pyOpenGL: trouble creating a direction ray - python

I am working on a program in python OCC where the user can click the screen, which will send the ray out based on window coordinates. I wrote a ray direction function, but even when the mouse moves, the values in the direction vector dont change much at all, the biggest change in value i have seen is in the 14th decimal point of each x, y, and z value. I was curious if I have a problem in my code.
My code is pictured below:
from PyQt5 import QtCore, QtGui, QtOpenGL, QtWidgets
from OpenGL.GL import *
from OpenGL.GLU import *
def generate_ray(mouse_x, mouse_y):
projection_matrix = glGetDoublev(GL_PROJECTION_MATRIX)
model_matrix = glGetDoublev(GL_MODELVIEW_MATRIX)
view_matrix = glGetIntegerv(GL_VIEWPORT)
corrected_y = view_matrix[3] - mouse_y
near_x, near_y, near_z = gluUnProject(mouse_x,corrected_y,0,model_matrix,projection_matrix,view_matrix)
far_x, far_y, far_z = gluUnProject(mouse_x,corrected_y,1,model_matrix,projection_matrix,view_matrix)
direction = [far_x - near_x]
direction.append(far_y - near_y)
direction.append(far_z - near_z)
print("ray direction: x: {} y: {} z: {}".format(direction[0], direction[1], direction[2]))
return direction
If this helps, my ray-triangle intersection test is below. the ray direction, origin, and vertice list are all numpy arrays.
import numpy
def crossProduct(x1, x2):
"""array[0] is the x-coord, array[1] is the y coord, and array[2] is the z coord """
COORDS_PER_VERTEX = 3
cross_product_array = numpy.empty([COORDS_PER_VERTEX])
#print(x1[0])
#print(x2[2])
cross_product_array[0] = x1[1] * x2[2] - x1[2] * x2[1]
cross_product_array[1] = x1[2] * x2[0] - x1[0] * x2[2]
cross_product_array[2] = x1[0] * x2[1] - x1[1] * x2[0]
return cross_product_array
def dotProduct(x1, x2):
"""array[0] is the x-coord, array[1] is the y coord, and array[2] is the z coord """
result = x1[0] * x2[0] + x1[1] * x2[1] + x1[2] * x2[2]
return result
def ray_triangle_intersection_test(ray_origin, ray_direction, vertice_list):
EPSILON = 0.0000001
NEG_EPSILON = -0.0000001
edge1 = vertice_list[1] - vertice_list[0]
#print(edge1)
edge2 = vertice_list[2] - vertice_list[0]
#print(edge2)
pvec = crossProduct(ray_direction,edge2)
print("pvec: %s" %pvec)
det = dotProduct(edge1,pvec)
print("det: %s" %det)
if det > NEG_EPSILON and det < EPSILON:
print("parallel")
return # This ray is parallel to this triangle.
invDet = 1.0/det
print("invDet: %s" %invDet)
svec = ray_origin - vertice_list[0]
u = invDet * (dotProduct(svec,pvec))
print("u: %s" %u)
"""
if u < 0.0 or u > 1.0:
print("false1")
return
"""
qvec = crossProduct(svec, edge1)
v = invDet * dotProduct(ray_direction, qvec)
"""
if v < 0.0 or u + v > 1.0:
print("false2")
return
"""
# At this stage we can compute t to find out where the intersection point is on the line.
t = invDet * dotProduct(edge2, qvec)
print("t: %s" %t)
if t > EPSILON: # ray intersection
outIntersectionPoint = numpy.multiply((ray_origin + ray_direction),t)
return outIntersectionPoint
else: # This means that there is det line intersection but not det ray intersection.
print("false3")
return

Related

Is there a way to create a sign function in python?

import re
import math
from random
import randint
import hashlib
P = (-0.15, 2.645)
Q = (0.7, 2.71)
max_mod = 1.158 * 10 ** 77
def SHA256_INT(text):
return int(f'0x{hashlib.sha256(text.encode("ascii")).hexdigest()}', 0)
def ecc_double_slope(P):
slope = (3 * P[0] ** 2) / (2 * P[1])
return slope
def ecc_add(P, Q, slope):
xr = slope ** 2 - P[0] - Q[0]
yr = slope * (P[0] - xr) - P[1]
return (xr, yr)
def ecc_double(P):
slope = ecc_double_slope(P)
sum0 = ecc_add(P, P, slope)
return sum0
def ecc_double_for(P, limit):
lis = []
for i in range(limit):
b = ecc_double(P)
P = b
lis.append((2 ** i, b))
return lis
def greedy2(number):
x = 0
dub_lis = []
add_lis = []
while 2 ** x < number:
dub_lis.append(2 ** x)
x += 1
x -= 1
n = 2 ** x
while n != number:
y = x
while n + (2 ** y) > number:
y -= 1
n += (2 ** y)
x += 1
add_lis.append(2 ** y)
return len(dub_lis), add_lis
def ecc_main_add(P, Q):
x1 = P[0]
y1 = P[1]
x2 = Q[0]
y2 = Q[1]
slope = (y2 - y1) / (x2 - y1)
xr = slope ** 2 - x1 - x2
yr = slope * (x1 - xr) - y1
return xr, yr
def gen_points(gen, points):
if gen == 1:
return points
elif gen > 1:
if type(points) == int:
point_curve = (points, math.sqrt(points ** 3 + 7))
elif type(points) == tuple:
point_curve = points
point_steps = greedy2(gen)
point_dub = point_steps[0]
point_add = point_steps[1]
dub_list = ecc_double_for(point_curve, point_dub)
for i in point_add:
b = ecc_main_add(dub_list[int(math.log(i, 2))][1], dub_list[-1][1])
return b, gen
elif gen == 0:
return 0
def sign(messsage, private_key, public_key, G):
global max_mod
msg_hash = SHA256_INT(messsage)
randnum = randint(2, max_mod)
r = gen_points(randnum, G)[0]
r_x = r[0]
msg_hash = SHA256_INT(messsage)
s = (r_x * private_key + msg_hash) / randnum
p1 = gen_points(msg_hash/s, G)
p2 = gen_points(r_x/s, public_key)
p3 = ecc_main_add(p1, p2)
return p3
pub, priv = gen_points(9756, P)
print(sign('hello', priv, pub, P))
Hello, I'm trying to implement a way to sign messages using this tutorial:
https://learnmeabitcoin.com/beginners/digital_signatures_signing_verifying
I've tried to follow the tutorial before, but it's either my key generation is wrong, I didn't follow the tutorial correctly, or both.
My current code generates an error, I've already debugged it and it generates the error: TypeError: 'NoneType' object is not subscriptable.
Does anyone know how to solve this?

Ellipse construction

I would like to construct an ellipse given the major/minor axes (or radii) and two points. I would like the line between the two points to be on the major axis. This just means that I would like the two points to lie on the major axis, and then construct the ellipse around the major axis. I originally constructed the ellipse at the origin and attempted to rotate and translate the ellipse, which didn't work. The unfinished code I have is listed below. How can I go about constructing an ellipse in this manner? Ideally, this would just return a list. Any insights would be greatly appreciated, and if you have any code for this please feel free to share.
import numpy
import matplotlib.pyplot as plt
import random
import math
from math import sin, cos
# Returns theta in [-pi/2, 3pi/2]
def generate_theta(a, b):
u = random.random() / 4.0
theta = numpy.arctan(b/a * numpy.tan(2*numpy.pi*u))
v = random.random()
if v < 0.25:
return theta
elif v < 0.5:
return numpy.pi - theta
elif v < 0.75:
return numpy.pi + theta
else:
return -theta
def radius(a, b, theta):
return a * b / numpy.sqrt((b*numpy.cos(theta))**2 + (a*numpy.sin(theta))**2)
def random_point(a, b, third_point, center=(0, 0)):
angle = None
if a > b:
random_theta = generate_theta(a, b)
max_radius = radius(a, b, random_theta)
random_radius = max_radius * numpy.sqrt(random.random())
f = round(random_radius * numpy.cos(random_theta))
s = round(random_radius * numpy.sin(random_theta))
angle = math.atan2(third_point[1], third_point[0]) - math.atan2(center[1], center[0])
else:
random_theta = generate_theta(b, a)
max_radius = radius(b, a, random_theta)
random_radius = max_radius * numpy.sqrt(random.random())
f = round(random_radius * numpy.cos(random_theta))
s = round(random_radius * numpy.sin(random_theta))
angle = math.atan2(third_point[1], third_point[0]) - math.atan2(center[1], center[0])
lio = rotate(center, (f, s), angle)
lio = (int(lio[0]), int(lio[1]))
return numpy.array([third, ward])
def rotate(origin, point, angle):
#Rotate a point counterclockwise by a given angle around a given origin.
#The angle should be given in radians.
x = origin[0] + cos(angle) * (point[0] - origin[0]) - sin(angle) * (point[1] - origin[1])
y = origin[1] + sin(angle) * (point[0] - origin[0]) + cos(angle) * (point[1] - origin[1])
return (x, y)
#height
a = 95
#length
b = 25
#rand_p = (-random.randint(300, 400), -random.randint(100, 300))
rand_p = (0, 0)
points = numpy.array([random_point(a, b, (100, 100), (-25, 0)) for _ in range(200)])
#rando = rotate((0, 0), right_most_point, angle)
iopoints = []
# t = x[0] - (int(centroid[0]) - 100)
# t2 = x[1] - (int(centroid[1]) - 100)
centroid = numpy.mean(points, axis=0)
print(centroid)
#plt.plot(rando[0], rando[1], 'ro')
plt.plot(rand_p[0], rand_p[1], 'ro')
plt.scatter(points[:,0], points[:,1])
plt.show()
class ELLIPSE:
def __init__(self, a, b, num_points, start, end):
self.a = a
self.b = b
self.num_points = num_points
self.start = start
self.end = end
self.angle_gen = math.atan2(self.end[1]-self.start[1], self.end[0]-self.start[0])
def generate_theta(self, a, b):
u = random.random() / 4.0
theta = np.arctan(self.b/self.a * np.tan(2*np.pi*u))
v = random.random()
if v < 0.25:
return theta
elif v < 0.5:
return np.pi - theta
elif v < 0.75:
return np.pi + theta
else:
return -theta
def radius(self, a, b, theta):
return self.a * self.b / np.sqrt((b*np.cos(theta))**2 + (a*np.sin(theta))**2)
def random_point(self, major_axis, minor_axis, center, qa):
random_theta = self.generate_theta(self.a, self.b)
max_radius = self.radius(self.a, self.b, random_theta)
random_radius = max_radius * np.sqrt(random.random())
f = round(random_radius * np.cos(random_theta))
s = round(random_radius * np.sin(random_theta))
lio = self.rotate((0, 0), (f, s), self.angle_gen)
return (int(lio[0]+center[0]), int(lio[1]+center[1]))
def rotate(self, origin, point, angle):
"""
Rotate a point counterclockwise by a given angle around a given origin.
The angle should be given in radians.
"""
ox, oy = origin
px, py = point
qx = ox + math.cos(angle) * (px - ox) - math.sin(angle) * (py - oy)
qy = oy + math.sin(angle) * (px - ox) + math.cos(angle) * (py - oy)
return qx, qy
def midpoint(self, p1, p2):
return ((p1[0]+p2[0])/2, (p1[1]+p2[1])/2)
def ret_list(self):
points = [self.random_point(self.a, self.b, self.midpoint(self.start, self.end), self.angle_gen) for _ in range(self.num_points)]
return points

Propagated Solution of Lambert Solver Leads to Wrong Orbit

Excuse me for the length of the title please but this is a pretty specific question. I'm currently simulating a launch of a rocket to mars in the 2022 launch window and I noticed that my rocket is a far distance away from Mars, even though it's traveling in the right direction. After simplifying my code to narrow down the problem, I simply plotted the orbits of the Earth and Mars (Using data from NASA's SPICE library) and propagated the position and velocity given to me by the lambert solver I implemented (Universal variables) to plot the final orbit of the rocket.
I'm only letting the Sun's gravity effect the rocket, not the Earth or Mars, to minimize my problem space. Yet even though I've simplified my problem so far, the intersection between Mars' and my rocket's orbits happens well before the time of flight has been simulated all the way, and the minimum distance between the two bodies is more than a million kilometers at all times.
That being said, something must be wrong but I cannot find the problem. I've made sure the lambert solver code I copied is correct by comparing it to Dario Izzo's method and both gave the same results. Furthermore, I've also checked that my orbit propagator works by propagating Mars' and the Earth's orbits and comparing those ellipses to the data from SPICE.
In conclusion, I assume this must be a stupid little mistake I made somewhere, but cannot find because I lack experience in this field. Thank you for any help! :)
This is the JupyterLab notebook I used:
import numpy as np
import matplotlib.pyplot as plt
import json
import math
import spiceypy as spice
# Physics
G = 6.6741e-11
class Entity:
def __init__(self, x, v, m, do_gravity):
self.x = x
self.v = v
self.a = np.array([0,0,0])
self.m = m
self.do_gravity = do_gravity
def apply_force(self, f):
self.a = np.add(self.a, f / self.m);
def step(self, dt):
self.v = np.add(self.v, self.a * dt)
self.x = np.add(self.x, self.v * dt)
self.a = np.array([0,0,0])
class StaticEntity(Entity):
def __init__(self, body, t, do_gravity):
super().__init__(self.get_state(body, t)[:3], self.get_state(body, t)[3:], self.get_mass(body), do_gravity)
self.body = body
self.t = t
def step(self, dt):
self.t += dt
state = self.get_state(self.body, self.t)
self.x = state[:3]
self.v = state[3:]
#classmethod
def get_state(self, body, t):
[state, lt] = spice.spkezr(body, t, "J2000", "NONE", "SSB")
return state * 1000
#classmethod
def get_mass(self, body):
[dim, gm] = spice.bodvrd(body, "GM", 1)
return gm * 1e9 / G
def get_position(self, t):
return self.get_state(self.body, t)[:3]
def get_velocity(self, t):
return self.get_state(self.body, t)[3:]
class Propagator:
def __init__(self, entities):
self.entities = entities
def step(self, dt):
for e1 in self.entities:
for e2 in self.entities:
if (e1 is e2) or (not e1.do_gravity) or isinstance(e2, StaticEntity):
continue
diff = np.subtract(e1.x, e2.x)
fg = G * e1.m * e2.m / np.dot(diff, diff)
force = fg * diff / np.linalg.norm(diff)
e2.apply_force(force)
for entity in self.entities:
entity.step(dt)
# Lambert solver
def C2(psi):
if psi >= 0.0:
sp = math.sqrt(psi)
return (1 - math.cos(sp)) / psi
else:
sp = math.sqrt(-psi)
return (1 - math.cosh(sp)) / psi
def C3(psi):
if psi >= 0.0:
sp = math.sqrt(psi)
return (sp - math.sin(sp)) / (psi * sp)
else:
sp = math.sqrt(-psi)
return (sp - math.sinh(sp)) / (psi * sp)
def lambert_solve(r1, r2, tof, mu, iterations, tolerance):
R1 = np.linalg.norm(r1)
R2 = np.linalg.norm(r2)
cos_a = np.dot(r1, r2) / (R1 * R2)
A = math.sqrt(R1 * R2 * (1.0 + cos_a))
sqrt_mu = math.sqrt(mu)
if A == 0.0:
return None
psi = 0.0
psi_lower = -4.0 * math.pi * math.pi
psi_upper = 4.0 * math.pi * math.pi
c2 = 1.0 / 2.0
c3 = 1.0 / 6.0
for i in range(iterations):
B = R1 + R2 + A * (psi * c3 - 1.0) / math.sqrt(c2)
if A > 0.0 and B < 0.0:
psi_lower += math.pi
B = -B
chi = math.sqrt(B / c2)
chi3 = chi * chi * chi
tof_new = (chi3 * c3 + A * math.sqrt(B)) / sqrt_mu
if math.fabs(tof_new - tof) < tolerance:
f = 1.0 - B / R1
g = A * math.sqrt(B / mu)
g_dot = 1.0 - B / R2
v1 = (r2 - f * r1) / g
v2 = (g_dot * r2 - r1) / g
return (v1, v2)
if tof_new <= tof:
psi_lower = psi
else:
psi_upper = psi
psi = (psi_lower + psi_upper) * 0.5
c2 = C2(psi)
c3 = C3(psi)
return None
# Set up solar system
spice.furnsh('solar_system.tm')
inject_time = spice.str2et('2022 Sep 28 00:00:00')
exit_time = spice.str2et('2023 Jun 1 00:00:00')
sun = StaticEntity("Sun", inject_time, True)
earth = StaticEntity("Earth", inject_time, False)
mars = StaticEntity("Mars Barycenter", inject_time, False)
(v1, v2) = lambert_solve(earth.get_position(inject_time), mars.get_position(exit_time), exit_time - inject_time, G * sun.m, 1000, 1e-4)
rocket = Entity(earth.x, v1, 100000, False)
propagator = Propagator([sun, earth, mars, rocket])
# Generate data
earth_pos = [[], [], []]
mars_pos = [[], [], []]
rocket_pos = [[], [], []]
t = inject_time
dt = 3600 # seconds
while t < exit_time:
propagator.step(dt)
earth_pos[0].append(earth.x[0])
earth_pos[1].append(earth.x[1])
earth_pos[2].append(earth.x[2])
mars_pos[0].append(mars.x[0])
mars_pos[1].append(mars.x[1])
mars_pos[2].append(mars.x[2])
rocket_pos[0].append(rocket.x[0])
rocket_pos[1].append(rocket.x[1])
rocket_pos[2].append(rocket.x[2])
t += dt
# Plot data
plt.figure()
plt.title('Transfer orbit')
plt.xlabel('x-axis')
plt.ylabel('y-axis')
plt.plot(earth_pos[0], earth_pos[1], color='blue')
plt.plot(mars_pos[0], mars_pos[1], color='orange')
plt.plot(rocket_pos[0], rocket_pos[1], color='green')
EDIT:
I recently remodeled my code so that it uses orbit class to represent the entities. This actually gave me acceptable results, even though the code is, in theory, not doing anything differently (as far as I can tell; obviously something must be different)
def norm(a):
return np.dot(a, a)**0.5
def fabs(a):
return -a if a < 0 else a
def newton_raphson(f, f_dot, x0, n):
res = x0
for i in range(n):
res = res - f(res) / f_dot(res)
return res
def get_ephemeris(body, time):
state, _ = sp.spkezr(body, time, "J2000", "NONE", "SSB")
return np.array(state[:3]) * ap.units.km, np.array(state[3:]) * ap.units.km / ap.units.s
def get_mu(body):
_, mu = sp.bodvrd(body, "GM", 1)
return mu * ap.units.km**3 / ap.units.s**2
class orbit:
def __init__(self, position, velocity, mu):
self.position = position
self.velocity = velocity
self.mu = mu
#staticmethod
def from_body(name, center, time):
return static_orbit(name, center, time)
def get_ephemerides(self, t, dt):
time = 0
positions = []
velocities = []
#M = self.M
position = self.position
velocity = self.velocity
delta_t = dt * ap.units.s
t1 = t * ap.units.s
while time < t1:
g = self.mu / np.dot(position, position)
g_vec = g * -position / norm(position)
velocity = np.add(velocity, g_vec * delta_t)
position = np.add(position, velocity * delta_t)
positions.append(position)
velocities.append(velocity)
time = time + delta_t
return positions, velocities
class static_orbit(orbit):
def __init__(self, name, center, time):
p, v = get_ephemeris(name, time)
pc, vc = get_ephemeris(center, time)
super().__init__(p - pc, v - vc, get_mu(center))
self.name = name
self.center = center
self.time = time
def get_ephemerides(self, t, dt):
time = 0
positions = []
velocities = []
while time < t:
p, v = get_ephemeris(self.name, time + self.time)
pc, vc = get_ephemeris(self.center, time + self.time)
positions.append(p - pc)
velocities.append(v - vc)
time += dt
return positions, velocities
sp.furnsh('solar_system.tm')
t1 = sp.str2et('2022 Sep 28 00:00:00')
t2 = sp.str2et('2023 Jun 10 00:00:00')
eo = orbit.from_body("Earth", "Sun", t1)
mo = orbit.from_body("Mars Barycenter", "Sun", t1)
earth_x, earth_v = eo.get_ephemerides(t2 - t1, 3600)
mars_x, mars_v = mo.get_ephemerides(t2 - t1, 3600)
l = lambert(earth_x[0], mars_x[-1], t2 - t1, get_mu("Sun"), 1000, 1e-6)
ro = orbit(earth_x[0], l.v1, get_mu("Sun"))
rocket_x, rocket_v = ro.get_ephemerides(t2 - t1, 60)
earth_x = np.array(earth_x)
mars_x = np.array(mars_x)
rocket_x = np.array(rocket_x)
fig = go.Figure()
fig.add_trace(go.Scatter3d(x=earth_x[:,0], y=earth_x[:,1], z=earth_x[:,2], marker_size=1, marker_color='blue'))
fig.add_trace(go.Scatter3d(x=mars_x[:,0], y=mars_x[:,1], z=mars_x[:,2], marker_size=1, marker_color='orange'))
fig.add_trace(go.Scatter3d(x=rocket_x[:,0], y=rocket_x[:,1], z=rocket_x[:,2], marker_size=1, marker_color='green'))
fig.show()
This method generated following plot:
Also, before this is mentioned again, I have varied my integration step size and lambert solver tolerance to no avail, the result was qualitatively different.
So, I managed to figure out what the problem was after much head-scratching. I was simply not taking into account that the Sun is not located at (0,0,0) in my coordinate system. I thought this was negligible, but that is what made the difference. In the end, I simply passed the difference between the Earth and Mars's and the Sun's position vectors and passed those into the Lambert solver. This finally gave me the desired results.
The reason that the error ended up being so "small" (It didn't seem like an obvious bug at first) was because my coordinates are centered at the solar system barycenter which is a few million kilometers away from the Sun, as one would expect.
Thanks for the comments!

What is wrong with my Implementation of 4th Order runge kutta in python for nonholonomic constraints?

I am trying to implement 4th order Runge Kutta for nonholonomic motion for car-like robots.
I don't know what I am doing wrong,essentially I am passing +-Pi/4 to calculate hard left and right turns to get different trajectories.
But no matter if I pass +pi/4 or -pi/4 to it, I get the same answer.
I cannot figure out what I am doing wrong.
The constraint equations that I am using are:
thetadot = (s/L)*tan(phi)
xdot = s*cos(theta)
ydot = s*sin(theta)
Where s is the speed and L is the length of the car like robot.
#! /usr/bin/env python
import sys, random, math, pygame
from pygame.locals import *
from math import sqrt,cos,sin,atan2,tan
import numpy as np
import matplotlib.pyplot as plt
XDIM = 640
YDIM = 480
WINSIZE = [XDIM, YDIM]
PHI = 45
s = 0.5
white = 255, 240, 200
black = 20, 20, 40
red = 255, 0, 0
green = 0, 255, 0
blue = 0, 0, 255
cyan = 0,255,255
pygame.init()
screen = pygame.display.set_mode(WINSIZE)
X = XDIM/2
Y = YDIM/2
THETA = 45
def main():
nodes = []
nodes.append(Node(XDIM/2.0,YDIM/2.0,0.0))
plt.plot(runge_kutta(nodes[0], (3.14/4))) #Hard Left turn
plt.plot(runge_kutta(nodes[0], 0)) #Straight ahead
plt.plot(runge_kutta(nodes[0], -(3.14/4))) #Hard Right turn
plt.show()
class Node:
x = 0
y = 0
theta = 0
distance=0
parent=None
def __init__(self,xcoord, ycoord, theta):
self.x = xcoord
self.y = ycoord
self.theta = theta
def rk4(f, x, y, n):
x0 = y0 = 0
vx = [0]*(n + 1)
vy = [0]*(n + 1)
h = 0.8
vx[0] = x = x0
vy[0] = y = y0
for i in range(1, n + 1):
k1 = h*f(x, y)
k2 = h*f(x + 0.5*h, y + 0.5*k1)
k3 = h*f(x + 0.5*h, y + 0.5*k2)
k4 = h*f(x + h, y + k3)
vx[i] = x = x0 + i*h
vy[i] = y = y + (k1 + k2 + k2 + k3 + k3 + k4)/6
print "1"
print vy
return vy
def fun1(x,y):
x = (0.5/2)*tan(y)
print "2"
print x
return x
def fun2(x,y):
x = 0.5*cos(y)
print "3"
print x
return x
def fun3(x,y):
x = 0.5*sin(y)
print "4"
print x
return x
def runge_kutta(p, phi):
x1 = p.x
y1 = p.y
theta1 = p.theta
fi = phi
for i in range(0,5):
x2 = rk4(fun2, x1, theta1, 5)
y2 = rk4(fun3, y1, theta1, 5)
theta2 = rk4(fun1, theta1 ,fi, 5)
theta1 = theta2
print "5"
print zip(x2,y2)
return zip(x2,y2)
# if python says run, then we should run
if __name__ == '__main__':
main()
running = True
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
I can't really say much about the algorithm, but the way you set up our rk4 function, the x, and y arguments will never have any effect:
def rk4(f, x, y, n):
x0 = y0 = 0 # x0 and y0 will both be 0 after this
vx = [0]*(n + 1)
vy = [0]*(n + 1)
h = 0.8
vx[0] = x = x0 # now x will be 0
vy[0] = y = y0 # and y will be 0 too
...
The rest of the function will use x=0 and y=0 in any case.
Also, I don't know if that's intentional, but the other functions fun1, fun2 and fun3 don't ever use the parameter passed as x, they only use y. They change x locally, but that won't reflect outside the function.

Creating a movie in Jython/Python

I am trying to make a movie, whilst creating frames through a loop. It is saving, but only the first frame (which it plays as a movie - short movie!) I've tried various things and cannot figure out what I am doing wrong. Thanks
def synthesiseFrame(folder):
folder =r"D:\FOLDER"
m=0.5
for x in range(1,121):
pic=makeEmptyPicture(960,540)
for x in range (0,960):
for y in range (0,540):
r=#some code
g=#some code
b=#some code
color =makeColor (r,g,b)
px= getPixel (pic, x, y)
setColor(px, color)
numStr=str(x)
m=m+0.0125
if x<10:
writePictureTo(pic, folder+"\pic00"+numStr+".png")
if x >=10 and x<100:
writePictureTo(pic, folder+"\pic0"+numStr+".png")
if x>=100:
writePictureTo(pic,folder+"\pic"+numStr+".png")
return movie
movie=synthesiseFrame(folder)
folder =r"D:\FOLDER"
file=r"D:\FOLDER\pic00.png"
movie=makeMovieFromInitialFile(file)
writeQuicktime(movie,"D:\FOLDER\movie.mov", 30)
playMovie(movie)
My first sight at JES video functions and at your code tells me something like (fully working example):
import os
import random
def synthesizeFrameAndCreateMovie(folder):
# Create an empty movie to receive the frames
movie = makeMovie()
# Compute & save the frames
w = 40
h = 25
nb_frames = 60 # Will give 60 frames at 30 fps => movie duration : 2 sec.
for z in range(0, nb_frames):
pic=makeEmptyPicture(w, h)
for x in range (0, w):
for y in range (0, h):
#makeColor() takes red, green, and blue (in that order) between 0 and 255
r = random.randint(0, 255)
g = random.randint(0, 255)
b = random.randint(0, 255)
color = makeColor(r,g,b)
px = getPixel(pic, x, y)
setColor(px, color)
# Create one frame and inject in the movie object
filename = os.path.join(folder, 'pic%03d.png' % z)
writePictureTo(pic, filename)
addFrameToMovie(filename, movie)
# return the movie
return movie
movie = synthesizeFrameAndCreateMovie("D:\\FOLDER")
print movie
#writeQuicktime(movie,"D:\\FOLDER\\movie.mov", 30)
playMovie(movie)
Output (frames):
.............................................
EDIT :
More fun : animating a line (code taken form here)...
import os
import random
# Draw point, with check if the point is in the image area
def drawPoint(pic, col, x, y):
if (x >= 0) and (x < getWidth(pic)) and (y >= 0) and (y < getHeight(pic)):
px = getPixel(pic, x, y)
setColor(px, col)
# Draw line segment, given two points
# From Bresenham's line algorithm
# http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
def drawLine(pic, col, x0, y0, x1, y1):
dx = abs(x1-x0)
dy = abs(y1-y0)
sx = sy = 0
#sx = 1 if x0 < x1 else -1
#sy = 1 if y0 < y1 else -1
if (x0 < x1):
sx = 1
else:
sx = -1
if (y0 < y1):
sy = 1
else:
sy = -1
err = dx - dy
while (True):
drawPoint(pic, col, x0, y0)
if (x0 == x1) and (y0 == y1):
break
e2 = 2 * err
if (e2 > -dy):
err = err - dy
x0 = x0 + sx
if (x0 == x1) and (y0 == y1):
drawPoint(pic, col, x0, y0)
break
if (e2 < dx):
err = err + dx
y0 = y0 + sy
# Draw infinite line from segment
def drawInfiniteLine(pic, col, x0, y0, x1, y1):
# y = m * x + b
m = (y0-y1) / (x0-x1)
if (abs(m) > 100.0):
m = 100.0
# y0 = m * x0 + b => b = y0 - m * x0
b = y0 - m * x0
x0 = 0
y0 = int(m*x0 + b)
# get a 2nd point far away from the 1st one
x1 = getWidth(pic)
y1 = int(m*x1 + b)
drawLine(pic, col, x0, y0, x1, y1)
# Draw infinite line from origin point and angle
# Angle 'theta' expressed in degres
def drawInfiniteLineA(pic, col, x, y, theta):
# y = m * x + b
dx = y * tan(theta * pi / 180.0) # (need radians)
dy = y
if (dx == 0):
dx += 0.000000001 # Avoid to divide by zero
m = dy / dx
# y = m * x + b => b = y - m * x
b = y - m * x
# get a 2nd point far away from the 1st one
x1 = 2 * getWidth(pic)
y1 = m*x1 + b
drawInfiniteLine(pic, col, x, y, x1, y1)
def synthesizeFrameAndCreateMovie(folder):
# Create an empty movie to receive the frames
movie = makeMovie()
# Compute & save the frames
w = 40
h = 25
nb_frames = 120 # Will give 120 frames at 30 fps => movie duration : 4 sec.
for z in range(0, nb_frames):
pic = makeEmptyPicture(w, h)
addRectFilled(pic, 0, 0, w-1, h-1)
#makeColor() takes red, green, and blue (in that order) between 0 and 255
r = random.randint(0, 255)
g = random.randint(0, 255)
b = random.randint(0, 255)
col = makeColor(r,g,b)
theta = z * 360 / nb_frames
if (theta != 180.0) and (theta != 0.0):
drawInfiniteLineA(pic, col, w//2, h//2, theta)
# Create one frame and inject in the movie object
filename = os.path.join(folder, 'pic%03d.png' % z)
writePictureTo(pic, filename)
addFrameToMovie(filename, movie)
# return the movie
return movie
movie = synthesizeFrameAndCreateMovie("/home/FOLDER")
print movie
#writeQuicktime(movie,"/home/golgauth/Desktop/FOLDER/movie.mov", 30)
#writeAVI(movie,"/home/golgauth/Desktop/FOLDER/movie.avi")
playMovie(movie)
Output (frames):
.............................................
I changed your code.
Used '%03d'%x instead of if*3.
change 'pic00.png' to 'pic001.png' because the loop in synthesiseFrame start from 1.
'\' -> os.path.join(..); Put import os if you didn't.
def synthesiseFrame(folder):
m = 0.5
for frameNumber in range(1,121):
pic=makeEmptyPicture(960,540)
for x in range (0,960):
for y in range (0,540):
r = #some code
g = #some code
b = #some code
color =makeColor (r,g,b)
px= getPixel (pic, x, y)
setColor(px, color)
m += 0.0125
writePictureTo(pic, os.path.join(folder, 'pic%03d.png' % frameNumber)) # 3 if -> no if
return movie
movie = synthesiseFrame(folder)
folder = r"D:\FOLDER"
file = r"D:\FOLDER\pic001.png" # 00 -> 001
movie=makeMovieFromInitialFile(file)
writeQuicktime(movie,"D:\FOLDER\movie.mov", 30)
playMovie(movie)
EDIT
x (in outer loop) -> frameNumber

Categories

Resources