Panda Dataframe query - python

I like to retrieve data based on the column name and its minimum and maximum value. I am not able to figure out how to get that result. I am able to get data based on column name but don't understand how to apply the limit.
Column name and corresponding min and max value given in list and tuple.
import pandas as pd
import numpy as np
def c_cutoff(data_frame, column_cutoff):
selected_data = data_frame.loc[:, [X[0] for X in column_cutoff]]
return selected_data
np.random.seed(5)
df = pd.DataFrame(np.random.randint(100, size=(100, 6)),
columns=list('ABCDEF'),
index=['R{}'.format(i) for i in range(100)])
column_cutoffdata = [('B',27,78),('E',44,73)]
newdata_cutoff = c_cutoff(df,column_cutoffdata)
print(df.head())
print(newdata_cutoff)
result
B E
R0 78 73
R1 27 7
R2 53 44
R3 65 84
R4 9 1
..
.
Expected output
I want all value less than 27 and greater than 78 should be discarded, same for E

You can be rather explicit and do the following:
lim = [('B',27,78),('E',44,73)]
for lim in limiters:
df = df[(df[lim[0]]>=lim[1]) & (df[lim[0]]<=lim[2])]
Yields:
A B C D E F
R0 99 78 61 16 73 8
R2 15 53 80 27 44 77
R8 30 62 11 67 65 55
R11 90 31 9 38 47 16
R15 16 64 8 90 44 37
R16 94 75 5 22 52 69
R46 11 30 26 8 51 61
R48 39 59 22 80 58 44
R66 55 38 5 49 58 15
R70 36 78 5 13 73 69
R72 70 58 52 99 67 11
R75 20 59 57 33 53 96
R77 32 31 89 49 69 41
R79 43 28 17 16 73 54
R80 45 34 90 67 69 70
R87 9 50 16 61 65 30
R90 43 56 76 7 47 62

pipe + where + between
You can't discard values in an array; that would involve reshaping an array and a dataframe's columns must all have the same size.
But you can iterate and use pd.Series.where to replace out-of-scope vales with NaN. Note the Pandas way to feed a dataframe through a function is via pipe:
import pandas as pd
import numpy as np
def c_cutoff(data_frame, column_cutoff):
for col, min_val, max_val in column_cutoffdata:
data_frame[col] = data_frame[col].where(data_frame[col].between(min_val, max_val))
return data_frame
np.random.seed(5)
df = pd.DataFrame(np.random.randint(100, size=(100, 6)),
columns=list('ABCDEF'),
index=['R{}'.format(i) for i in range(100)])
column_cutoffdata = [('B',27,78),('E',44,73)]
print(df.head())
# A B C D E F
# R0 99 78 61 16 73 8
# R1 62 27 30 80 7 76
# R2 15 53 80 27 44 77
# R3 75 65 47 30 84 86
# R4 18 9 41 62 1 82
newdata_cutoff = df.pipe(c_cutoff, column_cutoffdata)
print(newdata_cutoff.head())
# A B C D E F
# R0 99 78.0 61 16 73.0 8
# R1 62 27.0 30 80 NaN 76
# R2 15 53.0 80 27 44.0 77
# R3 75 65.0 47 30 NaN 86
# R4 18 NaN 41 62 NaN 82
If you want to drop rows with any NaN values, you can then use dropna:
newdata_cutoff = newdata_cutoff.dropna()

Related

Pivoting an numpy array by using pandas [duplicate]

How do I convert a list of lists to a panda dataframe?
it is not in the form of coloumns but instead in the form of rows.
#!/usr/bin/env python
from random import randrange
import pandas
data = [[[randrange(0,100) for j in range(0, 12)] for y in range(0, 12)] for x in range(0, 5)]
print data
df = pandas.DataFrame(data[0], columns=['B','P','F','I','FP','BP','2','M','3','1','I','L'])
print df
for example:
data[0][0] == [64, 73, 76, 64, 61, 32, 36, 94, 81, 49, 94, 48]
I want it to be shown as rows and not coloumns.
currently it shows somethign like this
B P F I FP BP 2 M 3 1 I L
0 64 73 76 64 61 32 36 94 81 49 94 48
1 57 58 69 46 34 66 15 24 20 49 25 98
2 99 61 73 69 21 33 78 31 16 11 77 71
3 41 1 55 34 97 64 98 9 42 77 95 41
4 36 50 54 27 74 0 8 59 27 54 6 90
5 74 72 75 30 62 42 90 26 13 49 74 9
6 41 92 11 38 24 48 34 74 50 10 42 9
7 77 9 77 63 23 5 50 66 49 5 66 98
8 90 66 97 16 39 55 38 4 33 52 64 5
9 18 14 62 87 54 38 29 10 66 18 15 86
10 60 89 57 28 18 68 11 29 94 34 37 59
11 78 67 93 18 14 28 64 11 77 79 94 66
I want the rows and coloumns to be switched. Moreover, How do I make it for all 5 main lists?
This is how I want the output to look like with other coloumns also filled in.
B P F I FP BP 2 M 3 1 I L
0 64
1 73
1 76
2 64
3 61
4 32
5 36
6 94
7 81
8 49
9 94
10 48
However. df.transpose() won't help.
This is what I came up with
data = [[[randrange(0,100) for j in range(0, 12)] for y in range(0, 12)] for x in range(0, 5)]
print data
df = pandas.DataFrame(data[0], columns=['B','P','F','I','FP','BP','2','M','3','1','I','L'])
print df
df1 = df.transpose()
df1.columns = ['B','P','F','I','FP','BP','2','M','3','1','I','L']
print df1
import numpy
df = pandas.DataFrame(numpy.asarray(data[x]).T.tolist(),
columns=['B','P','F','I','FP','BP','2','M','3','1','I','L'])

Place data from a Pandas DF into a Grid or Template

I have process where the end product is a Pandas DF where the output, which is variable in terms of data and length, is structured like this example of the output.
9 80340796
10 80340797
11 80340798
12 80340799
13 80340800
14 80340801
15 80340802
16 80340803
17 80340804
18 80340805
19 80340806
20 80340807
21 80340808
22 80340809
23 80340810
24 80340811
25 80340812
26 80340813
27 80340814
28 80340815
29 80340816
30 80340817
31 80340818
32 80340819
33 80340820
34 80340821
35 80340822
36 80340823
37 80340824
38 80340825
39 80340826
40 80340827
41 80340828
42 80340829
43 80340830
44 80340831
45 80340832
46 80340833
I need to get the numbers in the second column above, into the following grid format based on the numbers in the first column above.
1 2 3 4 5 6 7 8 9 10 11 12
A 1 9 17 25 33 41 49 57 65 73 81 89
B 2 10 18 26 34 42 50 58 66 74 82 90
C 3 11 19 27 35 43 51 59 67 75 83 91
D 4 12 20 28 36 44 52 60 68 76 84 92
E 5 13 21 29 37 45 53 61 69 77 85 93
F 6 14 22 30 38 46 54 62 70 78 86 94
G 7 15 23 31 39 47 55 63 71 79 87 95
H 8 16 24 32 40 48 56 64 72 80 88 96
So the end result in this example would be
Any advice on how to go about this would be much appreciated. I've been asked for this by a colleague, so the data is easy to read for their team (as it matches the layout of a physical test) but I have no idea how to produce it.
pandas pivot table, can do what you want in your question, but first you have to create 2 auxillary columns, 1 determing which column the value has to go in, another which row it is. You can get that as shown in the following example:
import numpy as np
import pandas as pd
df = pd.DataFrame({'num': list(range(9, 28)), 'val': list(range(80001, 80020))})
max_rows = 8
df['row'] = (df['num']-1)%8
df['col'] = np.ceil(df['num']/8).astype(int)
df.pivot_table(values=['val'], columns=['col'], index=['row'])
val
col 2 3 4
row
0 80001.0 80009.0 80017.0
1 80002.0 80010.0 80018.0
2 80003.0 80011.0 80019.0
3 80004.0 80012.0 NaN
4 80005.0 80013.0 NaN
5 80006.0 80014.0 NaN
6 80007.0 80015.0 NaN
7 80008.0 80016.0 NaN

Split a Pandas Dataframe into multiple Dataframes based on Triangular Number Series

I have a DataFrame (df) and I need to split it into n number of Dataframes based on the column numbers. But, it has to follow the Triangular Series pattern:
df1 = df[[0]]
df2 = df[[1,2]]
df3 = df[[3,4,5]]
df4 = df[[6,7,8,9]]
etc.
Consider the dataframe df
df = pd.DataFrame(
np.arange(100).reshape(10, 10),
columns=list('ABCDEFGHIJ')
)
df
A B C D E F G H I J
0 0 1 2 3 4 5 6 7 8 9
1 10 11 12 13 14 15 16 17 18 19
2 20 21 22 23 24 25 26 27 28 29
3 30 31 32 33 34 35 36 37 38 39
4 40 41 42 43 44 45 46 47 48 49
5 50 51 52 53 54 55 56 57 58 59
6 60 61 62 63 64 65 66 67 68 69
7 70 71 72 73 74 75 76 77 78 79
8 80 81 82 83 84 85 86 87 88 89
9 90 91 92 93 94 95 96 97 98 99
i_s, j_s = np.arange(4).cumsum(), np.arange(1, 5).cumsum()
df1, df2, df3, df4 = [
df.iloc[:, i:j] for i, j in zip(i_s, j_s)
]
Verify
pd.concat(dict(enumerate([df.iloc[:, i:j] for i, j in zip(i_s, j_s)])), axis=1)
0 1 2 3
A B C D E F G H I J
0 0 1 2 3 4 5 6 7 8 9
1 10 11 12 13 14 15 16 17 18 19
2 20 21 22 23 24 25 26 27 28 29
3 30 31 32 33 34 35 36 37 38 39
4 40 41 42 43 44 45 46 47 48 49
5 50 51 52 53 54 55 56 57 58 59
6 60 61 62 63 64 65 66 67 68 69
7 70 71 72 73 74 75 76 77 78 79
8 80 81 82 83 84 85 86 87 88 89
9 90 91 92 93 94 95 96 97 98 99
first get Triangular Number Series, then apply it to dataframe
n = len(df.columns.tolist())
end = 0
i = 0
res = []
while end < n:
begin = end
end = i*(i+1)/2
res.append(begin,end)
idx = map( lambda x:range(x),res)
for i in idx:
df[i]

Shuffle DataFrame rows except the first row

I am trying to randomize all rows in a data frame except for the first. I would like for the first row to always appear first, and the remaining rows can be in any randomized order.
My data frame is:
df = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e'])
Any suggestions as to how I can approach this?
try this:
df = pd.concat([df[:1], df[1:].sample(frac=1)]).reset_index(drop=True)
test:
In [38]: df
Out[38]:
a b c d e
0 2.070074 2.216060 -0.015823 0.686516 -0.738393
1 -1.213517 0.994057 0.634805 0.517844 -0.128375
2 0.937532 0.814923 -0.231120 1.970019 1.438927
3 1.499967 0.105707 1.255207 0.929084 -3.359826
4 0.418702 -0.894226 -1.088968 0.631398 0.152026
5 1.214119 -0.122633 0.983818 -0.445202 -0.807955
6 0.252078 -0.258703 -0.445209 -0.179094 1.180077
7 1.428827 -0.569009 -0.718485 0.161108 1.300349
8 -1.403100 2.154548 -0.492264 -0.544538 -0.061745
9 0.468671 0.004839 -0.738240 -0.385624 -0.532640
In [39]: df = pd.concat([df[:1], df[1:].sample(frac=1)]).reset_index(drop=True)
In [40]: df
Out[40]:
a b c d e
0 2.070074 2.216060 -0.015823 0.686516 -0.738393
1 0.468671 0.004839 -0.738240 -0.385624 -0.532640
2 0.418702 -0.894226 -1.088968 0.631398 0.152026
3 -1.213517 0.994057 0.634805 0.517844 -0.128375
4 1.428827 -0.569009 -0.718485 0.161108 1.300349
5 0.937532 0.814923 -0.231120 1.970019 1.438927
6 0.252078 -0.258703 -0.445209 -0.179094 1.180077
7 1.499967 0.105707 1.255207 0.929084 -3.359826
8 -1.403100 2.154548 -0.492264 -0.544538 -0.061745
9 1.214119 -0.122633 0.983818 -0.445202 -0.807955
Use numpy's shuffle
import pandas as pd
import numpy as np
df = pd.DataFrame(np.arange(100).reshape(20, 5), columns=list('ABCDE'))
np.random.shuffle(df.values[1:, :])
print df
A B C D E
0 0 1 2 3 4
1 55 56 57 58 59
2 10 11 12 13 14
3 80 81 82 83 84
4 90 91 92 93 94
5 70 71 72 73 74
6 25 26 27 28 29
7 40 41 42 43 44
8 65 66 67 68 69
9 5 6 7 8 9
10 45 46 47 48 49
11 85 86 87 88 89
12 15 16 17 18 19
13 30 31 32 33 34
14 60 61 62 63 64
15 20 21 22 23 24
16 35 36 37 38 39
17 95 96 97 98 99
18 75 76 77 78 79
19 50 51 52 53 54
np.random.shuffle shuffles an ndarray in place. The dataframe is just a wrapper on an ndarray. You can access that ndarray with the values attribute. To specify that all but the first row get shiffled, operate on the array slice [1:, :].

Drop range of columns by labels

Suppose I had this large data frame:
In [31]: df
Out[31]:
A B C D E F G H I J ... Q R S T U V W X Y Z
0 0 1 2 3 4 5 6 7 8 9 ... 16 17 18 19 20 21 22 23 24 25
1 26 27 28 29 30 31 32 33 34 35 ... 42 43 44 45 46 47 48 49 50 51
2 52 53 54 55 56 57 58 59 60 61 ... 68 69 70 71 72 73 74 75 76 77
[3 rows x 26 columns]
which you can create using
alphabet = [chr(letter_i) for letter_i in range(ord('A'), ord('Z')+1)]
df = pd.DataFrame(np.arange(3*26).reshape(3, 26), columns=alphabet)
What's the best way to drop all columns between column 'D' and 'R' using the labels of the columns?
I found one ugly way to do it:
df.drop(df.columns[df.columns.get_loc('D'):df.columns.get_loc('R')+1], axis=1)
Here's my entry:
>>> df.drop(df.columns.to_series()["D":"R"], axis=1)
A B C S T U V W X Y Z
0 0 1 2 18 19 20 21 22 23 24 25
1 26 27 28 44 45 46 47 48 49 50 51
2 52 53 54 70 71 72 73 74 75 76 77
By converting df.columns from an Index to a Series, we can take advantage of the ["D":"R"]-style selection:
>>> df.columns.to_series()["D":"R"]
D D
E E
F F
G G
H H
I I
J J
... ...
Q Q
R R
dtype: object
Here you are:
print df.ix[:,'A':'C'].join(df.ix[:,'S':'Z'])
Out[1]:
A B C S T U V W X Y Z
0 0 1 2 18 19 20 21 22 23 24 25
1 26 27 28 44 45 46 47 48 49 50 51
2 52 53 54 70 71 72 73 74 75 76 77
Here's another way ...
low, high = df.columns.get_slice_bound(('D', 'R'), 'left')
drops = df.columns[low:high+1]
print df.drop(drops, axis=1)
A B C S T U V W X Y Z
0 0 1 2 18 19 20 21 22 23 24 25
1 26 27 28 44 45 46 47 48 49 50 51
2 52 53 54 70 71 72 73 74 75 76 77
Use numpy for more flexibility ... numpy allows comparison of letters (probably by comparing on ASCII bit level, or something):
import numpy as np
array = (['A','B','C','D'])
array > 'B'
print(array)
print(array>'B')
gives:
['A' 'B' 'C' 'D']
array([False, False, True, True], dtype=bool)
More difficult selections are also easily possible:
b[np.logical_and(b>'B', b<'D')]
gives:
array(['C'],
dtype='|S1')

Categories

Resources