I am doing some multiple linear regression with the following code:
import statsmodels.formula.api as sm
df = pd.DataFrame({"A":Output['10'],
"B":Input['Var1'],
"G":Input['Var2'],
"I":Input['Var3'],
"J":Input['Var4'],
res = sm.ols(formula="A ~ B + G + I + J", data=df).fit()
print(res.summary())
With the following result:
OLS Regression Results
==============================================================================
Dep. Variable: A R-squared: 0.562
Model: OLS Adj. R-squared: 0.562
Method: Least Squares F-statistic: 2235.
Date: Tue, 06 Nov 2018 Prob (F-statistic): 0.00
Time: 09:48:20 Log-Likelihood: -21233.
No. Observations: 6961 AIC: 4.248e+04
Df Residuals: 6956 BIC: 4.251e+04
Df Model: 4
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 21.8504 0.448 48.760 0.000 20.972 22.729
B 1.8353 0.022 84.172 0.000 1.793 1.878
G 0.0032 0.004 0.742 0.458 -0.005 0.012
I -0.0210 0.009 -2.224 0.026 -0.039 -0.002
J 0.6677 0.061 10.868 0.000 0.547 0.788
==============================================================================
Omnibus: 2152.474 Durbin-Watson: 0.308
Prob(Omnibus): 0.000 Jarque-Bera (JB): 5077.082
Skew: -1.773 Prob(JB): 0.00
Kurtosis: 5.221 Cond. No. 555.
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
However, my Output dataframe consists of multiple columns from 1 to 149. Is there a way to loop over all the 149 columns in the Output dataframe and in the end show the best and worst fits on for example R-squared? Or get the largest coef for variable B?
Related
Wondering what's the most efficient/accurate way to estimate these parameters (a0, a1, a2, a3) with Python in the model:
col_4 = a0 + a1*col_1 + a2*col_2 + a3*col_3
The sample dataset would be:
inputs = {
'col_1': np.random.normal(15,2,100),
'col_2': np.random.normal(15,1,100),
'col_3': np.random.normal(0.9,1,100),
'col_4': np.random.normal(-0.05,0.5,100),
}
_idx = pd.date_range('2021-01-01','2021-04-10',freq='D').to_series()
data = pd.DataFrame(inputs, index = _idx)
statsmodels provides a pretty simple way to estimate linear models like that:
import statsmodels.formula.api as smf
results = smf.ols('col_4 ~ col_1 + col_2 + col_3', data=data).fit()
print(results.summary())
The coef column shows your aX parameters:
OLS Regression Results
==============================================================================
Dep. Variable: col_4 R-squared: 0.049
Model: OLS Adj. R-squared: 0.019
Method: Least Squares F-statistic: 1.637
Date: Wed, 29 Dec 2021 Prob (F-statistic): 0.186
Time: 17:25:00 Log-Likelihood: -68.490
No. Observations: 100 AIC: 145.0
Df Residuals: 96 BIC: 155.4
Df Model: 3
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.2191 0.846 0.259 0.796 -1.461 1.899
col_1 -0.0198 0.023 -0.854 0.395 -0.066 0.026
col_2 -0.0048 0.051 -0.093 0.926 -0.107 0.097
col_3 0.1155 0.056 2.066 0.042 0.005 0.226
==============================================================================
Omnibus: 2.292 Durbin-Watson: 2.291
Prob(Omnibus): 0.318 Jarque-Bera (JB): 2.296
Skew: -0.351 Prob(JB): 0.317
Kurtosis: 2.757 Cond. No. 370.
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
That includes the intercept (a0) by default. If you want to remove it, just add a -1 to the formula
I get completely different results with the same datasets in R and Python. I cannot understand why it happens.
R:
library(RcppCNPy)
d <- npyLoad("/home/vvkovalchuk/bin/src/python/asks1.npy")
datas = npyLoad('/home/vvkovalchuk/bin/src/python/bids2.npy')
m <- lm(d ~ datas)
summary(m)
Python:
import time
import numpy
import statsmodels.api as sm
from math import log
Y = numpy.load('./asks1.npy', allow_pickle=True)
X = numpy.load('./bids2.npy', allow_pickle=True)
X3 = sm.add_constant(X)
res_ols = sm.OLS(Y, X3).fit()
print(res_ols.params)
What am I doing wrong?
Results:
R:
Call:
lm(formula = d ~ datas)
Residuals:
Min 1Q Median 3Q Max
-6.089e+06 8.797e+07 2.163e+08 2.179e+08 1.122e+10
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.561e+00 2.253e+06 0 1
datas 3.809e+03 2.164e+09 0 1
Residual standard error: 208100000 on 14639 degrees of freedom
Multiple R-squared: 0.2735, Adjusted R-squared: 0.2735
F-statistic: 5512 on 1 and 14639 DF, p-value: < 2.2e-16
Python:
OLS Regression Results
Dep. Variable: y R-squared: 0.112
Model: OLS Adj. R-squared: 0.112
Method: Least Squares F-statistic: 1846.
Date: Thu, 25 Mar 2021 Prob (F-statistic): 0.00
Time: 13:08:43 Log-Likelihood: 1.6948e+05
No. Observations: 14641 AIC: -3.390e+05
Df Residuals: 14639 BIC: -3.389e+05
Df Model: 1
Covariance Type: nonrobust
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const 0.0004 3.07e-06 126.136 0.000 0.000 0.000
x1 0.1478 0.003 42.969 0.000 0.141 0.155
Omnibus: 3251.130 Durbin-Watson: 0.004
Prob(Omnibus): 0.000 Jarque-Bera (JB): 14606.605
Skew: 1.019 Prob(JB): 0.00
Kurtosis: 7.449 Cond. No. 1.83e+05
I also tried to swap arguments in OLS function. Still getting incorrect results. Could this be related to NAs?
I have written a code for multi-linear regression model. But when I use results.summary() Python spits this whole thing out
if i >1:
xxx = sm.add_constant(xxx)
results = sm.OLS(y_variable_holder, xxx).fit()
print (results.summary())
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.001
Model: OLS Adj. R-squared: 0.000
Method: Least Squares F-statistic: 1.051
Date: Wed, 14 Jun 2017 Prob (F-statistic): 0.369
Time: 20:01:26 Log-Likelihood: 6062.6
No. Observations: 2262 AIC: -1.212e+04
Df Residuals: 2258 BIC: -1.209e+04
Df Model: 3
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
const -0.0002 0.000 -0.476 0.634 -0.001 0.001
x1 -0.0001 0.001 -0.218 0.828 -0.001 0.001
x2 8.445e-06 2.31e-05 0.366 0.714 -3.68e-05 5.37e-05
x3 -0.0026 0.003 -0.941 0.347 -0.008 0.003
==============================================================================
Omnibus: 322.021 Durbin-Watson: 2.255
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4334.191
Skew: -0.097 Prob(JB): 0.00
Kurtosis: 9.779 Cond. No. 127.
==============================================================================
I want Python to only spit out constant and coefficients. For example, desired output:
python output:
[-0.0002]
[-0.0001]
[8.445e-06]
[ -0.0026]
How can I achieve this? I don't need the whole summary just the constant/efficient.
I figured it out. the answer is results_bucket.append(results.params)
I am attempting to print the VIF (variance inflation factor) by coef. However, I can't seem to find any documentation from statsmodels showing how? I have a model of n variables I need to process and a multicollinearity value for all the variables doesn't help remove the values with the highest collinearity.
this looks like an answer
https://stats.stackexchange.com/questions/155028/how-to-systematically-remove-collinear-variables-in-python
but how would I run it against this workbook.
http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv
Below is the code an the summary output which is also where I am now.
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
# read data into a DataFrame
data = pd.read_csv('somepath', index_col=0)
print(data.head())
#multiregression
lm = smf.ols(formula='Sales ~ TV + Radio + Newspaper', data=data).fit()
print(lm.summary())
OLS Regression Results
==============================================================================
Dep. Variable: Sales R-squared: 0.897
Model: OLS Adj. R-squared: 0.896
Method: Least Squares F-statistic: 570.3
Date: Wed, 15 Feb 2017 Prob (F-statistic): 1.58e-96
Time: 13:28:29 Log-Likelihood: -386.18
No. Observations: 200 AIC: 780.4
Df Residuals: 196 BIC: 793.6
Df Model: 3
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept 2.9389 0.312 9.422 0.000 2.324 3.554
TV 0.0458 0.001 32.809 0.000 0.043 0.049
Radio 0.1885 0.009 21.893 0.000 0.172 0.206
Newspaper -0.0010 0.006 -0.177 0.860 -0.013 0.011
==============================================================================
Omnibus: 60.414 Durbin-Watson: 2.084
Prob(Omnibus): 0.000 Jarque-Bera (JB): 151.241
Skew: -1.327 Prob(JB): 1.44e-33
Kurtosis: 6.332 Cond. No. 454.
==============================================================================
To get a list of VIFs:
from statsmodels.stats.outliers_influence import variance_inflation_factor
variables = lm.model.exog
vif = [variance_inflation_factor(variables, i) for i in range(variables.shape[1])]
vif
To get their mean:
np.array(vif).mean()
I was testing some basic category regression using Stats model:
I build up a deterministic model
Y = X + Z
where X can takes 3 values (a, b or c) and Z only 2 (d or e).
At that stage the model is purely deterministic, I setup the weights for each variable as followed
a's weight=1
b's weight=2
c's weight=3
d's weight=1
e's weight=2
Therefore with 1(X=a) being 1 if X=a, 0 otherwise, the model is simply:
Y = 1(X=a) + 2*1(X=b) + 3*1(X=c) + 1(Z=d) + 2*1(Z=e)
Using the following code, to generate the different variables and run the regression
from statsmodels.formula.api import ols
nbData = 1000
rand1 = np.random.uniform(size=nbData)
rand2 = np.random.uniform(size=nbData)
a = 1 * (rand1 <= (1.0/3.0))
b = 1 * (((1.0/3.0)< rand1) & (rand1< (4/5.0)))
c = 1-b-a
d = 1 * (rand2 <= (3.0/5.0))
e = 1-d
weigths = [1,2,3,1,2]
y = a+2*b+3*c+4*d+5*e
df = pd.DataFrame({'y':y, 'a':a, 'b':b, 'c':c, 'd':d, 'e':e})
mod = ols(formula='y ~ a + b + c + d + e - 1', data=df)
res = mod.fit()
print(res.summary())
I end up with the rights results (one has to look at the difference between coef rather than the coef themselfs)
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 1.000
Model: OLS Adj. R-squared: 1.000
Method: Least Squares F-statistic: 1.006e+30
Date: Wed, 16 Sep 2015 Prob (F-statistic): 0.00
Time: 03:05:40 Log-Likelihood: 3156.8
No. Observations: 100 AIC: -6306.
Df Residuals: 96 BIC: -6295.
Df Model: 3
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
a 1.6000 7.47e-16 2.14e+15 0.000 1.600 1.600
b 2.6000 6.11e-16 4.25e+15 0.000 2.600 2.600
c 3.6000 9.61e-16 3.74e+15 0.000 3.600 3.600
d 3.4000 5.21e-16 6.52e+15 0.000 3.400 3.400
e 4.4000 6.85e-16 6.42e+15 0.000 4.400 4.400
==============================================================================
Omnibus: 11.299 Durbin-Watson: 0.833
Prob(Omnibus): 0.004 Jarque-Bera (JB): 5.720
Skew: -0.381 Prob(JB): 0.0573
Kurtosis: 2.110 Cond. No. 2.46e+15
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 1.67e-29. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.
But when I increase the number of data point to (say) 600, the regression is producing really bad results. I have tried similar regression in Excel and in R and they are producing consistent results whatever the number of data points. Does anyone know if there is some restriction on statsmodel ols explaining such behaviour or am I missing something?
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.167
Model: OLS Adj. R-squared: 0.161
Method: Least Squares F-statistic: 29.83
Date: Wed, 16 Sep 2015 Prob (F-statistic): 1.23e-22
Time: 03:08:04 Log-Likelihood: -701.02
No. Observations: 600 AIC: 1412.
Df Residuals: 595 BIC: 1434.
Df Model: 4
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
a 5.8070 1.15e+13 5.05e-13 1.000 -2.26e+13 2.26e+13
b 6.4951 1.15e+13 5.65e-13 1.000 -2.26e+13 2.26e+13
c 6.9033 1.15e+13 6.01e-13 1.000 -2.26e+13 2.26e+13
d -1.1927 1.15e+13 -1.04e-13 1.000 -2.26e+13 2.26e+13
e -0.1685 1.15e+13 -1.47e-14 1.000 -2.26e+13 2.26e+13
==============================================================================
Omnibus: 67.153 Durbin-Watson: 0.328
Prob(Omnibus): 0.000 Jarque-Bera (JB): 70.964
Skew: 0.791 Prob(JB): 3.89e-16
Kurtosis: 2.419 Cond. No. 7.70e+14
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 9.25e-28. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.
It appears that as mentionned by Mr. F, the main problem is that the statsmodel OLS does not seem to handle the collinearity pb as well as Excel/R in that case, but if instead of defining one variable for each a, b, c, d and e, one define a variable X and one Z which can be equal to a, b or c and d or e resp, then the regression works fine. Ie updating the code with :
df['X'] = ['c']*len(df)
df.X[df.b!=0] = 'b'
df.X[df.a!=0] = 'a'
df['Z'] = ['e']*len(df)
df.Z[df.d!=0] = 'd'
mod = ols(formula='y ~ X + Z - 1', data=df)
leads to the expected results
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 1.000
Model: OLS Adj. R-squared: 1.000
Method: Least Squares F-statistic: 2.684e+27
Date: Thu, 17 Sep 2015 Prob (F-statistic): 0.00
Time: 06:22:43 Log-Likelihood: 2.5096e+06
No. Observations: 100000 AIC: -5.019e+06
Df Residuals: 99996 BIC: -5.019e+06
Df Model: 3
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
X[a] 5.0000 1.85e-14 2.7e+14 0.000 5.000 5.000
X[b] 6.0000 1.62e-14 3.71e+14 0.000 6.000 6.000
X[c] 7.0000 2.31e-14 3.04e+14 0.000 7.000 7.000
Z[T.e] 1.0000 1.97e-14 5.08e+13 0.000 1.000 1.000
==============================================================================
Omnibus: 145.367 Durbin-Watson: 1.353
Prob(Omnibus): 0.000 Jarque-Bera (JB): 9729.487
Skew: -0.094 Prob(JB): 0.00
Kurtosis: 1.483 Cond. No. 2.29
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.