import numpy as np
from time import time
import matplotlib.pyplot as plt
np.random.seed(27)
mysetup = "from math import sqrt"
begin=time()
i=int(input("Number of rows in first matrix"))
k=int(input("Number of column in first and rows in second matrix"))
j=int(input("Number of columns in second matrix"))
A = np.random.randint(1,10,size = (i,k))
B = np.random.randint(1,10,size = (k,j))
def multiply_matrix(A,B):
global C
if A.shape[1]==B.shape[0]:
C=np.zeros((A.shape[0],B.shape[1]),dtype=int)
for row in range(i):
for col in range(j):
for elt in range(0,len(B)):
C[row,col] += A[row,elt]*B[elt,col]
return C
else:
return "Cannot multiply A and B"
print(f"Matrix A:\n {A}\n")
print(f"Matrix B:\n {B}\n")
D=print(multiply_matrix(A, B))
end=time()
t=print(end-begin)
x=[0,100,10]
y=[100,100,1000]
plt.plot(x,y)
plt.xlabel('Time taken for the program to run')
plt.ylabel('Order of the matrix multiplication')
plt.show()
In the program, I have generated random elements for the matrices to be multiplied.Basically I am trying to compute the time it takes to multiply two matrices.The i,j and k will be considered as the order used for the matrix.As we cannot multiply matrices where number of columns of the first is not equal to the number of the rows in the second, I have already given them the variable 'k'.
Initially I considered to increment the order of the matrix using for loop but wasn't able to do so. I want the graph to display the time it took to multiply the matrices on the x axis and the order of the resultant matrix on the y axis.
There is a problem in the logic I applied but I am not able to find out how to do this problem as I am a beginner in programming
I was expecting to get the result as Y axis having a scale ranging from 0 to 100 with a difference of 10 and x axis with a scale of 100 to 1000 with a difference of 100.
The thousandth entity on the x axis will correspond to the time it took to compute the multiplication of two matrices with numbers of rows and columns as 1000.
Suppose the time it took to compute this was 200seconds. So the graph should be showing the point(1000,200).
Some problematic points I'd like to address -
You're starting the timer before the user chooses an input - which can differ, we want to be as precise as possible, thus we need to only calculate how much time it takes for the multiply_matrix function to run.
Because you're taking an input - it means that each run you will get one result, and one result is only a single point - not a full graph, so we need to get rid of the user input and generate our own.
Moreover to point #2 - we are not interested in giving "one shot" for each matrix order - that means that when we want to test how much time it takes to multiply two matrices of order 300 (for example) - we need to do it N times and take the average in order to be more precise, not to mention we are generating random numbers, and it is possible that some random generated matrices will be easier to compute than other... although taking the average over N tests is not 100% accurate - it does help.
You don't need to set C as a global variable as it can be a local variable of the function multiply_matrix that we anyways return. Also this is not the usage of globals as even with the global C - it will be undefined in the module level.
This is not a must, but it can improve a little bit your program - use time.perf_counter() as it uses the clock with the highest (available) resolution to measure a short duration, and it avoids precision loss by the float type.
You need to change the axes because we want to see how the time is affected by the order of the matrices, not the opposite! (so our X axis is now the order and the Y is the average time it took to multiply them)
Those fixes translate to this code:
Calculating how much it takes for multiply_matrix only.
begin = time.perf_counter()
C = multiply_matrix(A, B)
end = time.perf_counter()
2+3. Generating our own data, looping from order 1 to order maximum_order, taking 50 tests for each order:
maximum_order = 50
tests_number_for_each_order = 50
def generate_matrices_to_graph():
matrix_orders = [] # our X
multiply_average_time = [] # our Y
for order in range(1, maximum_order):
print(order)
times_for_each_order = []
for _ in range(tests_amount_for_each_order):
# generating random square matrices of size order.
A = np.random.randint(1, 10, size=(order, order))
B = np.random.randint(1, 10, size=(order, order))
# getting the time it took to compute
begin = time.perf_counter()
multiply_matrix(A, B)
end = time.perf_counter()
# adding it to the times list
times_for_each_order.append(end - begin)
# adding the data about the order and the average time it took to compute
matrix_orders.append(order)
multiply_average_time.append(sum(times_for_each_order) / tests_amount_for_each_order) # average
return matrix_orders, multiply_average_time
Minor changes to multiply_matrix as we don't need i, j, k from the user:
def multiply_matrix(A, B):
matrix_order = A.shape[1]
C = np.zeros((matrix_order, matrix_order), dtype=int)
for row in range(matrix_order):
for col in range(matrix_order):
for elt in range(0, len(B)):
C[row, col] += A[row, elt] * B[elt, col]
return C
and finally call generate_matrices_to_graph
# calling the generate_data_and_compute function
plt.plot(*generate_matrices_to_graph())
plt.xlabel('Matrix order')
plt.ylabel('Time [in seconds]')
plt.show()
Some outputs:
We can see that when our tests_number_for_each_order is small, the graph loses precision and crisp.
Going from order 1-40 with 1 test for each order:
Going from order 1-40 with 30 tests for each order:
Going from order 1-40 with 80 tests for each order:
I love this kind of questions:
import numpy as np
from time import time
import matplotlib.pyplot as plt
np.random.seed(27)
dim = []
times = []
for i in range(1,10001,10):
A = np.random.randint(1,10,size=(1,i))
B = np.random.randint(1,10,size=(i,1))
begin = time()
C = A*B
times.append(time()-begin)
dim.append(i)
plt.plot(times,dim)
This is a simplified test in which I tested 1 dimension matrices, (1,1)(1,1), (1,10)(10,1), (1,20)(20,1) and so on...
But you can make a double iteration to change also the "outer" dimension of the matrices and see how this affect the computational time
My goal is to compute a derivative of a moving window of a multidimensional dataset along a given dimension, where the dataset is stored as Xarray DataArray or DataSet.
In the simplest case, given a 2D array I would like to compute a moving difference across multiple entries in one dimension, e.g.:
data = np.kron(np.linspace(0,1,10), np.linspace(1,4,6) ).reshape(10,6)
T=3
reducedArray = np.zeros_like(data)
for i in range(data.shape[1]):
if i < T:
reducedArray[:,i] = data[:,i] - data[:,0]
else:
reducedArray[:,i] = data[:,i] - data[:,i-T]
where the if i <T condition ensures that input and output contain proper values (i.e., no nans) and are of identical shape.
Xarray's diff aims to perform a finite-difference approximation of a given derivative order using nearest-neighbours, so it is not suitable here, hence the question:
Is it possible to perform this operation using Xarray functions only?
The rolling weighted average example appears to be something similar, but still too distinct due to the usage of NumPy routines. I've been thinking that something along the lines of the following should work:
xr2DDataArray = xr.DataArray(
data,
dims=('x','y'),
coords={'x':np.linspace(0,1,10), 'y':np.linspace(1,4,6)}
)
r = xr2DDataArray.rolling(x=T,min_periods=2)
r.reduce( redFn )
I am struggling with the definition of redFn here ,though.
Caveat The actual dataset to which the operation is to be applied will have a size of ~10GiB, so a solution that does not blow up the memory requirements will be highly appreciated!
Update/Solution
Using Xarray rolling
After sleeping on it and a bit more fiddling the post linked above actually contains a solution. To obtain a finite difference we just have to define the weights to be $\pm 1$ at the ends and $0$ else:
def fdMovingWindow(data, **kwargs):
T = kwargs['T'];
del kwargs['T'];
weights = np.zeros(T)
weights[0] = -1
weights[-1] = 1
axis = kwargs['axis']
if data.shape[axis] == T:
return np.sum(data * weights, **kwargs)
else:
return 0
r.reduce(fdMovingWindow, T=4)
alternatively, using construct and a dot product:
weights = np.zeros(T)
weights[0] = -1
weights[-1] = 1
xrWeights = xr.DataArray(weights, dims=['window'])
xr2DDataArray.rolling(y=T,min_periods=1).construct('window').dot(xrWeights)
This carries a massive caveat: The procedure essentially creates a list arrays representing the moving window. This is fine for a modest 2D / 3D array, but for a 4D array that takes up ~10 GiB in memory this will lead to an OOM death!
Simplicistic - memory efficient
A less memory-intensive way is to copy the array and work in a way similar to NumPy's arrays:
xrDiffArray = xr2DDataArray.copy()
dy = xr2DDataArray.y.values[1] - xr2DDataArray.y.values[0] #equidistant sampling
for src in xr2DDataArray:
if src.y.values < xr2DDataArray.y.values[0] + T*dy:
xrDiffArray.loc[dict(y = src.y.values)] = src.values - xr2DDataArray.values[0]
else:
xrDiffArray.loc[dict(y = src.y.values)] = src.values - xr2DDataArray.sel(y = src.y.values - dy*T).values
This will produce the intended result without dimensional errors, but it requires a copy of the dataset.
I was hoping to utilise Xarray to prevent a copy and instead just chain operations that are then evaluated if and when values are actually requested.
A suggestion as to how to accomplish this will still be welcomed!
I have never used xarray, so maybe I am mistaken, but I think you can get the result you want avoiding using loops and conditionals. This is at least twice faster than your example for numpy arrays:
data = np.kron(np.linspace(0,1,10), np.linspace(1,4,6)).reshape(10,6)
reducedArray = np.empty_like(data)
reducedArray[:, T:] = data[:, T:] - data[:, :-T]
reducedArray[:, :T] = data[:, :T] - data[:, 0, np.newaxis]
I imagine the improvement will be higher when using DataArrays.
It does not use xarray functions but neither depends on numpy functions. I am confident that translating this to xarray will be straightforward, I know that it works if there are no coords, but once you include them, you get an error because of the coords mismatch (coords of data[:, T:] and of data[:, :-T] are different). Sadly, I can't do better now.
I have a transition matrix for which I want to calculate a steady state vector. The code I'm using is adapted from this question, and it works well for matrices of normal size:
def steady_state(matrix):
dim = matrix.shape[0]
q = (matrix - np.eye(dim))
ones = np.ones(dim)
q = np.c_[q, ones]
qtq = np.dot(q, q.T)
bqt = np.ones(dim)
return np.linalg.solve(qtq, bqt)
However, the matrix I'm working with has about 1.5 million rows and columns. It isn't a sparse matrix either; most entries are small but non-zero. Of course, just trying to build that matrix throws a memory error.
How can I modify the above code to work with huge matrices? I've heard of solutions like PyTables, but I'm not sure how to apply them, and I don't know if they would work for tasks like np.linalg.solve.
Being very new to numpy and very inexperienced with linear algebra, I'd very much appreciate an example of what to do in my case. I'm open to using something other than numpy, and even something other than Python if needed.
Here's some ideas to start with:
We can use the fact that any initial probability vector will converge on the steady state under time evolution (assuming it's ergodic, aperiodic, regular, etc).
For small matrices we could use
def steady_state(matrix):
dim = matrix.shape[0]
prob = np.ones(dim) / dim
other = np.zeros(dim)
while np.linalg.norm(prob - other) > 1e-3:
other = prob.copy()
prob = other # matrix
return prob
(I think the conventions assumed by the function in the question is that distributions go in rows).
Now we can use the fact that matrix multiplication and norm can be done chunk by chunk:
def steady_state_chunk(matrix, block_in=100, block_out=10):
dim = matrix.shape[0]
prob = np.ones(dim) / dim
error = 1.
while error > 1e-3:
error = 0.
other = prob.copy()
for i in range(0, dim, block_out):
outs = np.s_[i:i+block_out]
vec_out = np.zeros(block_out)
for j in range(0, dim, block_in):
ins = np.s_[j:j+block_in]
vec_out += other[ins] # matrix[ins, outs]
error += np.linalg.norm(vec_out - prob[outs])**2
prob[outs] = vec_out
error = np.sqrt(error)
return prob
This should use less memory for temporaries, thought you could do better by using the out parameter of np.matmul.
I should add something to deal with the last slice in each loop, in case dim isn't divisible by block_*, but I hope you get the idea.
For arrays that don't fit in memory to start with, you can apply the tools from the links in the comments above.
I have a set of 46 years worth of rainfall data. It's in the form of 46 numpy arrays each with a shape of 145, 192, so each year is a different array of maximum rainfall data at each lat and lon coordinate in the given model.
I need to create a global map of tau values by doing an M-K test (Mann-Kendall) for each coordinate over the 46 years.
I'm still learning python, so I've been having trouble finding a way to go through all the data in a simple way that doesn't involve me making 27840 new arrays for each coordinate.
So far I've looked into how to use scipy.stats.kendalltau and using the definition from here: https://github.com/mps9506/Mann-Kendall-Trend
EDIT:
To clarify and add a little more detail, I need to perform a test on for each coordinate and not just each file individually. For example, for the first M-K test, I would want my x=46 and I would want y=data1[0,0],data2[0,0],data3[0,0]...data46[0,0]. Then to repeat this process for every single coordinate in each array. In total the M-K test would be done 27840 times and leave me with 27840 tau values that I can then plot on a global map.
EDIT 2:
I'm now running into a different problem. Going off of the suggested code, I have the following:
for i in range(145):
for j in range(192):
out[i,j] = mk_test(yrmax[:,i,j],alpha=0.05)
print out
I used numpy.stack to stack all 46 arrays into a single array (yrmax) with shape: (46L, 145L, 192L) I've tested it out and it calculates p and tau correctly if I change the code from out[i,j] to just out. However, doing this messes up the for loop so it only takes the results from the last coordinate in stead of all of them. And if I leave the code as it is above, I get the error: TypeError: list indices must be integers, not tuple
My first guess was that it has to do with mk_test and how the information is supposed to be returned in the definition. So I've tried altering the code from the link above to change how the data is returned, but I keep getting errors relating back to tuples. So now I'm not sure where it's going wrong and how to fix it.
EDIT 3:
One more clarification I thought I should add. I've already modified the definition in the link so it returns only the two number values I want for creating maps, p and z.
I don't think this is as big an ask as you may imagine. From your description it sounds like you don't actually want the scipy kendalltau, but the function in the repository you posted. Here is a little example I set up:
from time import time
import numpy as np
from mk_test import mk_test
data = np.array([np.random.rand(145, 192) for _ in range(46)])
mk_res = np.empty((145, 192), dtype=object)
start = time()
for i in range(145):
for j in range(192):
out[i, j] = mk_test(data[:, i, j], alpha=0.05)
print(f'Elapsed Time: {time() - start} s')
Elapsed Time: 35.21990394592285 s
My system is a MacBook Pro 2.7 GHz Intel Core I7 with 16 GB Ram so nothing special.
Each entry in the mk_res array (shape 145, 192) corresponds to one of your coordinate points and contains an entry like so:
array(['no trend', 'False', '0.894546014835', '0.132554125342'], dtype='<U14')
One thing that might be useful would be to modify the code in mk_test.py to return all numerical values. So instead of 'no trend'/'positive'/'negative' you could return 0/1/-1, and 1/0 for True/False and then you wouldn't have to worry about the whole object array type. I don't know what kind of analysis you might want to do downstream but I imagine that would preemptively circumvent any headaches.
Thanks to the answers provided and some work I was able to work out a solution that I'll provide here for anyone else that needs to use the Mann-Kendall test for data analysis.
The first thing I needed to do was flatten the original array I had into a 1D array. I know there is probably an easier way to go about doing this, but I ultimately used the following code based on code Grr suggested using.
`x = 46
out1 = np.empty(x)
out = np.empty((0))
for i in range(146):
for j in range(193):
out1 = yrmax[:,i,j]
out = np.append(out, out1, axis=0) `
Then I reshaped the resulting array (out) as follows:
out2 = np.reshape(out,(27840,46))
I did this so my data would be in a format compatible with scipy.stats.kendalltau 27840 is the total number of values I have at every coordinate that will be on my map (i.e. it's just 145*192) and the 46 is the number of years the data spans.
I then used the following loop I modified from Grr's code to find Kendall-tau and it's respective p-value at each latitude and longitude over the 46 year period.
`x = range(46)
y = np.zeros((0))
for j in range(27840):
b = sc.stats.kendalltau(x,out2[j,:])
y = np.append(y, b, axis=0)`
Finally, I reshaped the data one for time as shown:newdata = np.reshape(y,(145,192,2)) so the final array is in a suitable format to be used to create a global map of both tau and p-values.
Thanks everyone for the assistance!
Depending on your situation, it might just be easiest to make the arrays.
You won't really need them all in memory at once (not that it sounds like a terrible amount of data). Something like this only has to deal with one "copied out" coordinate trend at once:
SIZE = (145,192)
year_matrices = load_years() # list of one 145x192 arrays per year
result_matrix = numpy.zeros(SIZE)
for x in range(SIZE[0]):
for y in range(SIZE[1]):
coord_trend = map(lambda d: d[x][y], year_matrices)
result_matrix[x][y] = analyze_trend(coord_trend)
print result_matrix
Now, there are things like itertools.izip that could help you if you really want to avoid actually copying the data.
Here's a concrete example of how Python's "zip" might works with data like yours (although as if you'd used ndarray.flatten on each year):
year_arrays = [
['y0_coord0_val', 'y0_coord1_val', 'y0_coord2_val', 'y0_coord2_val'],
['y1_coord0_val', 'y1_coord1_val', 'y1_coord2_val', 'y1_coord2_val'],
['y2_coord0_val', 'y2_coord1_val', 'y2_coord2_val', 'y2_coord2_val'],
]
assert len(year_arrays) == 3
assert len(year_arrays[0]) == 4
coord_arrays = zip(*year_arrays) # i.e. `zip(year_arrays[0], year_arrays[1], year_arrays[2])`
# original data is essentially transposed
assert len(coord_arrays) == 4
assert len(coord_arrays[0]) == 3
assert coord_arrays[0] == ('y0_coord0_val', 'y1_coord0_val', 'y2_coord0_val', 'y3_coord0_val')
assert coord_arrays[1] == ('y0_coord1_val', 'y1_coord1_val', 'y2_coord1_val', 'y3_coord1_val')
assert coord_arrays[2] == ('y0_coord2_val', 'y1_coord2_val', 'y2_coord2_val', 'y3_coord2_val')
assert coord_arrays[3] == ('y0_coord2_val', 'y1_coord2_val', 'y2_coord2_val', 'y3_coord2_val')
flat_result = map(analyze_trend, coord_arrays)
The example above still copies the data (and all at once, rather than a coordinate at a time!) but hopefully shows what's going on.
Now, if you replace zip with itertools.izip and map with itertools.map then the copies needn't occur — itertools wraps the original arrays and keeps track of where it should be fetching values from internally.
There's a catch, though: to take advantage itertools you to access the data only sequentially (i.e. through iteration). In your case, it looks like the code at https://github.com/mps9506/Mann-Kendall-Trend/blob/master/mk_test.py might not be compatible with that. (I haven't reviewed the algorithm itself to see if it could be.)
Also please note that in the example I've glossed over the numpy ndarray stuff and just show flat coordinate arrays. It looks like numpy has some of it's own options for handling this instead of itertools, e.g. this answer says "Taking the transpose of an array does not make a copy". Your question was somewhat general, so I've tried to give some general tips as to ways one might deal with larger data in Python.
I ran into the same task and have managed to come up with a vectorized solution using numpy and scipy.
The formula are the same as in this page: https://vsp.pnnl.gov/help/Vsample/Design_Trend_Mann_Kendall.htm.
The trickiest part is to work out the adjustment for the tied values. I modified the code as in this answer to compute the number of tied values for each record, in a vectorized manner.
Below are the 2 functions:
import copy
import numpy as np
from scipy.stats import norm
def countTies(x):
'''Count number of ties in rows of a 2D matrix
Args:
x (ndarray): 2d matrix.
Returns:
result (ndarray): 2d matrix with same shape as <x>. In each
row, the number of ties are inserted at (not really) arbitary
locations.
The locations of tie numbers in are not important, since
they will be subsequently put into a formula of sum(t*(t-1)*(2t+5)).
Inspired by: https://stackoverflow.com/a/24892274/2005415.
'''
if np.ndim(x) != 2:
raise Exception("<x> should be 2D.")
m, n = x.shape
pad0 = np.zeros([m, 1]).astype('int')
x = copy.deepcopy(x)
x.sort(axis=1)
diff = np.diff(x, axis=1)
cated = np.concatenate([pad0, np.where(diff==0, 1, 0), pad0], axis=1)
absdiff = np.abs(np.diff(cated, axis=1))
rows, cols = np.where(absdiff==1)
rows = rows.reshape(-1, 2)[:, 0]
cols = cols.reshape(-1, 2)
counts = np.diff(cols, axis=1)+1
result = np.zeros(x.shape).astype('int')
result[rows, cols[:,1]] = counts.flatten()
return result
def MannKendallTrend2D(data, tails=2, axis=0, verbose=True):
'''Vectorized Mann-Kendall tests on 2D matrix rows/columns
Args:
data (ndarray): 2d array with shape (m, n).
Keyword Args:
tails (int): 1 for 1-tail, 2 for 2-tail test.
axis (int): 0: test trend in each column. 1: test trend in each
row.
Returns:
z (ndarray): If <axis> = 0, 1d array with length <n>, standard scores
corresponding to data in each row in <x>.
If <axis> = 1, 1d array with length <m>, standard scores
corresponding to data in each column in <x>.
p (ndarray): p-values corresponding to <z>.
'''
if np.ndim(data) != 2:
raise Exception("<data> should be 2D.")
# alway put records in rows and do M-K test on each row
if axis == 0:
data = data.T
m, n = data.shape
mask = np.triu(np.ones([n, n])).astype('int')
mask = np.repeat(mask[None,...], m, axis=0)
s = np.sign(data[:,None,:]-data[:,:,None]).astype('int')
s = (s * mask).sum(axis=(1,2))
#--------------------Count ties--------------------
counts = countTies(data)
tt = counts * (counts - 1) * (2*counts + 5)
tt = tt.sum(axis=1)
#-----------------Sample Gaussian-----------------
var = (n * (n-1) * (2*n+5) - tt) / 18.
eps = 1e-8 # avoid dividing 0
z = (s - np.sign(s)) / (np.sqrt(var) + eps)
p = norm.cdf(z)
p = np.where(p>0.5, 1-p, p)
if tails==2:
p=p*2
return z, p
I assume your data come in the layout of (time, latitude, longitude), and you are examining the temporal trend for each lat/lon cell.
To simulate this task, I synthesized a sample data array of shape (50, 145, 192). The 50 time points are taken from Example 5.9 of the book Wilks 2011, Statistical methods in the atmospheric sciences. And then I simply duplicated the same time series 27840 times to make it (50, 145, 192).
Below is the computation:
x = np.array([0.44,1.18,2.69,2.08,3.66,1.72,2.82,0.72,1.46,1.30,1.35,0.54,\
2.74,1.13,2.50,1.72,2.27,2.82,1.98,2.44,2.53,2.00,1.12,2.13,1.36,\
4.9,2.94,1.75,1.69,1.88,1.31,1.76,2.17,2.38,1.16,1.39,1.36,\
1.03,1.11,1.35,1.44,1.84,1.69,3.,1.36,6.37,4.55,0.52,0.87,1.51])
# create a big cube with shape: (T, Y, X)
arr = np.zeros([len(x), 145, 192])
for i in range(arr.shape[1]):
for j in range(arr.shape[2]):
arr[:, i, j] = x
print(arr.shape)
# re-arrange into tabular layout: (Y*X, T)
arr = np.transpose(arr, [1, 2, 0])
arr = arr.reshape(-1, len(x))
print(arr.shape)
import time
t1 = time.time()
z, p = MannKendallTrend2D(arr, tails=2, axis=1)
p = p.reshape(145, 192)
t2 = time.time()
print('time =', t2-t1)
The p-value for that sample time series is 0.63341565, which I have validated against the pymannkendall module result. Since arr contains merely duplicated copies of x, the resultant p is a 2d array of size (145, 192), with all 0.63341565.
And it took me only 1.28 seconds to compute that.
I'm new to Python. I've done this particular task before in MATLAB, and I'm trying to get the hang of the syntax and particular behaviour of Python, as I'll be using this language much more in future.
The task: I am taking 43,200 single data points (integers, but written as decimals) and performing a fast-fourier transform on a "window" of 600 at a time, shifting this window by 60 data points each time. Hence, this transform will output 600 fourier coefficients, 720 times - I will end up with a 600 x 720 matrix (rows, columns).
These data points are initially contained within a list and turned into a column vector after being FFT'd. The issue comes when I try to build the maxtrix from a loop - take the first 600 points, FFT them, and dump them in an empty array. Take the next 600, do the same thing, but now add these two columns together to make two rows, then three, then four... etc. I've been trying for several hours now, but whatever I try I cannot get it to work - it consistently outputs my "final" matrix (the one that was meant to be the generated 600 x 720) as being the exact same dimensions as each generated "block".
My code (relevant sections):
for i in range(npoints):
newdata.append(float(newy.readline())) #Read data from file
FFT_out = [] #Initialize empty FFT output array
window_size = 600 #Number of points in data "window"
window_skip = 60 #Number of points window moves across
j = 0 #FFT count variable
for i in range(0, npoints, window_skip):
block = np.fft.fft(newdata[i:i+window_size]) #FFT Computation of "window"
block = block[:, np.newaxis] #turn into column vector (n, 1)
if j == 0:
FFT_out = block
j = 1
else:
np.hstack((FFT_out, block))
j = j + 1
print("Shape of FFT matrix:")
print(np.shape(FFT_out))
print("Number of times FFT completed:")
print(j)
At this point, I'm willing to believe it's a fundamental flaw on my understanding of how Python does matrices or deals with arrays. I've tried reading about it, but I still cannot see where I'm going wrong. Any help would be greatly appreciated!
First thing to note is that Python is uses indentation to form blocks, so as posted you would only ever assign once to FFT_out and never actually call np.hstack.
Then assuming that this was in fact only a cut&paste issue when posting your question, you should note that hstack returns a concatenation of its arguments without actually modifying them. To accumulate the concatenation, you should then assign the result back to FFT_out:
FFT_out = np.hstack((FFT_out, block))
You should then be able to get a 600 x 720 matrix with:
for i in range(0, npoints, window_skip):
block = np.fft.fft(newdata[i:i+window_size])
block = block[:, np.newaxis] #turn into column vector (n, 1)
if j == 0:
FFT_out = block
j = 1
else:
FFT_out = np.hstack((FFT_out, block))
j = j + 1