambda x_i: (1/3)*x_i**3-2*x_i**2+2*x_i+2
data = l(x[:,1])
noise = np.random.normal(0,0.1,size=np.shape(data))
y = data+noise
y= y.reshape(100,1)
return {'x':x,'y':y}
def plot_function(x,y):
fig = plt.figure(figsize=(10,10))
plt.plot(x[:,1],[(1/3)*x_i**3-2*x_i**2+2*x_i+2 for x_i in x[:,1]],c='lightgreen',linewidth=3,zorder=0)
plt.scatter(x[:,1],y)
plt.show()
def w_update(y,x,batch,w_old,eta):
derivative = np.sum([(y[i]-np.dot(w_old.T,x[i,:]))*x[i,:] for i in range(np.shape(x)[0])])
print(derivative)
return w_old+eta*(1/batch)*derivative
# initialize variables
w = np.random.normal(size=(6,1))
data = create_data()
x = data['x']
y = data['y']
plot_function(x,y)
# Update w
w_s = []
Error = []
for i in range(500):
error = (1/2)*np.sum([(y[i]-np.dot(w.T,x[i,:]))**2 for i in range(len(x))])
Error.append(error)
w_prime = w_update(y,x,np.shape(x)[0],w,0.001)
w = w_prime
w_s.append(w)
# Plot the predicted function
plt.plot(x[:,1],np.dot(x,w))
plt.show()
# Plot the error
fig3 = plt.figure()
plt.scatter(range(len(Error[10:])),Error[10:])
plt.show()
But as result I receive smth. strange which is completely out of bounds...I have also tried to alter the number of iterations as well as the parameter theta but it did not help. I assume I have made an mistake in the update of w.
I have found the solution. The Problem is indeed in the part where I calculate the weights. Specifically in:
np.sum([(y[d]-np.dot(w_old.T,x[d,:]))*x[d,:] for d in range(np.shape(x)[0])])
which should be like:
np.sum([-(y[d]-np.dot(w.T.copy(),x[d,:]))*x[d,:].reshape(np.shape(w)) for d in range(len(x))],axis=0)
We have to add np.sum(axis=0) to get the dimensionality we want --> Dimensionality must be equal to w. The numpy sum documentation sais
The default, axis=None, will sum all of the elements of the input
array.
This is not what we want to achieve. Adding axis = 0 sums over the first axis of our array which is of dimensionality (100,7,1) hence the 100 elements of dimensionality (7,1) are summed up and the resulting array is of dimensionality (7,1) which is exactly what we want. Implementing this and cleaning up the code yields:
import numpy as np
import matplotlib.pyplot as plt
import scipy.linalg
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import MinMaxScaler
np.random.seed(seed=42)
def create_data():
x = PolynomialFeatures(degree=6).fit_transform(np.linspace(-2,2,100).reshape(100,-1))
x[:,1:] = MinMaxScaler(feature_range=(-2,2),copy=False).fit_transform(x[:,1:])
l = lambda x_i: np.cos(0.8*np.pi*x_i)
data = l(x[:,1])
noise = np.random.normal(0,0.1,size=np.shape(data))
y = data+noise
y= y.reshape(100,1)
# Normalize Data
return {'x':x,'y':y}
def plot_function(x,y,w,Error,w_s):
fig,ax = plt.subplots(nrows=1,ncols=2,figsize=(40,10))
ax[0].plot(x[:,1],[np.cos(0.8*np.pi*x_i) for x_i in x[:,1]],c='lightgreen',linewidth=3,zorder=0)
ax[0].scatter(x[:,1],y)
ax[0].plot(x[:,1],np.dot(x,w))
ax[0].set_title('Function')
ax[1].scatter(range(iterations),Error)
ax[1].set_title('Error')
plt.show()
# initialize variables
data = create_data()
x = data['x']
y = data['y']
w = np.random.normal(size=(np.shape(x)[1],1))
eta = 0.1
iterations = 10000
batch = 10
def stochastic_gradient_descent(x,y,w,eta):
derivative = -(y-np.dot(w.T,x))*x.reshape(np.shape(w))
return eta*derivative
def batch_gradient_descent(x,y,w,eta):
derivative = np.sum([-(y[d]-np.dot(w.T.copy(),x[d,:]))*x[d,:].reshape(np.shape(w)) for d in range(len(x))],axis=0)
return eta*(1/len(x))*derivative
def mini_batch_gradient_descent(x,y,w,eta,batch):
gradient_sum = np.zeros(shape=np.shape(w))
for b in range(batch):
choice = np.random.choice(list(range(len(x))))
gradient_sum += -(y[choice]-np.dot(w.T,x[choice,:]))*x[choice,:].reshape(np.shape(w))
return eta*(1/batch)*gradient_sum
# Update w
w_s = []
Error = []
for i in range(iterations):
# Calculate error
error = (1/2)*np.sum([(y[i]-np.dot(w.T,x[i,:]))**2 for i in range(len(x))])
Error.append(error)
# Stochastic Gradient Descent
"""
for d in range(len(x)):
w-= stochastic_gradient_descent(x[d,:],y[d],w,eta)
w_s.append(w.copy())
"""
# Minibatch Gradient Descent
"""
w-= mini_batch_gradient_descent(x,y,w,eta,batch)
"""
# Batch Gradient Descent
w -= batch_gradient_descent(x,y,w,eta)
# Show predicted weights
print(w_s)
# Plot the predicted function and the Error
plot_function(x,y,w,Error,w_s)
As result we receive:
Which surely can be improved by altering eta and the number of iterations as well as switching to Stochastic or Mini Batch Gradient Descent or more sophisticated optimization algorithms.

python: setting width to fit parameters

I have been trying to fit a data file with unknown fit parameter "ga" and "MA". What I want to do is set a range withing which the value of "MA" will reside and fit the data, for example I want the fitted value of MA in the range [0.5,0.8] and want to keep "ga" as an arbitrary fit paramter. I am not sure how to do it. I am copying the python code here:
#!/usr/bin/env python3
# to the data in "data_file", each line of which contains the data for one point, x_i, y_i, sigma_i.
import numpy as np
from pylab import *
from scipy.optimize import curve_fit
from scipy.stats import chi2
fname = sys.argv[1] if len(sys.argv) > 1000 else 'data.txt'
x, y, err = np.loadtxt(fname, unpack = True)
n = len(x)
p0 = [-1,1]
f = lambda x, ga, MA: ga/((1+x/(MA*MA))*(1+x/(MA*MA)))
p, covm = curve_fit(f, x, y, p0, err)
ga, MA = p
chisq = sum(((f(x, ga, MA) -y)/err)**2)
ndf = n -len(p)
Q = 1. -chi2.cdf(chisq, ndf)
chisq = chisq / ndf
gaerr, MAerr = sqrt(diag(covm)/chisq) # correct the error bars
print 'ga = %10.4f +/- %7.4f' % (ga, gaerr)
print 'MA = %10.4f +/- %7.4f' % (MA, MAerr)
print 'chi squared / NDF = %7.4lf' % chisq
print (covm)
You might consider using lmfit (https://lmfit.github.io/lmfit-py) for this problem. Lmfit provides a higher-level interface to optimization and curve fitting, including treating Parameters as python objects that have bounds.
Your script might be translated to use lmfit as
import numpy as np
from lmfit import Model
fname = sys.argv[1] if len(sys.argv) > 1000 else 'data.txt'
x, y, err = np.loadtxt(fname, unpack = True)
# define the fitting model function, similar to your `f`:
def f(x, ga, ma):
return ga/((1+x/(ma*ma))*(1+x/(ma*ma)))
# turn this model function into a Model:
mymodel = Model(f)
# now create parameters for this model, giving initial values
# note that the parameters will be *named* from the arguments of your model function:
params = mymodel.make_params(ga=-1, ma=1)
# params is now an orderded dict with parameter names ('ga', 'ma') as keys.
# you can set min/max values for any parameter:
params['ma'].min = 0.5
params['ma'].max = 2.0
# you can fix the value to not be varied in the fit:
# params['ga'].vary = False
# you can also constrain it to be a simple mathematical expression of other parameters
# now do the fit to your `y` data with `params` and your `x` data
# note that you pass in weights for the residual, so 1/err:
result = mymodel.fit(y, params, x=x, weights=1./err)
# print out fit report with fit statistics and best fit values
# and uncertainties and correlations for variables:
print(result.fit_report())
You can get access to the best-fit parameters as result.params; the initial params will not be changed by the fit. There are also routines to plot the best-fit result and/or residual.

scipy curve fitting negative value

I would like to fit a curve with curve_fit and prevent it from becoming negative. Unfortunately, the code below does not work. Any hints? Thanks a lot!
# Imports
from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt
xData = [0.0009824379203203417, 0.0011014182912933933, 0.0012433979929054324, 0.0014147106052612918, 0.0016240300315499524, 0.0018834904507916608, 0.002210485320720769, 0.002630660216394964, 0.0031830988618379067, 0.003929751681281367, 0.0049735919716217296, 0.0064961201261998095, 0.008841941282883075, 0.012732395447351627, 0.019894367886486918, 0.0353677651315323, 0.07957747154594767, 0.3183098861837907]
yData = [99.61973156923796, 91.79478510744039, 92.79302188621314, 84.32927272723863, 77.75060981602016, 75.62801782349504, 70.48026800610839, 72.21240551953743, 68.14019252499526, 55.23015406920851, 57.212682880377464, 50.777016257727176, 44.871140881319626, 40.544138806850846, 32.489105158795525, 25.65367127756607, 19.894206907130403, 13.057996247388862]
def func(x,m,c,d):
'''
Fitting Function
I put d as an absolute number to prevent negative values for d?
'''
return x**m * c + abs(d)
p0 = [-1, 1, 1]
coeff, _ = curve_fit(func, xData, yData, p0) # Fit curve
m, c, d = coeff[0], coeff[1], coeff[2]
print("d: " + str(d)) # Why is it negative!!
Your model actually works fine as the following plot shows. I used your code and plotted the original data and the data you obtain with the fitted parameters:
As you can see, the data can nicely be reproduced but you indeed obtain a negative value for d (which must not be a bad thing depending on the context of the model). If you want to avoid it, I recommend to use lmfit where you can constrain your parameters to certain ranges. The next plot shows the outcome.
As you can see, it also reproduces the data well and you obtain a positive value for d as desired.
namely:
m: -0.35199747
c: 8.48813181
d: 0.05775745
Here is the entire code that reproduces the figures:
# Imports
from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt
#additional import
from lmfit import minimize, Parameters, Parameter, report_fit
xData = [0.0009824379203203417, 0.0011014182912933933, 0.0012433979929054324, 0.0014147106052612918, 0.0016240300315499524, 0.0018834904507916608, 0.002210485320720769, 0.002630660216394964, 0.0031830988618379067, 0.003929751681281367, 0.0049735919716217296, 0.0064961201261998095, 0.008841941282883075, 0.012732395447351627, 0.019894367886486918, 0.0353677651315323, 0.07957747154594767, 0.3183098861837907]
yData = [99.61973156923796, 91.79478510744039, 92.79302188621314, 84.32927272723863, 77.75060981602016, 75.62801782349504, 70.48026800610839, 72.21240551953743, 68.14019252499526, 55.23015406920851, 57.212682880377464, 50.777016257727176, 44.871140881319626, 40.544138806850846, 32.489105158795525, 25.65367127756607, 19.894206907130403, 13.057996247388862]
def func(x,m,c,d):
'''
Fitting Function
I put d as an absolute number to prevent negative values for d?
'''
print m,c,d
return np.power(x,m)*c + d
p0 = [-1, 1, 1]
coeff, _ = curve_fit(func, xData, yData, p0) # Fit curve
m, c, d = coeff[0], coeff[1], coeff[2]
print("d: " + str(d)) # Why is it negative!!
plt.scatter(xData, yData, s=30, marker = "v",label='P')
plt.scatter(xData, func(xData, *coeff), s=30, marker = "v",color="red",label='curvefit')
plt.show()
#####the new approach starts here
def func2(params, x, data):
m = params['m'].value
c = params['c'].value
d = params['d'].value
model = np.power(x,m)*c + d
return model - data #that's what you want to minimize
# create a set of Parameters
params = Parameters()
params.add('m', value= -2) #value is the initial condition
params.add('c', value= 8.)
params.add('d', value= 10.0, min=0) #min=0 prevents that d becomes negative
# do fit, here with leastsq model
result = minimize(func2, params, args=(xData, yData))
# calculate final result
final = yData + result.residual
# write error report
report_fit(params)
try:
import pylab
pylab.plot(xData, yData, 'k+')
pylab.plot(xData, final, 'r')
pylab.show()
except:
pass
You could use the scipy.optimize.curve_fit method's bounds option to specify the maximum bound and the minimum bound.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
Bounds is a two tuple array. In your case, you just need to specify the lower bound for d. You could use,
bounds=([-np.inf, -np.inf, 0], np.inf)
Note: If you provide a scalar as a parameter (eg:- as the second variable above), it automatically applies as the upper bound for all three coefficients.
You just need to add one little argument to constrain your parameters. That is:
curve_fit(func, xData, yData, p0, bounds=([m1,c1,d1],[m2,c2,d2]))
where m1,c1,d1 are the lower bounds of the parameters (in your case they should be 0) and
m2,c2,d2 are the upper bounds.
If u want all m,c,d to be positive, the code should goes like the following:
curve_fit(func, xData, yData, p0, bounds=(0,numpy.inf))
where all the parameters have a lower bound of 0 and an upper bound of infinity(no bound)

Apply non-linear regression for multi dimension data samples in Python

I have installed Numpy and SciPy, but I'm not quite understand their documentation about polyfit.
For exmpale, Here's my three data samples:
[-0.042780748663101636, -0.0040771571786609945, -0.00506567946276074]
[0.042780748663101636, -0.0044771571786609945, -0.10506567946276074]
[0.542780748663101636, -0.005771571786609945, 0.30506567946276074]
[-0.342780748663101636, -0.0304077157178660995, 0.90506567946276074]
The first two columns are sample features, the third column is output, My target is to get a function that could take two parameters(first two columns) and return its prediction(the output).
Any simple example ?
====================== EDIT ======================
Note that, I need to fit something like a curve, not only straight lines. The polynomial should be something like this ( n = 3):
a*x1^3 + b*x2^2 + c*x3 + d = y
Not:
a*x1 + b*x2 + c*x3 + d = y
x1, x2, x3 are features of one sample, y is the output
Try something like
edit: added an example function that used results of linear regression to estimate output.
import numpy as np
data =np.array(
[[-0.042780748663101636, -0.0040771571786609945, -0.00506567946276074],
[0.042780748663101636, -0.0044771571786609945, -0.10506567946276074],
[0.542780748663101636, -0.005771571786609945, 0.30506567946276074],
[-0.342780748663101636, -0.0304077157178660995, 0.90506567946276074]])
coefficient = data[:,0:2]
dependent = data[:,-1]
x,residuals,rank,s = np.linalg.lstsq(coefficient,dependent)
def f(x,u,v):
return u*x[0] + v*x[1]
for datum in data:
print f(x,*datum[0:2])
Which gives
>>> x
array([ 0.16991146, -30.18923739])
>>> residuals
array([ 0.07941146])
>>> rank
2
>>> s
array([ 0.64490113, 0.02944663])
and the function created with your coefficients gave
0.115817326583
0.142430900298
0.266464019171
0.859743371665
More info can be found at the documentation I posted as a comment.
edit 2: fitting your data to an arbitrary model.
edit 3: made my model a function for ease of understanding.
edit 4: made code more easily read/ changed model to a quadratic fit, but you should be able to read this code and know how to make it minimize any residual you want now.
contrived example:
import numpy as np
from scipy.optimize import leastsq
data =np.array(
[[-0.042780748663101636, -0.0040771571786609945, -0.00506567946276074],
[0.042780748663101636, -0.0044771571786609945, -0.10506567946276074],
[0.542780748663101636, -0.005771571786609945, 0.30506567946276074],
[-0.342780748663101636, -0.0304077157178660995, 0.90506567946276074]])
coefficient = data[:,0:2]
dependent = data[:,-1]
def model(p,x):
a,b,c = p
u = x[:,0]
v = x[:,1]
return (a*u**2 + b*v + c)
def residuals(p, y, x):
a,b,c = p
err = y - model(p,x)
return err
p0 = np.array([2,3,4]) #some initial guess
p = leastsq(residuals, p0, args=(dependent, coefficient))[0]
def f(p,x):
return p[0]*x[0] + p[1]*x[1] + p[2]
for x in coefficient:
print f(p,x)
gives
-0.108798280153
-0.00470479385807
0.570237823475
0.413016072653

Categories

Resources