Color map to shades of blue - python - python

I have the following (example) code:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
n_lines = 5
x = np.linspace(0, 10, 100)
y = np.sin(x[:, None] + np.pi * np.linspace(0, 1, n_lines))
c = np.arange(1, n_lines + 1)
norm = mpl.colors.Normalize(vmin=c.min(), vmax=c.max())
cmap = mpl.cm.ScalarMappable(norm=norm, cmap=mpl.cm.jet)
cmap.set_array([])
fig, ax = plt.subplots(dpi=100)
for i, yi in enumerate(y.T):
ax.plot(x, yi, c=cmap.to_rgba(i + 1))
fig.colorbar(cmap, ticks=c)
plt.show();
I would like to find a substirute for cmap.to_rgba that makes the colour of each line come out as a differnet shade of blue. Basically I want to keep the same layout as the result of this code, but using the colour map Blues.
How can I do it?

You need to change your colormap that you are using from jet to Blues.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
n_lines = 5
x = np.linspace(0, 10, 100)
y = np.sin(x[:, None] + np.pi * np.linspace(0, 1, n_lines))
c = np.arange(1, n_lines + 1)
norm = mpl.colors.Normalize(vmin=c.min(), vmax=c.max())
cmap = mpl.cm.ScalarMappable(norm=norm, cmap=mpl.cm.Blues)
cmap.set_array([])
fig, ax = plt.subplots(dpi=100)
for i, yi in enumerate(y.T):
ax.plot(x, yi, c=cmap.to_rgba(i + 1))
fig.colorbar(cmap, ticks=c)
plt.show()
This produces:

Related

Plotting a line between 2-D point to its corresponding value in 3-D

I am trying to plot a dashed line in a 3-D Matplotlib plot. I would like to get a dashed line between each (x_pt, y_pt) to its corresponding z_pt.
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
import matplotlib
matplotlib.rcParams['mathtext.fontset'] = 'cm'
matplotlib.rcParams['axes.labelsize'] = 13
def z_function(x, y):
a = 1
b = 5.1/(4*np.pi**2)
c = 5/np.pi
r = 6
s = 10
t = 1/(8*np.pi)
return a*(y - b*x**2 + c*x - r)**2 + s*(1 - t)*np.cos(x) + s
x = np.linspace(-5, 10, 100)
y = np.linspace(0, 15, 100)
indexes = np.random.randint(0, 100, 5)
x_pt = x[indexes]
y_pt = y[indexes]
z_pt = z_function(x_pt, y_pt)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.scatter(x_pt, y_pt, color='k', marker='x', depthshade=False)
ax.scatter(x_pt, y_pt, z_pt, color='k', marker='^', depthshade=False)
ax.set_xticks([-5, 0, 5, 10])
ax.set_yticks([0, 5, 10, 15])
ax.set_zticks([100, 200, 300])
ax.view_init(30, -120)
ax.set_xlabel(r'$x_1$')
ax.set_ylabel(r'$x_2$')
ax.zaxis.set_rotate_label(False)
ax.set_zlabel(r'$f(x)$', rotation=0)
ax.w_xaxis.pane.fill = False
ax.w_yaxis.pane.fill = False
ax.w_zaxis.pane.fill = False
plt.show()
Can anyone help me with this?
If I understand your problem correctly, you need to connect the point (x,y,0) to (x,y,z) like so:
for x_,y_,z_ in zip(x_pt, y_pt, z_pt):
ax.plot([x_,x_],[y_,y_],[0,z_], '--', c='grey')
It should be as simple as:
ax.plot(x_pt, y_pt, zs=z_pt, color='blue', marker='--', depthshade=False)
alternatively using:
ax.plot3D(x_pt, y_pt, z_pt, marker='--')
UPDATE:
You will need to create extra dummy coordinates for each point on the x-y axis, like so:
import numpy as np
n = 10 # number of points in the line
for i in len(x_pt):
x_range = np.linspace(0, x_pt[i], n)
y_range = np.linspace(0, y_pt[i], n)
ax.plot3D(x_range, y_range, [z_pt[i]]*n, marker='--')
NOTE: Untested

Python Matplotlib - imshow but with hexagons

Code is:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import colors
example_data = np.random.randint(4, size=(40,44))
cmap = colors.ListedColormap(['black', 'green', 'red', 'blue'])
bounds = [0,1,2,3,4]
norm = colors.BoundaryNorm(bounds, cmap.N)
img = plt.imshow(example_data, interpolation = 'nearest', origin = 'lower',
cmap = cmap, norm = norm)
Which gets me roughly what I want. What I am looking for is if there is a way to get the shape of each tile to be hexagonal rather than square? I think imshow might not be the way to do it but if there is a way you can change the default tile it would be good.
Thanks.
Here is a solution using patches:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import colors
import matplotlib.patches as mpatches
from matplotlib.collections import PatchCollection
nx = 40
ny = 44
example_data = np.random.randint(4, size=(nx,ny))
cmap = colors.ListedColormap(['black', 'green', 'red', 'blue'])
bounds = [0,1,2,3,4]
norm = colors.BoundaryNorm(bounds, cmap.N)
x = np.linspace(0, 1, nx)
y = np.linspace(0, 1, ny)
X, Y = np.meshgrid(x, y)
dx = np.diff(x)[0]
dy = np.diff(y)[0]
ds = np.sqrt(dx**2 + dy**2)
patches = []
for i in x:
for n, j in enumerate(y):
if n%2:
polygon = mpatches.RegularPolygon([i-dx/2., j], 6, 0.6*dx)
else:
polygon = mpatches.RegularPolygon([i, j], 6, 0.6*dx)
patches.append(polygon)
collection = PatchCollection(patches, cmap=cmap, norm=norm, alpha=1.0)
fig, ax = plt.subplots(1,1)
ax.add_collection(collection)
collection.set_array(example_data.ravel())
plt.show()
which looks like this,
Previous solution, it doesn't tessellate nicely and the hexagons are poorly shaped but you could use a scatter plot with coloured hexagons,
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import colors
nx = 40
ny = 44
example_data = np.random.randint(4, size=(nx,ny))
cmap = colors.ListedColormap(['black', 'green', 'red', 'blue'])
bounds = [0,1,2,3,4]
norm = colors.BoundaryNorm(bounds, cmap.N)
x = np.linspace(0, 1, nx)
y = np.linspace(0, 1, ny)
X, Y = np.meshgrid(x, y)
img = plt.scatter(X.ravel(),Y.ravel(),c=example_data.ravel(), cmap=cmap, norm=norm, s=360, marker=(6, 0), alpha=0.4)
plt.colorbar(img)
plt.show()
which looks like,

Rounding the edges of a cylinder in matplotlib poly3D

I have the following code which produces a cylinder-like object using matplotlib:
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import numpy as np
fig = plt.figure()
ax = fig.gca(projection='3d')
nphi,nz=7,20
r=1 # radius of cylinder
phi = np.linspace(0,360, nphi)/180.0*np.pi
z= np.linspace(0,1.0,nz)
print z
cols=[]
verts2 = []
for i in range(len(phi)-1):
cp0= r*np.cos(phi[i])
cp1= r*np.cos(phi[i+1])
sp0= r*np.sin(phi[i])
sp1= r*np.sin(phi[i+1])
for j in range(len(z)-1):
z0=z[j]
z1=z[j+1]
verts=[]
verts.append((cp0, sp0, z0))
verts.append((cp1, sp1, z0))
verts.append((cp1, sp1, z1))
verts.append((cp0, sp0, z1))
verts2.append(verts)
value=np.random.rand()
#print value
col=plt.cm.rainbow(0.9)
#print col
cols.append(col)
poly3= Poly3DCollection(verts2, facecolor=cols,edgecolor = "none" )
poly3.set_alpha(0.8)
ax.add_collection3d(poly3)
ax.set_xlabel('X')
ax.set_xlim3d(-1, 1)
ax.set_ylabel('Y')
ax.set_ylim3d(-1, 1)
ax.set_zlabel('Z')
ax.set_zlim3d(0, 1)
plt.show()
This code produces the following image:
However as you can see the are sharp corners in the figure. Is there anyway to make these edges rounder so that the figure looks like a proper cylinder with a circular cross-section as opposed to a hexagonal cross-section?
The third argument to
np.linspace
controls how many values you want it to generate. Thus, nphi controls the
number of values in phi, and nz controls the number of values in z:
phi = np.linspace(0,360, nphi)/180.0*np.pi
z = np.linspace(0,1.0,nz)
So if you increase nphi, then you'll get more points along the circle:
cp0 = r*np.cos(phi[i])
sp0 = r*np.sin(phi[i])
For example, try changing nphi, nz = 7,20 to nphi, nz = 70, 2.
Note that there is no need for nz to be greater than 2 since the sides of the
cylinder are flat in the z direction.
By the way, the double for-loop can be replaced by:
PHI, Z = np.meshgrid(phi, z)
CP = r * np.cos(PHI)
SP = r * np.sin(PHI)
XYZ = np.dstack([CP, SP, Z])
verts = np.stack(
[XYZ[:-1, :-1], XYZ[:-1, 1:], XYZ[1:, 1:], XYZ[1:, :-1]], axis=-2).reshape(-1, 4, 3)
So, for example,
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import numpy as np
fig = plt.figure()
ax = fig.gca(projection='3d')
nphi, nz = 70, 2
r = 1 # radius of cylinder
phi = np.linspace(0, 360, nphi) / 180.0 * np.pi
z = np.linspace(0, 1.0, nz)
PHI, Z = np.meshgrid(phi, z)
CP = r * np.cos(PHI)
SP = r * np.sin(PHI)
XYZ = np.dstack([CP, SP, Z])
verts = np.stack(
[XYZ[:-1, :-1], XYZ[:-1, 1:], XYZ[1:, 1:], XYZ[1:, :-1]], axis=-2).reshape(-1, 4, 3)
cmap = plt.cm.rainbow
cols = cmap(np.random.random())
poly3 = Poly3DCollection(verts, facecolor=cols, edgecolor="none")
poly3.set_alpha(0.8)
ax.add_collection3d(poly3)
ax.set_xlabel('X')
ax.set_xlim3d(-1, 1)
ax.set_ylabel('Y')
ax.set_ylim3d(-1, 1)
ax.set_zlabel('Z')
ax.set_zlim3d(0, 1)
plt.show()
yields

matplotlib colored segment of a function plot

I wonder if there is a more elegant way to draw the polygon in below code, or with a special plot function or parameter ?
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
x = np.linspace(-4,4,150)
# plot density with shaded area showing Pr(-2 <= x <= 1)
lb = -2
ub = 1
d=norm.pdf(x)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(x, d)
### can this be done more elegantly ###
sx = np.linespace(lb,ub,100)
sd = norm.pdf(sx)
sx = [lb] + sx + [ub]
sd = [0] + list(sd) + [0]
xy = np.transpose(np.array([sx, sd]))
pgon = plt.Polygon(xy, color='b')
#######################################
ax.add_patch(pgon)
plt.show()
Perhaps you are looking for plt.fill_between:
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
x = np.linspace(-4,4,150)
# plot density with shaded area showing Pr(-2 <= x <= 1)
lb = -2
ub = 1
d = norm.pdf(x)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(x, d)
idx = np.searchsorted(x,[lb,ub])
sx = x[idx[0]:idx[1]]
sd = d[idx[0]:idx[1]]
plt.fill_between(sx, sd, 0, color = 'b')
plt.show()

matplotlib: add circle to plot

How do I add a small filled circle or point to a countour plot in matplotlib?
Here is an example, using pylab.Circle:
import numpy as np
import matplotlib.pyplot as plt
e = np.e
X, Y = np.meshgrid(np.linspace(0, 5, 100), np.linspace(0, 5, 100))
F = X ** Y
G = Y ** X
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
circ = plt.Circle((e, e), radius=0.07, color='g')
plt.contour(X, Y, (F - G), [0])
ax.add_patch(circ)
plt.show()
And here is another example (though not a contour plot) from the docs.
Or, you could just use plot:
import numpy as np
import matplotlib.pyplot as plt
e = np.e
X, Y = np.meshgrid(np.linspace(0, 5, 100), np.linspace(0, 5, 100))
F = X ** Y
G = Y ** X
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
plt.contour(X, Y, (F - G), [0])
plt.plot([e], [e], 'g.', markersize=20.0)
plt.show()

Categories

Resources