Related
I don't understand why the output of the following code is [7 56].
import tensorflow as tf
x = tf.constant([[1, 2, 4], [8, 16, 32]])
a = tf.reduce_sum(x, -1) # [ 9 18 36]
with tf.Session() as sess:
output_a = sess.run(a)
print(output_a)
I get that row-wise addition has been done. But can someone shed some light on why -1 in the reduce_sum function has been treated to sum all values in a row?
-1 means the last axis; Since you have a rank 2 tensor, the last axis is the second axis, that is, along the rows; tf.reduce_sum with axis=-1 will thus reduce (sum) the second dimension.
I run your code and actually gave me a different answer:
import tensorflow as tf
x = tf.constant([[1, 2, 4], [8, 16, 32]])
a = tf.reduce_sum(x, -1)
tf.print(a)
The answer is [7,56], which is added 1+2+4 =7, and 8+16+32=56.
axis: The dimensions to reduce.
My understanding:
'-1' means the last axis, or dimension.
tf.reduce_sum(x, -1) is equal to tf.reduce_sum(x, 1) here since only 2 dimensions.
The dimension is 2*3 (2 rows*3 cols). Goal is to remove the last dimension '3' and the result should be 2 rows:
[[7]
[56]]
Since no 'keepdims=True' here, [] will be removed and we get result [7,56]
You can test this example. Note: '-1' and '1' are different here.
y = tf.constant([[[1, 2, 4], [1, 0, 3]],[[1,2,3],[2,2,1]]])
c = tf.reduce_sum(y, 1) # if (y,-1) will be [[7,4],[6,5]]
tf.print(c) #[[2 2 7], [3 4 4]]
I have to take a random integer 50x50x50 array and determine which contiguous 3x3x3 cube within it has the largest sum.
It seems like a lot of splitting features in Numpy don't work well unless the smaller cubes are evenly divisible into the larger one. Trying to work through the thought process I made a 48x48x48 cube that is just in order from 1 to 110,592. I then was thinking of reshaping it to a 4D array with the following code and assessing which of the arrays had the largest sum? when I enter this code though it splits the array in an order that is not ideal. I want the first array to be the 3x3x3 cube that would have been in the corner of the 48x48x48 cube. Is there a syntax that I can add to make this happen?
import numpy as np
arr1 = np.arange(0,110592)
arr2=np.reshape(arr1, (48,48,48))
arr3 = np.reshape(arr2, (4096, 3,3,3))
arr3
output:
array([[[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
[[ 9, 10, 11],
[ 12, 13, 14],
[ 15, 16, 17]],
[[ 18, 19, 20],
[ 21, 22, 23],
[ 24, 25, 26]]],
desired output:
array([[[[ 0, 1, 2],
[ 48, 49, 50],
[ 96, 97, 98]],
etc etc
Solution
There's a live version of this solution online you can try for yourself
There's a simple (kind of) solution to your original problem of finding the maximum 3x3x3 subcube in a 50x50x50 cube that's based on changing the input array's strides. This solution is completely vectorized (meaning no looping), and so should get the best possible performance out of Numpy:
import numpy as np
def cubecube(arr, cshape):
strides = (*arr.strides, *arr.strides)
shape = (*np.array(arr.shape) - cshape + 1, *cshape)
return np.lib.stride_tricks.as_strided(arr, shape=shape, strides=strides)
def maxcube(arr, cshape):
cc = cubecube(arr, cshape)
ccsums = cc.sum(axis=tuple(range(-arr.ndim, 0)))
ix = np.unravel_index(np.argmax(ccsums), ccsums.shape)[:arr.ndim]
return ix, cc[ix]
The maxcube function takes an array and the shape of the subcubes, and returns a tuple of (first-index-of-largest-cube, largest-cube). Here's an example of how to use maxcube:
shape = (50, 50, 50)
cshape = (3, 3, 3)
# set up a 50x50x50 array
arr = np.arange(np.prod(shape)).reshape(*shape)
# set one of the subcubes as the largest
arr[37, 26, 11] = 999999
ix, cube = maxcube(arr, cshape)
print('first index of largest cube: {}'.format(ix))
print('largest cube:\n{}'.format(cube))
which outputs:
first index of largest cube: (37, 26, 11)
largest cube:
[[[999999 93812 93813]
[ 93861 93862 93863]
[ 93911 93912 93913]]
[[ 96311 96312 96313]
[ 96361 96362 96363]
[ 96411 96412 96413]]
[[ 98811 98812 98813]
[ 98861 98862 98863]
[ 98911 98912 98913]]]
In depth explanation
A cube of cubes
What you have is a 48x48x48 cube, but what you want is a cube of smaller cubes. One can be converted to the other by altering its strides. For a 48x48x48 array of dtype int64, the stride will originally be set as (48*48*8, 48*8, 8). The first value of each non-overlapping 3x3x3 subcube can be iterated over with a stride of (3*48*48*8, 3*48*8, 3*8). Combine these strides to get the strides of the cube of cubes:
# Set up a 48x48x48 array, like in OP's example
arr = np.arange(48**3).reshape(48,48,48)
shape = (16,16,16,3,3,3)
strides = (3*48*48*8, 3*48*8, 3*8, 48*48*8, 48*8, 8)
# restride into a 16x16x16 array of 3x3x3 cubes
arr2 = np.lib.stride_tricks.as_strided(arr, shape=shape, strides=strides)
arr2 is a view of arr (meaning that they share data, so no copy needs to be made) with a shape of (16,16,16,3,3,3). The ijkth 3x3 cube in arr can be accessed by passing the indices to arr2:
i,j,k = 0,0,0
print(arr2[i,j,k])
Output:
[[[ 0 1 2]
[ 48 49 50]
[ 96 97 98]]
[[2304 2305 2306]
[2352 2353 2354]
[2400 2401 2402]]
[[4608 4609 4610]
[4656 4657 4658]
[4704 4705 4706]]]
You can get the sums of all of the subcubes by just summing across the inner axes:
sumOfSubcubes = arr2.sum(3,4,5)
This will yield a 16x16x16 array in which each value is the sum of a non-overlapping 3x3x3 subcube from your original array. This solves the specific problem about the 48x48x48 array that the OP asked about. Restriding can also be used to find all of the overlapping 3x3x3 cubes, as in the cubecube function above.
Your thought process with the 48x48x48 cube goes in the right direction insofar that there are 48³ different contiguous 3x3x3 cubes within the 50x50x50 array, though I don't understand why you would want to reshape it.
What you could do is add all 27 values of each 3x3x3 cube to a 48x48x48 dimensional array by going through all 27 permutations of adjacent slices and find the maximum over it. The found entry will give you the index tuple coordinate_index of the cube corner that is closest to the origin of your original array.
import numpy as np
np.random.seed(0)
array_shape = np.array((50,50,50), dtype=int)
cube_dim = np.array((3,3,3), dtype=int)
original_array = np.random.randint(array_shape)
reduced_shape = array_shape - cube_dim + 1
sum_array = np.zeros(reduced shape, dtype=int)
for i in range(cube_dim[0]):
for j in range(cube_dim[1]):
for k in range(cube_dim[2]):
sum_array += original_array[
i:-cube_dim[0]+1+i, j:-cube_dim[1]+1+j, k:-cube_dim[2]+1+k
]
flat_index = np.argmax(sum_array)
coordinate_index = np.unravel_index(flat_index, reduced_shape)
This method should be faster than looping over each of the 48³ index combinations to find the desired cube as it uses in place summation but in turn requires more memory. I'm not sure about it, but defining an (48³, 27) array with slices and using np.sum over the second axis could be even faster.
You can easily change the above code to find a cuboid with arbitrary side lengths instead.
This is a solution without many numpy functions, just numpy.sum. First define a squared matrix and then the size of the cube cs you are going to perform the summation within.
Just change cs to adjust the cube size and find other solutions. Following #Divakar suggestion, I have used a 4x4x4 array and I also store the location where the cube is location (just the vertex of the cube's origin)
import numpy as np
np.random.seed(0)
a = np.random.randint(0,9,(4,4,4))
print(a)
cs = 2 # Cube size
my_sum = 0
idx = None
for i in range(a.shape[0]-cs+2):
for j in range(a.shape[1]-cs+2):
for k in range(a.shape[2]-cs+2):
cube_sum = np.sum(a[i:i+cs, j:j+cs, k:k+cs])
print(cube_sum)
if cube_sum > my_sum:
my_sum = cube_sum
idx = (i,j,k)
print(my_sum, idx) # 42 (0, 0, 0)
This 3D array a is
[[[5 0 3 3]
[7 3 5 2]
[4 7 6 8]
[8 1 6 7]]
[[7 8 1 5]
[8 4 3 0]
[3 5 0 2]
[3 8 1 3]]
[[3 3 7 0]
[1 0 4 7]
[3 2 7 2]
[0 0 4 5]]
[[5 6 8 4]
[1 4 8 1]
[1 7 3 6]
[7 2 0 3]]]
And you get my_sum = 42 and idx = (0, 0, 0) for cs = 2. And my_sum = 112 and idx = (1, 0, 0) for cs = 3
Here is a cumsum based fast solution:
import numpy as np
nd = 3
cs = 3
N = 50
# create indices [cs-1:, ...], [:, cs-1:, ...], ...
fromcsm = *zip(*np.where(np.identity(nd, bool), np.s_[cs-1:], np.s_[:])),
# create indices [cs:, ...], [:, cs:, ...], ...
fromcs = *zip(*np.where(np.identity(nd, bool), np.s_[cs:], np.s_[:])),
# create indices [:cs, ...], [:, :cs, ...], ...
tocs = *zip(*np.where(np.identity(nd, bool), np.s_[:cs], np.s_[:])),
# create indices [:-cs, ...], [:, :-cs, ...], ...
tomcs = *zip(*np.where(np.identity(nd, bool), np.s_[:-cs], np.s_[:])),
# create indices [cs-1, ...], [:, cs-1, ...], ...
atcsm = *zip(*np.where(np.identity(nd, bool), cs-1, np.s_[:])),
def windowed_sum(a):
out = a.copy()
for i, (fcsm, fcs, tcs, tmcs, acsm) \
in enumerate(zip(fromcsm, fromcs, tocs, tomcs, atcsm)):
out[fcs] -= out[tmcs]
out[acsm] = out[tcs].sum(axis=i)
out = out[fcsm].cumsum(axis=i)
return out
This returns the sums over all the sub cubes. We can then use argmax and unravel_index to get the offset of the maximum cube. Example:
np.random.seed(0)
a = np.random.randint(0,9,(N,N,N))
s = windowed_sum(a)
idx = np.unravel_index(np.argmax(s,), s.shape)
I have a text dataset with labels and images. The labels are 1-dimensional elements representing handwritten digits. Dimension:(1010,). Images are 28*28 pixel size images.Dimension:(1010, 784). After reading from text dataset I have following dataset reformatData['data'] and reformatData['target'] - which are respectively [n_samples, n_features] and [n_samples].
Again, dimensions of these: (1010, 784) (1010,) when printed reformatData
Now I am trying to do binary classification and introduce digits into the matrix, which I try to do with the following function.
digits1=[8]
digits2=[1]
def read(digits):
rows=28
cols=28
#lbl = array("b", reformatData['target'])
lbl = reformatData['target']
img=reformatData['data']
#img = array("B", reformatData['data'])
ind = [ k for k in xrange(len(lbl)) if lbl[k] in digits]
images = matrix(0, (len(ind), rows*cols))
labels = matrix(0, (len(ind), 1))
for i in xrange(len(ind)):
images[i, :] = img[ ind[i]*rows*cols : (ind[i]+1)*rows*cols ]
labels[i] = lbl[ind[i]]
return images, labels
print read(digits=digits1)
Output
(<0x784 matrix, tc='i'>, <0x1 matrix, tc='i'>)
I expected:
(<1010x784 matrix, tc='i'>, <1010x1 matrix, tc='i'>)
How do I solve this?
Use numpy where for vectorized and quicker computation:
With rahfl23's array above:
np.where(s==6, 0, 1)
For the matrix:
np.where(images==6, 0, 1)
To map two digits for binary classification, modify your target vector via list comprehension:
import numpy as np
s = np.array([6, 8, 6, 6, 6, 8, 6, 8, 8, 8, 6, 6, 6, 8, 8, 6, 8, 6, 8] )
new = np.array([0 if i==6 else 1 for i in s])
Output:
[0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 1 0 1]
Is there a way to slice a 2d array in numpy into smaller 2d arrays?
Example
[[1,2,3,4], -> [[1,2] [3,4]
[5,6,7,8]] [5,6] [7,8]]
So I basically want to cut down a 2x4 array into 2 2x2 arrays. Looking for a generic solution to be used on images.
There was another question a couple of months ago which clued me in to the idea of using reshape and swapaxes. The h//nrows makes sense since this keeps the first block's rows together. It also makes sense that you'll need nrows and ncols to be part of the shape. -1 tells reshape to fill in whatever number is necessary to make the reshape valid. Armed with the form of the solution, I just tried things until I found the formula that works.
You should be able to break your array into "blocks" using some combination of reshape and swapaxes:
def blockshaped(arr, nrows, ncols):
"""
Return an array of shape (n, nrows, ncols) where
n * nrows * ncols = arr.size
If arr is a 2D array, the returned array should look like n subblocks with
each subblock preserving the "physical" layout of arr.
"""
h, w = arr.shape
assert h % nrows == 0, f"{h} rows is not evenly divisible by {nrows}"
assert w % ncols == 0, f"{w} cols is not evenly divisible by {ncols}"
return (arr.reshape(h//nrows, nrows, -1, ncols)
.swapaxes(1,2)
.reshape(-1, nrows, ncols))
turns c
np.random.seed(365)
c = np.arange(24).reshape((4, 6))
print(c)
[out]:
[[ 0 1 2 3 4 5]
[ 6 7 8 9 10 11]
[12 13 14 15 16 17]
[18 19 20 21 22 23]]
into
print(blockshaped(c, 2, 3))
[out]:
[[[ 0 1 2]
[ 6 7 8]]
[[ 3 4 5]
[ 9 10 11]]
[[12 13 14]
[18 19 20]]
[[15 16 17]
[21 22 23]]]
I've posted an inverse function, unblockshaped, here, and an N-dimensional generalization here. The generalization gives a little more insight into the reasoning behind this algorithm.
Note that there is also superbatfish's
blockwise_view. It arranges the
blocks in a different format (using more axes) but it has the advantage of (1)
always returning a view and (2) being capable of handling arrays of any
dimension.
It seems to me that this is a task for numpy.split or some variant.
e.g.
a = np.arange(30).reshape([5,6]) #a.shape = (5,6)
a1 = np.split(a,3,axis=1)
#'a1' is a list of 3 arrays of shape (5,2)
a2 = np.split(a, [2,4])
#'a2' is a list of three arrays of shape (2,5), (2,5), (1,5)
If you have a NxN image you can create, e.g., a list of 2 NxN/2 subimages, and then divide them along the other axis.
numpy.hsplit and numpy.vsplit are also available.
There are some other answers that seem well-suited for your specific case already, but your question piqued my interest in the possibility of a memory-efficient solution usable up to the maximum number of dimensions that numpy supports, and I ended up spending most of the afternoon coming up with possible method. (The method itself is relatively simple, it's just that I still haven't used most of the really fancy features that numpy supports so most of the time was spent researching to see what numpy had available and how much it could do so that I didn't have to do it.)
def blockgen(array, bpa):
"""Creates a generator that yields multidimensional blocks from the given
array(_like); bpa is an array_like consisting of the number of blocks per axis
(minimum of 1, must be a divisor of the corresponding axis size of array). As
the blocks are selected using normal numpy slicing, they will be views rather
than copies; this is good for very large multidimensional arrays that are being
blocked, and for very large blocks, but it also means that the result must be
copied if it is to be modified (unless modifying the original data as well is
intended)."""
bpa = np.asarray(bpa) # in case bpa wasn't already an ndarray
# parameter checking
if array.ndim != bpa.size: # bpa doesn't match array dimensionality
raise ValueError("Size of bpa must be equal to the array dimensionality.")
if (bpa.dtype != np.int # bpa must be all integers
or (bpa < 1).any() # all values in bpa must be >= 1
or (array.shape % bpa).any()): # % != 0 means not evenly divisible
raise ValueError("bpa ({0}) must consist of nonzero positive integers "
"that evenly divide the corresponding array axis "
"size".format(bpa))
# generate block edge indices
rgen = (np.r_[:array.shape[i]+1:array.shape[i]//blk_n]
for i, blk_n in enumerate(bpa))
# build slice sequences for each axis (unfortunately broadcasting
# can't be used to make the items easy to operate over
c = [[np.s_[i:j] for i, j in zip(r[:-1], r[1:])] for r in rgen]
# Now to get the blocks; this is slightly less efficient than it could be
# because numpy doesn't like jagged arrays and I didn't feel like writing
# a ufunc for it.
for idxs in np.ndindex(*bpa):
blockbounds = tuple(c[j][idxs[j]] for j in range(bpa.size))
yield array[blockbounds]
You question practically the same as this one. You can use the one-liner with np.ndindex() and reshape():
def cutter(a, r, c):
lenr = a.shape[0]/r
lenc = a.shape[1]/c
np.array([a[i*r:(i+1)*r,j*c:(j+1)*c] for (i,j) in np.ndindex(lenr,lenc)]).reshape(lenr,lenc,r,c)
To create the result you want:
a = np.arange(1,9).reshape(2,1)
#array([[1, 2, 3, 4],
# [5, 6, 7, 8]])
cutter( a, 1, 2 )
#array([[[[1, 2]],
# [[3, 4]]],
# [[[5, 6]],
# [[7, 8]]]])
Some minor enhancement to TheMeaningfulEngineer's answer that handles the case when the big 2d array cannot be perfectly sliced into equally sized subarrays
def blockfy(a, p, q):
'''
Divides array a into subarrays of size p-by-q
p: block row size
q: block column size
'''
m = a.shape[0] #image row size
n = a.shape[1] #image column size
# pad array with NaNs so it can be divided by p row-wise and by q column-wise
bpr = ((m-1)//p + 1) #blocks per row
bpc = ((n-1)//q + 1) #blocks per column
M = p * bpr
N = q * bpc
A = np.nan* np.ones([M,N])
A[:a.shape[0],:a.shape[1]] = a
block_list = []
previous_row = 0
for row_block in range(bpc):
previous_row = row_block * p
previous_column = 0
for column_block in range(bpr):
previous_column = column_block * q
block = A[previous_row:previous_row+p, previous_column:previous_column+q]
# remove nan columns and nan rows
nan_cols = np.all(np.isnan(block), axis=0)
block = block[:, ~nan_cols]
nan_rows = np.all(np.isnan(block), axis=1)
block = block[~nan_rows, :]
## append
if block.size:
block_list.append(block)
return block_list
Examples:
a = np.arange(25)
a = a.reshape((5,5))
out = blockfy(a, 2, 3)
a->
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
out[0] ->
array([[0., 1., 2.],
[5., 6., 7.]])
out[1]->
array([[3., 4.],
[8., 9.]])
out[-1]->
array([[23., 24.]])
For now it just works when the big 2d array can be perfectly sliced into equally sized subarrays.
The code bellow slices
a ->array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
into this
block_array->
array([[[ 0, 1, 2],
[ 6, 7, 8]],
[[ 3, 4, 5],
[ 9, 10, 11]],
[[12, 13, 14],
[18, 19, 20]],
[[15, 16, 17],
[21, 22, 23]]])
p ang q determine the block size
Code
a = arange(24)
a = a.reshape((4,6))
m = a.shape[0] #image row size
n = a.shape[1] #image column size
p = 2 #block row size
q = 3 #block column size
block_array = []
previous_row = 0
for row_block in range(blocks_per_row):
previous_row = row_block * p
previous_column = 0
for column_block in range(blocks_per_column):
previous_column = column_block * q
block = a[previous_row:previous_row+p,previous_column:previous_column+q]
block_array.append(block)
block_array = array(block_array)
If you want a solution that also handles the cases when the matrix is
not equally divided, you can use this:
from operator import add
half_split = np.array_split(input, 2)
res = map(lambda x: np.array_split(x, 2, axis=1), half_split)
res = reduce(add, res)
Here is a solution based on unutbu's answer that handle case where matrix cannot be equally divided. In this case, it will resize the matrix before using some interpolation. You need OpenCV for this. Note that I had to swap ncols and nrows to make it works, didn't figured why.
import numpy as np
import cv2
import math
def blockshaped(arr, r_nbrs, c_nbrs, interp=cv2.INTER_LINEAR):
"""
arr a 2D array, typically an image
r_nbrs numbers of rows
r_cols numbers of cols
"""
arr_h, arr_w = arr.shape
size_w = int( math.floor(arr_w // c_nbrs) * c_nbrs )
size_h = int( math.floor(arr_h // r_nbrs) * r_nbrs )
if size_w != arr_w or size_h != arr_h:
arr = cv2.resize(arr, (size_w, size_h), interpolation=interp)
nrows = int(size_w // r_nbrs)
ncols = int(size_h // c_nbrs)
return (arr.reshape(r_nbrs, ncols, -1, nrows)
.swapaxes(1,2)
.reshape(-1, ncols, nrows))
a = np.random.randint(1, 9, size=(9,9))
out = [np.hsplit(x, 3) for x in np.vsplit(a,3)]
print(a)
print(out)
yields
[[7 6 2 4 4 2 5 2 3]
[2 3 7 6 8 8 2 6 2]
[4 1 3 1 3 8 1 3 7]
[6 1 1 5 7 2 1 5 8]
[8 8 7 6 6 1 8 8 4]
[6 1 8 2 1 4 5 1 8]
[7 3 4 2 5 6 1 2 7]
[4 6 7 5 8 2 8 2 8]
[6 6 5 5 6 1 2 6 4]]
[[array([[7, 6, 2],
[2, 3, 7],
[4, 1, 3]]), array([[4, 4, 2],
[6, 8, 8],
[1, 3, 8]]), array([[5, 2, 3],
[2, 6, 2],
[1, 3, 7]])], [array([[6, 1, 1],
[8, 8, 7],
[6, 1, 8]]), array([[5, 7, 2],
[6, 6, 1],
[2, 1, 4]]), array([[1, 5, 8],
[8, 8, 4],
[5, 1, 8]])], [array([[7, 3, 4],
[4, 6, 7],
[6, 6, 5]]), array([[2, 5, 6],
[5, 8, 2],
[5, 6, 1]]), array([[1, 2, 7],
[8, 2, 8],
[2, 6, 4]])]]
I publish my solution. Notice that this code doesn't' actually create copies of original array, so it works well with big data. Moreover, it doesn't crash if array cannot be divided evenly (but you can easly add condition for that by deleting ceil and checking if v_slices and h_slices are divided without rest).
import numpy as np
from math import ceil
a = np.arange(9).reshape(3, 3)
p, q = 2, 2
width, height = a.shape
v_slices = ceil(width / p)
h_slices = ceil(height / q)
for h in range(h_slices):
for v in range(v_slices):
block = a[h * p : h * p + p, v * q : v * q + q]
# do something with a block
This code changes (or, more precisely, gives you direct access to part of an array) this:
[[0 1 2]
[3 4 5]
[6 7 8]]
Into this:
[[0 1]
[3 4]]
[[2]
[5]]
[[6 7]]
[[8]]
If you need actual copies, Aenaon code is what you are looking for.
If you are sure that big array can be divided evenly, you can use numpy splitting tools.
to add to #Aenaon answer and his blockfy function, if you are working with COLOR IMAGES/ 3D ARRAY here is my pipeline to create crops of 224 x 224 for 3 channel input
def blockfy(a, p, q):
'''
Divides array a into subarrays of size p-by-q
p: block row size
q: block column size
'''
m = a.shape[0] #image row size
n = a.shape[1] #image column size
# pad array with NaNs so it can be divided by p row-wise and by q column-wise
bpr = ((m-1)//p + 1) #blocks per row
bpc = ((n-1)//q + 1) #blocks per column
M = p * bpr
N = q * bpc
A = np.nan* np.ones([M,N])
A[:a.shape[0],:a.shape[1]] = a
block_list = []
previous_row = 0
for row_block in range(bpc):
previous_row = row_block * p
previous_column = 0
for column_block in range(bpr):
previous_column = column_block * q
block = A[previous_row:previous_row+p, previous_column:previous_column+q]
# remove nan columns and nan rows
nan_cols = np.all(np.isnan(block), axis=0)
block = block[:, ~nan_cols]
nan_rows = np.all(np.isnan(block), axis=1)
block = block[~nan_rows, :]
## append
if block.size:
block_list.append(block)
return block_list
then extended above to
for file in os.listdir(path_to_crop): ### list files in your folder
img = io.imread(path_to_crop + file, as_gray=False) ### open image
r = blockfy(img[:,:,0],224,224) ### crop blocks of 224 x 224 for red channel
g = blockfy(img[:,:,1],224,224) ### crop blocks of 224 x 224 for green channel
b = blockfy(img[:,:,2],224,224) ### crop blocks of 224 x 224 for blue channel
for x in range(0,len(r)):
img = np.array((r[x],g[x],b[x])) ### combine each channel into one patch by patch
img = img.astype(np.uint8) ### cast back to proper integers
img_swap = img.swapaxes(0, 2) ### need to swap axes due to the way things were proceesed
img_swap_2 = img_swap.swapaxes(0, 1) ### do it again
Image.fromarray(img_swap_2).save(path_save_crop+str(x)+"bounding" + file,
format = 'jpeg',
subsampling=0,
quality=100) ### save patch with new name etc
I am attempting to generalize some Python code to operate on arrays of arbitrary dimension. The operations are applied to each vector in the array. So for a 1D array, there is simply one operation, for a 2-D array it would be both row and column-wise (linearly, so order does not matter). For example, a 1D array (a) is simple:
b = operation(a)
where 'operation' is expecting a 1D array. For a 2D array, the operation might proceed as
for ii in range(0,a.shape[0]):
b[ii,:] = operation(a[ii,:])
for jj in range(0,b.shape[1]):
c[:,ii] = operation(b[:,ii])
I would like to make this general where I do not need to know the dimension of the array beforehand, and not have a large set of if/elif statements for each possible dimension.
Solutions that are general for 1 or 2 dimensions are ok, though a completely general solution would be preferred. In reality, I do not imagine needing this for any dimension higher than 2, but if I can see a general example I will learn something!
Extra information:
I have a matlab code that uses cells to do something similar, but I do not fully understand how it works. In this example, each vector is rearranged (basically the same function as fftshift in numpy.fft). Not sure if this helps, but it operates on an array of arbitrary dimension.
function aout=foldfft(ain)
nd = ndims(ain);
for k = 1:nd
nx = size(ain,k);
kx = floor(nx/2);
idx{k} = [kx:nx 1:kx-1];
end
aout = ain(idx{:});
In Octave, your MATLAB code does:
octave:19> size(ain)
ans =
2 3 4
octave:20> idx
idx =
{
[1,1] =
1 2
[1,2] =
1 2 3
[1,3] =
2 3 4 1
}
and then it uses the idx cell array to index ain. With these dimensions it 'rolls' the size 4 dimension.
For 5 and 6 the index lists would be:
2 3 4 5 1
3 4 5 6 1 2
The equivalent in numpy is:
In [161]: ain=np.arange(2*3*4).reshape(2,3,4)
In [162]: idx=np.ix_([0,1],[0,1,2],[1,2,3,0])
In [163]: idx
Out[163]:
(array([[[0]],
[[1]]]), array([[[0],
[1],
[2]]]), array([[[1, 2, 3, 0]]]))
In [164]: ain[idx]
Out[164]:
array([[[ 1, 2, 3, 0],
[ 5, 6, 7, 4],
[ 9, 10, 11, 8]],
[[13, 14, 15, 12],
[17, 18, 19, 16],
[21, 22, 23, 20]]])
Besides the 0 based indexing, I used np.ix_ to reshape the indexes. MATLAB and numpy use different syntax to index blocks of values.
The next step is to construct [0,1],[0,1,2],[1,2,3,0] with code, a straight forward translation.
I can use np.r_ as a short cut for turning 2 slices into an index array:
In [201]: idx=[]
In [202]: for nx in ain.shape:
kx = int(np.floor(nx/2.))
kx = kx-1;
idx.append(np.r_[kx:nx, 0:kx])
.....:
In [203]: idx
Out[203]: [array([0, 1]), array([0, 1, 2]), array([1, 2, 3, 0])]
and pass this through np.ix_ to make the appropriate index tuple:
In [204]: ain[np.ix_(*idx)]
Out[204]:
array([[[ 1, 2, 3, 0],
[ 5, 6, 7, 4],
[ 9, 10, 11, 8]],
[[13, 14, 15, 12],
[17, 18, 19, 16],
[21, 22, 23, 20]]])
In this case, where 2 dimensions don't roll anything, slice(None) could replace those:
In [210]: idx=(slice(None),slice(None),[1,2,3,0])
In [211]: ain[idx]
======================
np.roll does:
indexes = concatenate((arange(n - shift, n), arange(n - shift)))
res = a.take(indexes, axis)
np.apply_along_axis is another function that constructs an index array (and turns it into a tuple for indexing).
If you are looking for a programmatic way to index the k-th dimension an n-dimensional array, then numpy.take might help you.
An implementation of foldfft is given below as an example:
In[1]:
import numpy as np
def foldfft(ain):
result = ain
nd = len(ain.shape)
for k in range(nd):
nx = ain.shape[k]
kx = (nx+1)//2
shifted_index = list(range(kx,nx)) + list(range(kx))
result = np.take(result, shifted_index, k)
return result
a = np.indices([3,3])
print("Shape of a = ", a.shape)
print("\nStarting array:\n\n", a)
print("\nFolded array:\n\n", foldfft(a))
Out[1]:
Shape of a = (2, 3, 3)
Starting array:
[[[0 0 0]
[1 1 1]
[2 2 2]]
[[0 1 2]
[0 1 2]
[0 1 2]]]
Folded array:
[[[2 0 1]
[2 0 1]
[2 0 1]]
[[2 2 2]
[0 0 0]
[1 1 1]]]
You could use numpy.ndarray.flat, which allows you to linearly iterate over a n dimensional numpy array. Your code should then look something like this:
b = np.asarray(x)
for i in range(len(x.flat)):
b.flat[i] = operation(x.flat[i])
The folks above provided multiple appropriate solutions. For completeness, here is my final solution. In this toy example for the case of 3 dimensions, the function 'ops' replaces the first and last element of a vector with 1.
import numpy as np
def ops(s):
s[0]=1
s[-1]=1
return s
a = np.random.rand(4,4,3)
print '------'
print 'Array a'
print a
print '------'
for ii in np.arange(a.ndim):
a = np.apply_along_axis(ops,ii,a)
print '------'
print ' Axis',str(ii)
print a
print '------'
print ' '
The resulting 3D array has a 1 in every element on the 'border' with the numbers in the middle of the array unchanged. This is of course a toy example; however ops could be any arbitrary function that operates on a 1D vector.
Flattening the vector will also work; I chose not to pursue that simply because the book-keeping is more difficult and apply_along_axis is the simplest approach.
apply_along_axis reference page