I want to create my own dataset class based on Dataset class of Skorch because I want to differentiate categorical columns and continuous columns. These categorical columns will be passed through the embedding layers in the model. The result is weird because it show NAN
like this:
epoch train_loss valid_loss dur
------- ------------ ------------ ------
1 nan nan 0.2187
2 nan nan 0.1719
3 nan nan 0.1719
4 nan nan 0.1562
5 nan nan 0.1406
Can you help me fix it ? I am using data from this kaggle:
Here
from skorch import NeuralNetRegressor
from skorch.dataset import Dataset
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
class TabularDataset(Dataset):
def __init__(self, data, cat_cols=None, output_col=None):
self.n = data.shape[0]
if output_col:
self.y = data[output_col].astype(np.float32).values.reshape(-1, 1)
else:
self.y = np.zeros((self.n, 1))
self.cat_cols = cat_cols if cat_cols else []
self.cont_cols = [col for col in data.columns
if col not in self.cat_cols + [output_col]]
if self.cont_cols:
self.cont_X = data[self.cont_cols].astype(np.float32).values
else:
self.cont_X = np.zeros((self.n, 1))
if self.cat_cols:
self.cat_X = data[self.cat_cols].astype(np.int64).values
else:
self.cat_X = np.zeros((self.n, 1))
def __len__(self):
# Denotes the total number of sampoes
return self.n
def __getitem__(self, idx):
# generates one sample of data
return [self.cont_X[idx], self.cat_X[idx]], self.y[idx]
class FeedForwardNN(nn.Module):
def __init__(self, emb_dims, no_of_cont, lin_layer_sizes,
output_size, emb_dropout, lin_layer_dropouts):
"""
Parameters
----------
emb_dims: List of two element tuples
This list will contain a two element tuple for each
categorical feature. The first element of a tuple will
denote the number of unique values of the categorical
feature. The second element will denote the embedding
dimension to be used for that feature.
no_of_cont: Integer
The number of continuous features in the data.
lin_layer_sizes: List of integers.
The size of each linear layer. The length will be equal
to the total number
of linear layers in the network.
output_size: Integer
The size of the final output.
emb_dropout: Float
The dropout to be used after the embedding layers.
lin_layer_dropouts: List of floats
The dropouts to be used after each linear layer.
"""
super().__init__()
# Embedding layers
self.emb_layers = nn.ModuleList([nn.Embedding(x, y)
for x, y in emb_dims])
no_of_embs = sum([y for x, y in emb_dims])
self.no_of_embs = no_of_embs
self.no_of_cont = no_of_cont
# Linear Layers
first_lin_layer = nn.Linear(self.no_of_embs + self.no_of_cont,
lin_layer_sizes[0])
self.lin_layers = \
nn.ModuleList([first_lin_layer] + \
[nn.Linear(lin_layer_sizes[i], lin_layer_sizes[i + 1])
for i in range(len(lin_layer_sizes) - 1)])
for lin_layer in self.lin_layers:
nn.init.kaiming_normal_(lin_layer.weight.data)
# Output Layer
self.output_layer = nn.Linear(lin_layer_sizes[-1],
output_size)
nn.init.kaiming_normal_(self.output_layer.weight.data)
# Batch Norm Layers
self.first_bn_layer = nn.BatchNorm1d(self.no_of_cont)
self.bn_layers = nn.ModuleList([nn.BatchNorm1d(size)
for size in lin_layer_sizes])
# Dropout Layers
self.emb_dropout_layer = nn.Dropout(emb_dropout)
self.droput_layers = nn.ModuleList([nn.Dropout(size)
for size in lin_layer_dropouts])
def forward(self, X):
cont_data = X[0]
cat_data = X[1]
if self.no_of_embs != 0:
x = [emb_layer(cat_data[:, i])
for i, emb_layer in enumerate(self.emb_layers)]
x = torch.cat(x, 1)
x = self.emb_dropout_layer(x)
if self.no_of_cont != 0:
normalized_cont_data = self.first_bn_layer(cont_data)
if self.no_of_embs != 0:
x = torch.cat([x, normalized_cont_data], 1)
else:
x = normalized_cont_data
for lin_layer, dropout_layer, bn_layer in \
zip(self.lin_layers, self.droput_layers, self.bn_layers):
x = F.relu(lin_layer(x))
x = bn_layer(x)
x = dropout_layer(x)
x = self.output_layer(x)
return x
# Read data
data = pd.read_csv("data/train.csv", usecols=["SalePrice", "MSSubClass", "MSZoning", "LotFrontage", "LotArea",
"Street", "YearBuilt", "LotShape", "1stFlrSF", "2ndFlrSF"]).dropna()
categorical_features = ["MSSubClass", "MSZoning", "Street", "LotShape", "YearBuilt"]
output_feature = "SalePrice"
# Label Encode Categorial Features
label_encoders = {}
for cat_col in categorical_features:
label_encoders[cat_col] = LabelEncoder()
data[cat_col] = label_encoders[cat_col].fit_transform(data[cat_col])
# feed Forward NN
cat_dims = [int(data[col].nunique()) for col in categorical_features]
emb_dims = [(x, min(50, (x + 1) // 2)) for x in cat_dims]
net = FeedForwardNN(emb_dims, no_of_cont=4, lin_layer_sizes=[50, 100],
output_size=1, emb_dropout=0.04,
lin_layer_dropouts=[0.001, 0.01])
# Fit
ds = TabularDataset(data=data, cat_cols=categorical_features,
output_col=output_feature)
X = data.drop(['SalePrice'], axis=1)
y = data['SalePrice'].values.reshape(-1, 1)
net = NeuralNetRegressor(
net,
max_epochs=5,
lr=0.1,
dataset=ds
)
net.fit(X, y)
For anyone who's experiencing a similar issue in case of classification problems, the loss function (criterion) used by Skorch by default is NLLLoss, which computes the log for you (doc and related issue). Therefore it is expected that a Softmax (in case of multiple classes) layer is present as last step in your architecture to be able to produce probabilities.
You can either:
Add a Softmax layer to produce probabilities and leave the default NLLLoss;
Change the default loss to CrossEntropyLoss:
net = NeuralNetClassifier(
...
criterion=torch.nn.CrossEntropyLoss
)
The problem is not with skorch but your data. You have to scale your inputs and, in this case, especially the targets to avoid huge losses and exploding gradients. As a start I suggest using, for example, sklearn.preprocessing.StandardScaler:
from sklearn.preprocessing import StandardScaler
class TabularDataset(Dataset):
def __init__(self, data, cat_cols=None, output_col=None):
self.n = data.shape[0]
# [...]
if output_col:
scaler_y = StandardScaler()
self.y = data[output_col].astype(np.float32).values.reshape(-1, 1)
scaler_y.fit(self.y)
self.y = scaler_y.transform(self.y)
# [...]
if self.cont_cols:
scaler_X_cont = StandardScaler()
self.cont_X = data[self.cont_cols].astype(np.float32).values
scaler_X_cont.fit(self.cont_X)
self.cont_X = scaler_X_cont.transform(self.cont_X)
# [...]
As a side note, you don't need X and y when you have a dataset that provides the actual data, you can simply pass it to net.fit (with the exception of using a stratified CV split):
net = NeuralNetRegressor(
net,
max_epochs=5,
lr=0.00001,
)
net.fit(ds, y=None)
Related
I tried to run a neural network to learn more about categorical embedding (the exaplanation of the neural network code is here https://yashuseth.blog/2018/07/22/pytorch-neural-network-for-tabular-data-with-categorical-embeddings/) but Spyder gives AttributeError after trying to run the loop in the end.
Traceback (most recent call last):
File "", line 1, in
File "C:\Workspace\Python_Runtime\Python\lib\multiprocessing\spawn.py", line 116, in spawn_main
exitcode = _main(fd, parent_sentinel)
File "C:\Workspace\Python_Runtime\Python\lib\multiprocessing\spawn.py", line 126, in _main
self = reduction.pickle.load(from_parent)
AttributeError: Can't get attribute 'TabularDataset' on <module 'main' (built-in)>
My understanding is that this comes from Spyder having issue with multiprocessing functionality.
I have tried, as some answers suggested, to wrap everything that is not in a class or def in
if __name__ == '__main__':
but that did not seem to help, the error still comes up.
I also tried to import multiprocess package instead of multiprocessing but that did not help. I guess I would need to go and change the line in spawn.py file, but not sure how exactly.
The issue is that on my current PC I only have Spyder. I tried to run the same code on another dataset on my personal PC at home with Pycharm and it worked alright, with no errors at all.
Does anyone know how can I resolve the issue in Spyder?
The code for the neural network that I used is here:
from torch.utils.data import Dataset, DataLoader
class TabularDataset(Dataset):
def __init__(self, data, cat_cols=None, output_col=None):
"""
Characterizes a Dataset for PyTorch
Parameters
----------
data: pandas data frame
The data frame object for the input data. It must
contain all the continuous, categorical and the
output columns to be used.
cat_cols: List of strings
The names of the categorical columns in the data.
These columns will be passed through the embedding
layers in the model. These columns must be
label encoded beforehand.
output_col: string
The name of the output variable column in the data
provided.
"""
self.n = data.shape[0]
if output_col:
self.y = data[output_col].astype(np.float32).values.reshape(-1, 1)
else:
self.y = np.zeros((self.n, 1))
self.cat_cols = cat_cols if cat_cols else []
self.cont_cols = [col for col in data.columns
if col not in self.cat_cols + [output_col]]
if self.cont_cols:
self.cont_X = data[self.cont_cols].astype(np.float32).values
else:
self.cont_X = np.zeros((self.n, 1))
if self.cat_cols:
self.cat_X = data[cat_cols].astype(np.int64).values
else:
self.cat_X = np.zeros((self.n, 1))
def __len__(self):
"""
Denotes the total number of samples.
"""
return self.n
def __getitem__(self, idx):
"""
Generates one sample of data.
"""
return [self.y[idx], self.cont_X[idx], self.cat_X[idx]]
import torch
import torch.nn as nn
import torch.nn.functional as F
class FeedForwardNN(nn.Module):
def __init__(self, emb_dims, no_of_cont, lin_layer_sizes,
output_size, emb_dropout, lin_layer_dropouts):
"""
Parameters
----------
emb_dims: List of two element tuples
This list will contain a two element tuple for each
categorical feature. The first element of a tuple will
denote the number of unique values of the categorical
feature. The second element will denote the embedding
dimension to be used for that feature.
no_of_cont: Integer
The number of continuous features in the data.
lin_layer_sizes: List of integers.
The size of each linear layer. The length will be equal
to the total number
of linear layers in the network.
output_size: Integer
The size of the final output.
emb_dropout: Float
The dropout to be used after the embedding layers.
lin_layer_dropouts: List of floats
The dropouts to be used after each linear layer.
"""
super().__init__()
# Embedding layers
self.emb_layers = nn.ModuleList([nn.Embedding(x, y)
for x, y in emb_dims])
no_of_embs = sum([y for x, y in emb_dims])
self.no_of_embs = no_of_embs
self.no_of_cont = no_of_cont
# Linear Layers
first_lin_layer = nn.Linear(self.no_of_embs + self.no_of_cont,
lin_layer_sizes[0])
self.lin_layers = nn.ModuleList([first_lin_layer] + [nn.Linear(lin_layer_sizes[i], lin_layer_sizes[i + 1]) for i in range(len(lin_layer_sizes) - 1)])
for lin_layer in self.lin_layers:
nn.init.kaiming_normal_(lin_layer.weight.data)
# Output Layer
self.output_layer = nn.Linear(lin_layer_sizes[-1],
output_size)
nn.init.kaiming_normal_(self.output_layer.weight.data)
# Batch Norm Layers
self.first_bn_layer = nn.BatchNorm1d(self.no_of_cont)
self.bn_layers = nn.ModuleList([nn.BatchNorm1d(size)
for size in lin_layer_sizes])
# Dropout Layers
self.emb_dropout_layer = nn.Dropout(emb_dropout)
self.droput_layers = nn.ModuleList([nn.Dropout(size)
for size in lin_layer_dropouts])
def forward(self, cont_data, cat_data):
if self.no_of_embs != 0:
x = [emb_layer(cat_data[:, i])
for i,emb_layer in enumerate(self.emb_layers)]
x = torch.cat(x, 1)
x = self.emb_dropout_layer(x)
if self.no_of_cont != 0:
normalized_cont_data = self.first_bn_layer(cont_data)
if self.no_of_embs != 0:
x = torch.cat([x, normalized_cont_data], 1)
else:
x = normalized_cont_data
for lin_layer, dropout_layer, bn_layer in\
zip(self.lin_layers, self.droput_layers, self.bn_layers):
x = F.relu(lin_layer(x))
x = bn_layer(x)
x = dropout_layer(x)
x = self.output_layer(x)
return x
categorical_features = ["cat1", "cat2", "cat3"]
output_feature = ["output"]
data = data[output_feature + categorical_features + ["cont1", "cont2"]].copy().dropna()
from sklearn.preprocessing import LabelEncoder
label_encoders = {}
for cat_col in categorical_features:
label_encoders[cat_col] = LabelEncoder()
data[cat_col] = label_encoders[cat_col].fit_transform(data[cat_col])
dataset = TabularDataset(data=data, cat_cols=categorical_features,output_col=output_feature)
batchsize = 256
dataloader = DataLoader(dataset, batchsize, shuffle=True, num_workers=1)
cat_dims = [int(data[col].nunique()) for col in categorical_features]
emb_dims = [(x, min(50, (x + 1) // 2)) for x in cat_dims]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = FeedForwardNN(emb_dims, no_of_cont=2, lin_layer_sizes=[50, 100],
output_size=1, emb_dropout=0.04,
lin_layer_dropouts=[0.001,0.01]).to(device)
import tqdm
no_of_epochs = 5
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
for epoch in tqdm.tqdm(range(no_of_epochs)):
for y, cont_x, cat_x in dataloader:
cat_x = cat_x.to(device)
cont_x = cont_x.to(device)
y = y.to(device)
# Forward Pass
preds = model(cont_x, cat_x)
loss = criterion(preds, y)
# Backward Pass and Optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
You could try to run the code using the console namespace instead of an empty one (to try to preserver the TabularDataset definition). For that you need to check the option Run in Console's namespace instead of an empty one in the preferences dialog: menu Tools > Preferences (or the 🔧 button to show the dialog) and Run > General settings > Run in Console's namespace instead of an empty one.
I am trying to classify 24 RGB images belonging to 2 classes. Each image was originally of dimension 400 X 400, but has been resized to 32 X 32 in the code. Iam using the metric-learning for image similarity search algorithm. However, I obtain the error " Error when checking input.....", when I run the line history = model.fit(AnchorPositivePairs(num_batchs=2), epochs=20) at the end of the program. What could be causing this error?
Here is my code!
import random
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from collections import defaultdict
from PIL import Image
from sklearn.metrics import ConfusionMatrixDisplay
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import utils
import glob
import os
import tqdm
IMG_DIR = "C:/Temp2/AGAIN_4/" # load the images from one directory
IM_WIDTH = 32
IM_HEIGHT = 32
#batch_size = 2
num_classes = 2
#epochs = 15
def read_images(directory, resize_to=(32, 32)): # extract image labels
"""
Reads images and labels from the given directory
:param directory directory from which to read the files
:param resize_to a tuple of width, height to resize the images
: returns a tuple of list of images and labels
"""
files = glob.glob(directory + "*.jpg")
images = []
labels = []
for f in tqdm.tqdm_notebook(files):
im = Image.open(f)
im = im.resize(resize_to)
im = np.array(im) / 255.0
im = im.astype("float32")
images.append(im)
label = 1 if 'microwave' in f.lower() else 0
labels.append(label)
return np.array(images), np.array(labels)
x, y = read_images(directory=IMG_DIR, resize_to=(IM_WIDTH, IM_HEIGHT))
# make sure we have 25000 images if we are reading the full data set.
# Change the number accordingly if you have created a subset
assert len(x) == len(y) == 24 #25000
from sklearn.model_selection import train_test_split # extract train and test data
x_train, x_test, y_train, y_test =train_test_split(x, y, test_size=0.25)
# remove X and y since we don't need them anymore
# otherwise it will just use the memory
del x
del y
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
# Display some of the images
height_width = 32
def show_collage(examples):
box_size = height_width + 2
num_rows, num_cols = examples.shape[:2]
collage = Image.new(
mode="RGB",
size=(num_cols * box_size, num_rows * box_size),
color=(250, 250, 250),
)
for row_idx in range(num_rows):
for col_idx in range(num_cols):
array = (np.array(examples[row_idx, col_idx]) * 255).astype(np.uint8)
collage.paste(
Image.fromarray(array), (col_idx * box_size, row_idx * box_size)
)
# Double size for visualisation.
collage = collage.resize((2 * num_cols * box_size, 2 * num_rows * box_size))
return collage
# Show a collage of 3x3 random images.
sample_idxs = np.random.randint(0, 15, size=(3, 3))
examples = x_train[sample_idxs]
show_collage(examples) # Displays 9 images
class_idx_to_train_idxs = defaultdict(list)
for y_train_idx, y in enumerate(y_train):
class_idx_to_train_idxs[y].append(y_train_idx)
class_idx_to_test_idxs = defaultdict(list)
for y_test_idx, y in enumerate(y_test):
class_idx_to_test_idxs[y].append(y_test_idx)
num_classes = 2
class AnchorPositivePairs(keras.utils.Sequence):
def __init__(self, num_batchs):
self.num_batchs = num_batchs
def __len__(self):
return self.num_batchs
def __getitem__(self, _idx):
x = np.empty((2, num_classes, height_width, height_width, 3), dtype=np.float32)
for class_idx in range(num_classes):
examples_for_class = class_idx_to_train_idxs[class_idx]
anchor_idx = random.choice(examples_for_class)
positive_idx = random.choice(examples_for_class)
while positive_idx == anchor_idx:
positive_idx = random.choice(examples_for_class)
x[0, class_idx] = x_train[anchor_idx]
x[1, class_idx] = x_train[positive_idx]
return x
examples = next(iter(AnchorPositivePairs(num_batchs=1)))
show_collage(examples)
class EmbeddingModel(keras.Model):
def train_step(self, data):
# Note: Workaround for open issue, to be removed.
if isinstance(data, tuple):
data = data[0]
anchors, positives = data[0], data[1]
with tf.GradientTape() as tape:
# Run both anchors and positives through model.
anchor_embeddings = self(anchors, training=True)
positive_embeddings = self(positives, training=True)
# Calculate cosine similarity between anchors and positives. As they have
# been normalised this is just the pair wise dot products.
similarities = tf.einsum(
"ae,pe->ap", anchor_embeddings, positive_embeddings
)
# Since we intend to use these as logits we scale them by a temperature.
# This value would normally be chosen as a hyper parameter.
temperature = 0.2
similarities /= temperature
# We use these similarities as logits for a softmax. The labels for
# this call are just the sequence [0, 1, 2, ..., num_classes] since we
# want the main diagonal values, which correspond to the anchor/positive
# pairs, to be high. This loss will move embeddings for the
# anchor/positive pairs together and move all other pairs apart.
sparse_labels = tf.range(num_classes)
loss = self.compiled_loss(sparse_labels, similarities)
# Calculate gradients and apply via optimizer.
gradients = tape.gradient(loss, self.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.trainable_variables))
# Update and return metrics (specifically the one for the loss value).
self.compiled_metrics.update_state(sparse_labels, similarities)
return {m.name: m.result() for m in self.metrics}
inputs = layers.Input(shape=(height_width, height_width, 3))
#inputs = layers.Input(shape=(32, 32, 3))
x = layers.Conv2D(filters=32, kernel_size=3, strides=2, activation="relu")(inputs)
x = layers.Conv2D(filters=64, kernel_size=3, strides=2, activation="relu")(x)
x = layers.Conv2D(filters=128, kernel_size=3, strides=2, activation="relu")(x)
x = layers.GlobalAveragePooling2D()(x)
embeddings = layers.Dense(units=8, activation=None)(x)
embeddings = tf.nn.l2_normalize(embeddings, axis=-1)
model = EmbeddingModel(inputs, embeddings)
model.summary()
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=1e-3),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
)
history = model.fit(AnchorPositivePairs(num_batchs=2), epochs=20)
plt.plot(history.history["loss"])
plt.show()
I have used the cifar10 dataset as input instead of my local directory images as shown in the next code, but I still get the same error.
import random
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from collections import defaultdict
from PIL import Image
from sklearn.metrics import ConfusionMatrixDisplay
from tensorflow import keras
from tensorflow.keras import layers
"""
## Dataset
For this example we will be using the
[CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html) dataset.
"""
from tensorflow.keras.datasets import cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype("float32") / 255.0
y_train = np.squeeze(y_train)
x_test = x_test.astype("float32") / 255.0
y_test = np.squeeze(y_test)
"""
To get a sense of the dataset we can visualise a grid of 25 random examples.
"""
height_width = 32
def show_collage(examples):
box_size = height_width + 2
num_rows, num_cols = examples.shape[:2]
collage = Image.new(
mode="RGB",
size=(num_cols * box_size, num_rows * box_size),
color=(250, 250, 250),
)
for row_idx in range(num_rows):
for col_idx in range(num_cols):
array = (np.array(examples[row_idx, col_idx]) * 255).astype(np.uint8)
collage.paste(
Image.fromarray(array), (col_idx * box_size, row_idx * box_size)
)
# Double size for visualisation.
collage = collage.resize((2 * num_cols * box_size, 2 * num_rows * box_size))
return collage
# Show a collage of 5x5 random images.
sample_idxs = np.random.randint(0, 50000, size=(5, 5))
examples = x_train[sample_idxs]
show_collage(examples)
"""
Metric learning provides training data not as explicit `(X, y)` pairs but instead uses
multiple instances that are related in the way we want to express similarity. In our
example we will use instances of the same class to represent similarity; a single
training instance will not be one image, but a pair of images of the same class. When
referring to the images in this pair we'll use the common metric learning names of the
`anchor` (a randomly chosen image) and the `positive` (another randomly chosen image of
the same class).
To facilitate this we need to build a form of lookup that maps from classes to the
instances of that class. When generating data for training we will sample from this
lookup.
"""
class_idx_to_train_idxs = defaultdict(list)
for y_train_idx, y in enumerate(y_train):
class_idx_to_train_idxs[y].append(y_train_idx)
class_idx_to_test_idxs = defaultdict(list)
for y_test_idx, y in enumerate(y_test):
class_idx_to_test_idxs[y].append(y_test_idx)
"""
For this example we are using the simplest approach to training; a batch will consist of
`(anchor, positive)` pairs spread across the classes. The goal of learning will be to
move the anchor and positive pairs closer together and further away from other instances
in the batch. In this case the batch size will be dictated by the number of classes; for
CIFAR-10 this is 10.
"""
num_classes = 10
class AnchorPositivePairs(keras.utils.Sequence):
def __init__(self, num_batchs):
self.num_batchs = num_batchs
def __len__(self):
return self.num_batchs
def __getitem__(self, _idx):
x = np.empty((2, num_classes, height_width, height_width, 3), dtype=np.float32)
for class_idx in range(num_classes):
examples_for_class = class_idx_to_train_idxs[class_idx]
anchor_idx = random.choice(examples_for_class)
positive_idx = random.choice(examples_for_class)
while positive_idx == anchor_idx:
positive_idx = random.choice(examples_for_class)
x[0, class_idx] = x_train[anchor_idx]
x[1, class_idx] = x_train[positive_idx]
return x
"""
We can visualise a batch in another collage. The top row shows randomly chosen anchors
from the 10 classes, the bottom row shows the corresponding 10 positives.
"""
examples = next(iter(AnchorPositivePairs(num_batchs=1)))
show_collage(examples)
"""
## Embedding model
We define a custom model with a `train_step` that first embeds both anchors and positives
and then uses their pairwise dot products as logits for a softmax.
"""
class EmbeddingModel(keras.Model):
def train_step(self, data):
# Note: Workaround for open issue, to be removed.
if isinstance(data, tuple):
data = data[0]
anchors, positives = data[0], data[1]
with tf.GradientTape() as tape:
# Run both anchors and positives through model.
anchor_embeddings = self(anchors, training=True)
positive_embeddings = self(positives, training=True)
# Calculate cosine similarity between anchors and positives. As they have
# been normalised this is just the pair wise dot products.
similarities = tf.einsum(
"ae,pe->ap", anchor_embeddings, positive_embeddings
)
# Since we intend to use these as logits we scale them by a temperature.
# This value would normally be chosen as a hyper parameter.
temperature = 0.2
similarities /= temperature
# We use these similarities as logits for a softmax. The labels for
# this call are just the sequence [0, 1, 2, ..., num_classes] since we
# want the main diagonal values, which correspond to the anchor/positive
# pairs, to be high. This loss will move embeddings for the
# anchor/positive pairs together and move all other pairs apart.
sparse_labels = tf.range(num_classes)
loss = self.compiled_loss(sparse_labels, similarities)
# Calculate gradients and apply via optimizer.
gradients = tape.gradient(loss, self.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.trainable_variables))
# Update and return metrics (specifically the one for the loss value).
self.compiled_metrics.update_state(sparse_labels, similarities)
return {m.name: m.result() for m in self.metrics}
"""
Next we describe the architecture that maps from an image to an embedding. This model
simply consists of a sequence of 2d convolutions followed by global pooling with a final
linear projection to an embedding space. As is common in metric learning we normalise the
embeddings so that we can use simple dot products to measure similarity. For simplicity
this model is intentionally small.
"""
inputs = layers.Input(shape=(height_width, height_width, 3))
x = layers.Conv2D(filters=32, kernel_size=3, strides=2, activation="relu")(inputs)
x = layers.Conv2D(filters=64, kernel_size=3, strides=2, activation="relu")(x)
x = layers.Conv2D(filters=128, kernel_size=3, strides=2, activation="relu")(x)
x = layers.GlobalAveragePooling2D()(x)
embeddings = layers.Dense(units=8, activation=None)(x)
embeddings = tf.nn.l2_normalize(embeddings, axis=-1)
model = EmbeddingModel(inputs, embeddings)
"""
Finally we run the training. On a Google Colab GPU instance this takes about a minute.
"""
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=1e-3),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
)
history = model.fit(AnchorPositivePairs(num_batchs=1000), epochs=20)
plt.plot(history.history["loss"])
plt.show()
"""
## Testing
We can review the quality of this model by applying it to the test set and considering
near neighbours in the embedding space.
First we embed the test set and calculate all near neighbours. Recall that since the
embeddings are unit length we can calculate cosine similarity via dot products.
"""
near_neighbours_per_example = 10
embeddings = model.predict(x_test)
gram_matrix = np.einsum("ae,be->ab", embeddings, embeddings)
near_neighbours = np.argsort(gram_matrix.T)[:, -(near_neighbours_per_example + 1) :]
"""
As a visual check of these embeddings we can build a collage of the near neighbours for 5
random examples. The first column of the image below is a randomly selected image, the
following 10 columns show the nearest neighbours in order of similarity.
"""
num_collage_examples = 5
examples = np.empty(
(
num_collage_examples,
near_neighbours_per_example + 1,
height_width,
height_width,
3,
),
dtype=np.float32,
)
for row_idx in range(num_collage_examples):
examples[row_idx, 0] = x_test[row_idx]
anchor_near_neighbours = reversed(near_neighbours[row_idx][:-1])
for col_idx, nn_idx in enumerate(anchor_near_neighbours):
examples[row_idx, col_idx + 1] = x_test[nn_idx]
show_collage(examples)
"""
We can also get a quantified view of the performance by considering the correctness of
near neighbours in terms of a confusion matrix.
Let us sample 10 examples from each of the 10 classes and consider their near neighbours
as a form of prediction; that is, does the example and its near neighbours share the same
class?
We observe that each animal class does generally well, and is confused the most with the
other animal classes. The vehicle classes follow the same pattern.
"""
confusion_matrix = np.zeros((num_classes, num_classes))
# For each class.
for class_idx in range(num_classes):
# Consider 10 examples.
example_idxs = class_idx_to_test_idxs[class_idx][:10]
for y_test_idx in example_idxs:
# And count the classes of its near neighbours.
for nn_idx in near_neighbours[y_test_idx][:-1]:
nn_class_idx = y_test[nn_idx]
confusion_matrix[class_idx, nn_class_idx] += 1
# Display a confusion matrix.
labels = [
"Airplane",
"Automobile",
"Bird",
"Cat",
"Deer",
"Dog",
"Frog",
"Horse",
"Ship",
"Truck",
]
disp = ConfusionMatrixDisplay(confusion_matrix=confusion_matrix, display_labels=labels)
disp.plot(include_values=True, cmap="viridis", ax=None, xticks_rotation="vertical")
plt.show()
ValueError: Error when checking input: expected input_16 to have 4 dimensions, but got array with shape (None, None, None, None, None)
I m not sure but as i understand it your own data generator cause this error. You should also pass to try your data size in generator, try this:
def __len__(self):
if self.batch_size > self.X.shape[0]:
print("Batch size is greater than data size!!")
return -1
return int(np.floor(self.X.shape[0] / self.batch_size))
I am using the Extreme Learning Machine classifier for hand gestures recognition but I still have 20% as accuracy.Can anyone help me to implement an iterative training loop to improve the accuracy?I am a beginner and Here the code I am using:I split the dataset that I prepared into train and test parts after normalization and I train it using the train function by calculating the Moore Penrose inverse and then predict the class of each gesture using the prediction function.
# -*- coding: utf-8 -*-
"""
Created on Sat Jul 4 17:52:25 2020
#author: lenovo
"""
# -*- coding: utf-8 -*-
__author__ = 'Sarra'
import numpy as np
class ELM(object):
def __init__(self, inputSize, outputSize, hiddenSize):
"""
Initialize weight and bias between input layer and hidden layer
Parameters:
inputSize: int
The number of input layer dimensions or features in the training data
outputSize: int
The number of output layer dimensions
hiddenSize: int
The number of hidden layer dimensions
"""
self.inputSize = inputSize
self.outputSize = outputSize
self.hiddenSize = hiddenSize
# Initialize random weight with range [-0.5, 0.5]
self.weight = np.matrix(np.random.uniform(-0.5, 0.5, (self.hiddenSize, self.inputSize)))
# Initialize random bias with range [0, 1]
self.bias = np.matrix(np.random.uniform(0, 1, (1, self.hiddenSize)))
self.H = 0
self.beta = 0
def sigmoid(self, x):
"""
Sigmoid activation function
Parameters:
x: array-like or matrix
The value that the activation output will look for
Returns:
The results of activation using sigmoid function
"""
return 1 / (1 + np.exp(-1 * x))
def predict(self, X):
"""
Predict the results of the training process using test data
Parameters:
X: array-like or matrix
Test data that will be used to determine output using ELM
Returns:
Predicted results or outputs from test data
"""
X = np.matrix(X)
y = self.sigmoid((X * self.weight.T) + self.bias) * self.beta
return y
def train(self, X, y):
"""
Extreme Learning Machine training process
Parameters:
X: array-like or matrix
Training data that contains the value of each feature
y: array-like or matrix
Training data that contains the value of the target (class)
Returns:
The results of the training process
"""
X = np.matrix(X)
y = np.matrix(y)
# Calculate hidden layer output matrix (Hinit)
self.H = (X * self.weight.T) + self.bias
# Sigmoid activation function
self.H = self.sigmoid(self.H)
# Calculate the Moore-Penrose pseudoinverse matriks
H_moore_penrose = np.linalg.pinv(self.H.T * self.H) * self.H.T
# Calculate the output weight matrix beta
self.beta = H_moore_penrose * y
return self.H * self.beta
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn import preprocessing
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
# read the dataset
database = pd.read_csv(r"C:\\Users\\lenovo\\tensorflow\\tensorflow1\\Numpy-ELM\\hand_gestures_database.csv")
#separate data from labels
data = database.iloc[:, 1:].values.astype('float64')
#normalize data
#n_data = preprocessing.minmax_scale(data, feature_range=(0, 1), axis=0, copy=True)
scaler = MinMaxScaler()
scaler.fit(data)
n_data = scaler.transform(data)
#identify the labels
label = database.iloc[:, 0]
#encoding labels to transform each label to a value between 0 to number of labels-1
def prepare_targets(n):
le =preprocessing.LabelEncoder()
le.fit(n)
label_enc = le.transform(n)
return label_enc
label_enc = prepare_targets(label)
CLASSES = 10
#transform the value of each label to a binary vector
target = np.zeros([label_enc.shape[0], CLASSES])
for i in range(label_enc.shape[0]):
target[i][label_enc[i]] = 1
target.view(type=np.matrix)
print("target",target)
# Create instance of ELM object with 10 hidden neuron
maxx=0
for u in range(10):
elm = ELM(45, 10, 10)
# Train test split 80:20
X_train, X_test, y_train, y_test = train_test_split(n_data, target, test_size=0.34, random_state=1)
elm.train(X_train,y_train)
y_pred = elm.predict(X_test)
# Train data
correct = 0
total = y_pred.shape[0]
for i in range(total):
predicted = np.argmax(y_pred[i])
test = np.argmax(y_test[i])
correct = correct + (1 if predicted == test else 0)
print('Accuracy: {:f}'.format(correct/total))
if(correct/total>maxx):
maxx=correct/total
print(maxx)
###confusion matrix
import seaborn as sns
y_pred=np.argmax(y_pred, axis=1)
y_true=(np.argmax(y_test, axis=1))
target_names=["G1","G2","G3","G4","G5","G6","G7","G8","G9","G10"]
cm=confusion_matrix(y_true, y_pred)
#cmn = cm.astype('float')/cm.sum(axis=1)[:, np.newaxis]*100
fig, ax = plt.subplots(figsize=(15,8))
sns.heatmap(cm/np.sum(cm), annot=True, fmt='.2f',xticklabels=target_names, yticklabels=target_names, cmap='Blues')
#sns.heatmap(cmn, annot=True, fmt='.2%', xticklabels=target_names, yticklabels=target_names)
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.ylim(-0.5, len(target_names) + 0.5)
plt.show(block=False)
def perf_measure(y_actual, y_pred):
TP = 0
FP = 0
TN = 0
FN = 0
for i in range(len(y_pred)):
if y_actual[i]==y_pred[i]==1:
TP += 1
if y_pred[i]==1 and y_actual[i]!=y_pred[i]:
FP += 1
if y_actual[i]==y_pred[i]==0:
TN += 1
if y_pred[i]==0 and y_actual[i]!=y_pred[i]:
FN += 1
return(TP, FP, TN, FN)
TP, FP, TN, FN=perf_measure(y_true, y_pred)
print("precision",TP/(TP+FP))
print("sensivity",TP/(TP+FN))
print("specifity",TN/(TN+FP))
print("accuracy",(TP+TN)/(TN+FP+FN+TP))
To your question about whether you can implement an iterative training loop for an ELM:
No, you can not. An ELM consists of one random layer followed by an output layer. Because the first layer is fixed, this is essentially a linear model and we can find the optimal output weights by using the pseudo-inverse, as you pointed out.
However, since you already find the perfect solution for this model in one step, there is no direct way to iteratively improve this result.
I would, however, not advise using an extreme learning machine.
Besides the controversy about their origin, they are very limited in the functions they can learn.
There are other well-established approaches for gesture classification that are likely more useful to pursue.
I'm working on a school project and am stuck on how to implement backpropagation in Numpy with the current forward prop structure I have. The aim of this script is to make a simple dynamic (meaning any number of layers and nodes) fully connected network using only numpy.
I think that I have to find the derivatives of the activation functions and multipliy it by the original error as well as the derivative of each activation function I encounter moving backward.
However, I'm having trouble figuring out how to implement this correctly in my script.
It'd be a great help if someone could explain in English what exactly I have to do given the complexities of the setup here, or even give a recommendation for a video/post that deals w dynamic size backprop.
Right now all the weights and biases are being stored in lists for future backprop, and I'm able to get the error for each output with the small amount of code currently in the backprop function.
This code block
#initialize a test model w/ 128 bacth and lr of 0.01
model = Model(128, 0.01)
#simple x data input
X = np.array([[1,1],[0,0],[12,5]])
Y = np.array([[1],[0],[-1]])
#adding 4 layers
z = model.add(X, 3, "sigmoid")
z = model.add(z, 1, "sigmoid", output=True)
#this is a full forward pass through the layers
z = model.predict(X)
print(z)
#this is the error of the predictions
print(model.backprop(z, Y))
Outputs the following vectors:
[[0.50006457]
[0.50006459]
[0.50006431]]
[[0.24993544]
[0.2500646 ]
[2.25019293]]
Like I said, not sure how to move forward ( or backward ;) ) from here.
Below is the full script needed to run the example:
import math
import numpy as np
#everything below is defining activation functions
#--------------------------------------------------------------------------------------------
def b_relu(input):
return max((0, max(input)))
def bd_relu(input):
if(input < 0 or input == 0):
return 0
else:
return 1
def b_sigmoid(x):
return 1 / (1 + math.exp(-x))
def bd_sigmoid(input):
return sigmoid(input) * (1 - sigmoid(input))
def b_tanh(input):
top = (math.exp(input) - math.exp(-input))
bottom = (math.exp(input) + math.exp(-input))
return (top/bottom)
#helper functions for tanh
def cosh(input):
return ((math.exp(input) + math.exp(-input)) / 2)
def sinh(input):
return ((math.exp(input) - math.exp(-input)) / 2)
def bd_tanh(input):
top = (math.pow(cosh(input), 2) - math.pow(sinh(input), 2))
bottom = math.pow(input, 2)
return (top / bottom)
def b_softmax(z):
# subracting the max adds numerical stability
shiftx = z - np.max(z,axis=1)[:,np.newaxis]
exps = np.exp(shiftx)
return exps / np.sum(exps,axis=1)[:,np.newaxis]
def bd_softmax(Y_hat, Y):
return Y_hat - Y
def b_linear(input):
return input
def bd_linear(input):
return 1
#vectorizing the activation and deriv. activation functions
relu = np.vectorize(b_relu)
d_relu = np.vectorize(bd_relu)
sigmoid = np.vectorize(b_sigmoid)
d_sigmoid = np.vectorize(bd_sigmoid)
tanh = np.vectorize(b_tanh)
d_tanh = np.vectorize(bd_tanh)
softmax = np.vectorize(b_softmax)
d_softmax = np.vectorize(bd_softmax)
linear = np.vectorize(b_linear)
d_linear = np.vectorize(bd_linear)
class Model:
def __init__(self, batch, lr):
#initializing self lists to keep track of stuff for bacthes, forward prop & backporp
self.batch = batch
self.lr = lr
self.W = []
self.B = []
self.A = []
self.Z = []
self.X = []
self.layers = []
self.tempW = []
self.tempB = []
#store error for backprop
self.output_error = []
#initialize the weights during 'model.add' so we can test our network shapes dynamically w/out model.compile
#added an output bool here so we can make sure the shape of the output network is (1,n)
def initial_weights(self, input_data, output_shape, output=False):
B = np.zeros((1, output_shape))
#assigning the shape
W = np.random.uniform(-1e-3, 1e-3, size = (input_data.shape[len(input_data.shape) - 1], output_shape))
self.B.append(B)
self.W.append(W)
def add(self, input_data, output_shape, activation, output=False):
#append to layers so we have a correct index value
self.layers.append(69)
#making sure our data in a numpy array
if (type(input_data) == np.ndarray):
X = input_data
else:
X = np.asarray(input_data)
#adding data and activations to self lists
self.X.append(X)
self.A.append(activation)
#keep track of our index & initializing random weights for dynamic comatibility testing
index = len(self.layers)-1
self.initial_weights(input_data, output_shape, output=False)
X2 = self.forward(input_data, index)
#printing layer info
print("Layer:", index)
print("Input Shape: ", X.shape)
print("Weight Shape: ", self.W[index].shape)
print("Output Shape: ", X2.shape)
print(" ")
return(X2)
def forward(self, input_data, index):
#pulling weights and biases from main lists for operations
B = self.B[index]
W = self.W[index]
#matmul of data # weights + bias
Z = np.matmul(input_data, W) + B
#summing each row of inputs to activation node
for x in Z:
x = sum(x)
#pulling activation from index
act = str(self.A[index])
#activating
Z = activate(Z, act)
#keeping track of Z i guess
self.Zappend = Z
return(Z)
def predict(self, input_data):
for x in range(len(self.layers)):
z = model.forward(input_data, x)
input_data = z
return z
def backprop(self, model_output, ground_truth):
#------------------------------
#now begins the backprop portion
#let's start with finding the error between predictions and actual values
#gonna do MSE to keep it simple
self.output_error = (ground_truth - model_output) ** 2
#so now we have the error of the output layer, this tells us two things, how wrong we were, and in which direction we should update
#the outputs of these nodes
'''
What to do if this was linear regression (for m & b)
1. Take the error and multiply it by the transpose of the last layer weights
(I think the error in this case is where the prime activation function should be if we had activations)
2. The last layer bias is just the error
3. The second to last layer inputs is the bias times the transpose of second layers weights
3. Then I have no idea
'''
return self.output_error
The simple examples in the Guon tutorial for mxnet are very helpful to those of us who are just getting started with mxnet. As yet, there is not a simple example for model parallelism. I see the model parallelism example code for LSTM, but I am new to mxnet and it would help me (and perhaps others) to have a more streamlined example. So, I have created a model parallelism example by working off the regression example in the gluon tutorial, and by mixing in some code from mxnet.gluon.Trainer.
However, I am clearly getting something wrong. The gradients do not seem to be updated. Can anyone assist by identifying the problem(s)? The goal here is to create a linear regression model that has three layers, each held on a different gpu. The model itself is not useful, except as an example to show how initialization and training can occur for model parallelism, when using a custom block and imperative programming.
As I understand it, Trainer() is written for data parallelism. It will not work for model parallelism in that it requires all parameters to be initialized on all GPUs.
import os
import numpy as np
import mxnet as mx
from mxnet import nd, autograd, gluon
from mxnet.gluon import Block
# make some data
num_inputs = 2
num_outputs = 1
num_examples = 10000
def real_fn(X):
return 2 * X[:, 0] - 3.4 * X[:, 1] + 4.2
X = np.random.normal(0,1, (num_examples, num_inputs))
noise = 0.001 * np.random.normal(0,1, (num_examples))
y = real_fn(X) + noise
y = y.reshape(-1,1)
# configuration
hidden_layers = 2
num_gpus = hidden_layers + 1
ctxList = [mx.gpu(i) for i in range(num_gpus)]
#ctxList = [mx.gpu() for i in range(num_gpus)]
#os.environ["MXNET_ENGINE_TYPE"] = "NaiveEngine"
print("\n")
# ======================================================================
class myDenseBlock(Block):
"""
A custom layer
"""
def __init__(self, layer_number, size_input, size_output, **kwargs):
super(myDenseBlock, self).__init__(**kwargs)
self.layer_number = layer_number
self.size_input = size_input
self.size_output = size_output
with self.name_scope():
# add parameters to the Block's ParameterDict.
self.w = self.params.get(
'weight',
init= mx.init.Xavier(magnitude=2.24),
shape=(size_input, size_output),
grad_req = 'write')
self.b = self.params.get(
'bias',
init= mx.init.Constant(0.5),
shape=(size_output,),
grad_req = 'write')
def forward(self, x):
x = x.as_in_context(ctxList[self.layer_number])
with x.context:
linear = nd.dot(x, self.w.data()) + self.b.data()
return linear
# ======================================================================
# create net
net = gluon.nn.Sequential()
with net.name_scope():
# initial layer, with X as input
net.add(myDenseBlock(0,
size_input = 2,
size_output = 2))
for ii in range(hidden_layers-1):
net.add(myDenseBlock(ii+1,
size_input = 2,
size_output = 2))
# final block, Y is nx1
net.add(myDenseBlock(ii+2,
size_input = 2,
size_output = 1))
# ititialize paramerters for different blocks (layers) on different gpus.
params = net.collect_params()
"""
The parameters are:
sequential0_mydenseblock0_weight
sequential0_mydenseblock0_bias
sequential0_mydenseblock1_weight
sequential0_mydenseblock1_bias
sequential0_mydenseblock2_weight
sequential0_mydenseblock2_bias
"""
print("\ninitializing:")
for i, param in enumerate(params):
if 'mydenseblock0' in param:
params[param].initialize(ctx=ctxList[0])
elif 'mydenseblock1' in param:
params[param].initialize(ctx=ctxList[1])
elif 'mydenseblock2' in param:
params[param].initialize(ctx=ctxList[2])
print(" ", i, param, " ", params[param].list_data()[0].context)
print("\n")
def square_loss(yhat, y):
return nd.mean((yhat - y) ** 2)
def mytrainer(updaters, params, ignore_stale_grad=False):
#print("\n")
for i, param in enumerate(params):
#print(i, param, " ", len(params[param].list_data()), params[param].list_data()[0].context)
if params[param].grad_req == 'null':
continue
if not ignore_stale_grad:
for data in params[param].list_data():
if not data._fresh_grad:
print(
"`%s` on context %s has not been updated"%(params[param].name, str(data.context)))
assert False
for upd, arr, grad in zip(updaters, params[param].list_data(), params[param].list_grad()):
if not ignore_stale_grad or arr._fresh_grad:
upd(i, grad, arr)
arr._fresh_grad = False
#print ("grad= ", grad)
batch_size = 100
epochs = 100000
iteration = -1
opt = mx.optimizer.create('adam', learning_rate=0.001, rescale_grad = 1 / batch_size)
updaters = [mx.optimizer.get_updater(opt)]
# the following definition for updaters does not work either
#updaters = [mx.optimizer.get_updater(opt) for _ in ctxList]
results = []
for e in range(epochs):
train_groups = np.array_split(np.arange(X.shape[0]), X.shape[0]/batch_size)
for ii, idx in enumerate(train_groups):
iteration += 1
xtrain, ytrain = X[idx,:], y[idx]
xtrain = nd.array(xtrain)
xtrain = xtrain.as_in_context(ctxList[0])
ytrain = nd.array(ytrain).reshape((-1, 1))
ytrain = ytrain.as_in_context(ctxList[0])
with autograd.record():
yhat = net(xtrain)
error = square_loss(yhat, ytrain.as_in_context(ctxList[-1]))
# Question: does the call to error.backward() go under the indent
# for autograd.record() or outside the indent? The gluon examples have
# it both ways
error.backward()
mytrainer(updaters, net.collect_params())
if iteration%10 == 0:
results.append([iteration, error.asnumpy().item()])
print(("epoch= {:5,d}, iter= {:6,d}, error= {:6.3E}").format(
e, iteration, error.asnumpy().item()))
The code fails at the "if not data._fresh_grad" test in mytrainer(). The output is:
initializing:
0 sequential0_mydenseblock0_weight gpu(0)
1 sequential0_mydenseblock0_bias gpu(0)
2 sequential0_mydenseblock1_weight gpu(1)
3 sequential0_mydenseblock1_bias gpu(1)
4 sequential0_mydenseblock2_weight gpu(2)
5 sequential0_mydenseblock2_bias gpu(2)
`sequential0_mydenseblock0_weight` on context gpu(0) has not been updated
I can verify using mx.autograd.get_symbol(error).tojson() that the computational graph only extends to the parameters on gpu(2), and does not reach other gpus.
Yes, per #sergei's comment, moving to v1.0.0 solves this.