How to animate motion of a dynamical system in Python? - python

Here's the how cart pendulum looks like
Imagine you have a 4 differantial equations which represents the motion of a dynamic system (pendulum on a cart) and you solved these equations using scipy.integrate.odeint for 10 seconds with interval of 0.01 seconds.
Finally you get the solution matrix with size (1000,4). For each diff eqs you get 1000 data points. Everything is ok so far. For example, If I plot one of the motion I can get beautiful graphics.(Below image shows the motion of the pendulum rod(oscillating))
Here's Graph of theta angle
But, instead of boring graphics and I want to make an animation that shows the motion of the cart as Steve Brunton did it as below link with using Matlab.
Here's link of the cart-pend video!
====================================================================
To animate the figures I actually tried to do what Steve Brunton did in Matlab, with Python. But the result is just a frozen figure instead of moving one. Actually If I run this script from Spyder IDE, I get 1000 figures in the IPython console.(Each figure represents a snapshot of the system's instantaneous motion which is good. But I want just one figure with 1000 sequantial frames on it.)
Here's the snap of frozen cart-pend
I've written two python scripts. One for only plotting the other is for solving the diff eqs and feed the results to the other one.
~~~~~~~~~~~~~~~~~~~~~~~~~
This code is for plotting the animated figures.
from math import sqrt, sin, cos
import matplotlib.pyplot as plt
from matplotlib import animation
def draw_cart(states, m, M, L):
x = states[0] # Position of the center of the cart
theta = states[3] # Angle of the pendulum rod
#Dimensions
W = 1*sqrt(M/5) # Cart width
H = .5*sqrt(M/5) # Cart Height
wr = .2 # Wheel radius
mr = .3*sqrt(m) # Mass Radius
#Positions
y = wr/2+ H/2 # Cart Vertical Position
w1x = x-.9*W/2 # Left Wheel x coordinate
w1y = 0 # Left wheel y coordinate
w2x = x+(.9*W/2) # Right Wheel x coordinate
w2y = 0 # Right Wheel y coordinate
# Pendulum Mass x-y coordinates
px = x+(L*sin(theta))
py = y-(L*cos(theta))
#Identfying Figure
plt.figure()
plt.axes(xlim=(-5, 5), ylim=(-2, 2.5))
# Plotting the base line
line = plt.Line2D((-10, 10), (0, 0), color='k', linewidth=2)
plt.gca().add_line(line)
plt.hold(True)
# Shapes
rectangle1 = plt.Rectangle((x-(W/2), (y-H/2)), W, H, fill=True, color='b') # Cart
rectangle2= plt.Rectangle((px-(mr/2), py-(mr/2)), mr, mr, fill=True, color='r') # Pendulum mass
circle2 = plt.Circle((w1x, w1y), wr/2, fill=True, color='g') #Left whell
circle3 = plt.Circle((w2x, w2y), wr/2, fill=True, color='g') #Right whell
plt.plot((x, px), (y, py), 'k', lw=2) #Pendulum rod
#Adding shapes to the figure
plt.gca().add_patch(rectangle1)
plt.gca().add_patch(rectangle2)
plt.gca().add_patch(circle2)
plt.gca().add_patch(circle3)
# Showing the figure
plt.show()
plt.hold(False)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is the other code for solving the diff eqs and feeding the solution to the above code.
from math import pi, sin, cos
import numpy as np
from scipy.integrate import odeint
import draw_cart_pend_rt
import matplotlib.pyplot as plt
# System Parameters
m = 1
M = 5
L = 2
g = -10
d = 1
u = 0
def cart_pend_dynamics(states, tspan):
Sy = sin(states[2])
Cy = cos(states[2])
D = m*L*L*(M+(m*(1-(Cy**2))))
state_derivatives = np.zeros_like(states)
state_derivatives[0] = states[1]
state_derivatives[1] = ((1/D)*(((-m**2)*(L**2)*g*Cy*Sy)+(m*(L**2)*(m*L*(states[3]**2)*Sy-d*(states[1])))))+(m*L*L*(1/D)*u)
state_derivatives[2] = states[3]
state_derivatives[3] = ((1/D)*((m+M)*m*g*L*Sy-m*L*Cy*(m*L*(states[3])**2*Sy-d*states[1])))-(m*L*Cy*(1/D)*u)+(0.01*1)
return state_derivatives
def solution_of_cartpend(dt):
# Initial conditions to solve diff eqs
states = np.array([0.0, 0.0, pi, 0.5]) # Left to right, cart; position-velocity, pend mass; angle-angular velocity
tspan = np.arange(0, 10, dt)
state_sol = odeint(cart_pend_dynamics, states, tspan)
return state_sol
# Time Interval
dt = 0.01
solution = solution_of_cartpend(dt)
x_den, y_den = solution.shape
# Validating the solution
plt.axes(xlim=(0,10), ylim=(-10,10))
t = np.arange(0, 10, dt)
plt.gca().plot(t, (solution[:, 2]), 'b', label='theta1')
# Animating the figures
for i in range(x_den):
draw_cart_pend_rt.draw_cart(solution[i,:], m, M, L)

Related

Want to create an animation based on a function that generates plots

I want to create an animation based on running a bunch of plots together. I just can't figure out how to get it to work for my purposes, this is the code I'm trying to work with. It generates a bunch of plots, but I want it to create an animation.
pi = 3.14159
velocity = 220 #kilometers per second
def dtheta(r): #creating a function that gives angular velocity based on distance from galactic center
dtheta = velocity/r #This function comes from the equation for angular velocity, ω=v/r, and ω =
dtheta/dt, which is what our function represents
return dtheta
#Creating frames at specific times for a set of distances
velocity = 220 #in km/s or pc/My
frames = 11
tstart = 0 #in units of Million Years
tfinal = 1
Stars= 25 #The number of stars being observed, equally spaced from 2 to 20 parsecs from the galactic center
t = np.linspace(tstart,tfinal,frames)
r = np.linspace(2,20,Stars)
TimeMatrix = []
for k in t:
snapshot = list([k*dtheta(r) for r in r]) # creating a list of the positions of a set of stars for a given time = k
print()
print('t =', k, 'Million Years')
plt.axes(projection = 'polar')
plt.ylim(0,22)
plt.plot(snapshot, r, 'ok')
plt.show()
TimeMatrix.append(list(snapshot))
def plotfunction(n):
plt.axes(projection = 'polar')
plt.ylim(0,22)
return plt.plot(TimeMatrix[n],r,'ok')
plotfunction(1) #needs integer input, pulls out the nth frame of the above series of plots
Anything would help, thanks!
Here's one way to do it:
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.animation as animation
pi = 3.14159
velocity = 220 #kilometers per second
def dtheta(r): #creating a function that gives angular velocity based on distance from galactic center
dtheta = velocity/r #This function comes from the equation for angular velocity, ω=v/r, and ω =
#dtheta/dt, which is what our function represents
return dtheta
#Creating frames at specific times for a set of distances
velocity = 220 #in km/s or pc/My
frames = 11
tstart = 0 #in units of Million Years
tfinal = 1
Stars= 25 #The number of stars being observed, equally spaced from 2 to 20 parsecs from the galactic center
t = np.linspace(tstart,tfinal,frames)
r = np.linspace(2,20,Stars)
plt.figure(figsize=(12,4))
plt.axes(projection = 'polar')
plt.ylim(0,22)
snapi = plt.plot([t[0]*dtheta(i) for i in r] , r, 'ok', lw=1.5)
plt.ion() # set interactive mode
plt.show()
for i,snap in enumerate(t):
# for l in snapi:
# l.remove()
# del l
snapp=[snap*dtheta(k) for k in r]
snapi = plt.plot(snapp, r, 'ok', lw=1.5)
plt.legend()
plt.gcf().canvas.draw()
plt.pause(2)

How can I create a Circle with a small notch at bottom in Matplotlib?

I am trying to create a circle on co-ordinate plane and fill the pixels in it with conditional colors. However, the circle also need to show a small triangular notch at the bottom from the center. Something like the attached picture.
I have used the matplotlib's patches class to create acircle and tried different values in attributes but of no help. I googled enough but I couldn't find it.
circle = matplotlib.patches.Circle((0,0),150,facecolor='lightgrey')
ax.add_patch(circle)
Sample
Can someone please help me or provide me a hint or direct me to right library which can do this.
Your problem looks like 2D vector graphics which in this case you should look for SVG
if it is a CAD problem then you can check some CAD libraries
- Python module for parametric CAD
I think CAD approach is much better for engineering operations which you can find https://www.freecadweb.org/wiki/Part_Slice and https://www.freecadweb.org/wiki/Part_SliceApart#Scripting
or for SVG approach found something: https://inkscape.org/~Moini/%E2%98%85multi-bool-extension-cut-difference-division
If you have to do that in mathplotlib then you can export/import vector graphics into plots
I tried to build the proposed shape using parametric equations.
There are some approximations, but if you get the exact geometry equations you could refine this to a better version.
In fact, the key is to define the correct equations ... the ideal case would be to ensure continuity.
This example has some caveats: approximations when joining the 2 circles due to geometrical simplification when drawing the small circle from pi to 0. Small circle start/end angles should be chosen as the interception of the 2 full circles for a more accurate shape continuity. But again, in the end it depends entirely on your shape specification
Heavly inspired from Plot equation showing a circle
import math
import numpy as np
import matplotlib.pyplot as plt
def compute_x_values(r, theta):
return r * np.cos(theta)
def compute_y_values(r, theta):
return r * np.sin(theta)
def compute_circle(r, theta):
return compute_x_values(r, theta), compute_y_values(r, theta)
def build_big_circle(crop_angle, offset, radius):
start_angle = offset + crop_angle
end_angle = offset + (2 * np.pi) - crop_angle
theta = np.linspace(start_angle, end_angle, 250)
# compute main circle vals
x, y = compute_circle(radius, theta)
return x, y
r = 1
offset = - np.pi / 2
crop_angle = np.pi / 20
x, y = build_big_circle(crop_angle, offset, r)
# now the other form:
# its a half circle from pi to 0
theta2 = np.linspace(np.pi, 0, 100)
# according our code above, angular space left on the circle for the notch is
missing_angle = crop_angle * 2
# the length between to points on a circle is given by the formula
# length = 2 * r * sin(angle/2)
l = math.sin(missing_angle / 2) * r * 2
# we want half the length for a future radius
r2 = l / 2
# the above lines could be optimized to this
# r2 = math.sin(crop_angle) * r
# but I kept intermediate steps for sake of geometric clarity
# equation is same of a circle
x1, y1 = compute_circle(r2, theta2)
# change center on y axis to - big circle radius
y1 = y1 - r
# merge the 2
x_total = np.append(x, x1)
y_total = np.append(y, y1)
# create the global figure
fig, ax = plt.subplots(1)
ax.plot(x_total, y_total)
ax.fill(x_total, y_total, facecolor='lightgrey', linewidth=1)
ax.set_aspect(1)
plt.show()
fig, ax = plt.subplots(1)
ax.plot(x, y)
ax.plot(x1, y1)
ax.set_aspect(1)
plt.show()

scipy fft returns null imaginary part

First of all, I apologize for being an absolute beginner in both python and signal processing.
I am trying to simulate an impulse signal (or a delta function) propagating along spatial x-axis over time. Then, I would like to perform Fourier Transformation on amplitude vs x-axis for each time and then amplitude vs t-axis for each point in space. The problem I'm facing is that the Fourier coefficients are all real valued. If I "implot" the imaginary part over spatial and temporal axis, you can see, all of these are shown to be zero. However, my understanding was that, the impulse signal at t = 0, x = 0, should have null imaginary coefficient. But after that, for all the other t and/or x's, there should be a real valued imaginary coefficient.
Please refer to this site http://madebyevan.com/dft/ where one can interactively make waveforms and observe the Fourier Transformation. In the f(x) box, please put "spike(x-0)", "spike(x-1)" etc. to simulate my problem and expected result.
I have tried the following code using scipy.fftpack. There are some extra lines to analyze the impulse signal travelling in x axis and x-t plane.
import numpy as np
from numpy import pi
import matplotlib.pyplot as plt
from scipy import signal
import math
import scipy.fftpack
from scipy import ndimage
L = 10
k = np.pi/L
w = np.pi*2
n = 5
# Number of samplepoints
Nx = 1000
Nt = 500
# sample spacing
l = 1.0/Nx
T = 1.0/Nt
x = np.linspace(0, Nx*l*L, Nx)
t = np.linspace(0, Nt*T*L, Nt)
x = np.round(x,2)
t = np.round(t,2)
# function to produce impulse
def gw(xx, tt):
if xx == tt:
kk = 1
else:
kk = 0
return (kk)
fig = plt.figure()
yg = np.array([gw(i, j) for j in t for i in x])
YG = yg.reshape(Nt, Nx)
# how impulse propagate in x-t plane
plt.imshow(YG, interpolation='bilinear',aspect='auto')
plt.colorbar();
# how impulse propagate in x-axis for t = 2 and t = 100
fig, ax = plt.subplots()
ax.plot(x, YG[2,:], x, YG[100,:])
plt.show()
# FFT in x-axis at each point in time
yxf = np.zeros((Nt, Nx))
for i in range(Nt):
yx = YG[i,:]
yxf[i,:] = scipy.fftpack.fft(yx)
plt.imshow(np.imag(yxf[:,:Nx]), interpolation='bilinear',aspect='auto')
plt.colorbar();
plt.show()
# FFT in t-axis at each point in space
ytf = np.zeros((Nt, Nx))
for i in range(Nx):
yt = YG[:,i]
ytf[:,i] = scipy.fftpack.fft(yt)
plt.imshow(np.imag(ytf[:Nt,:]), interpolation='bilinear',aspect='auto')
plt.colorbar();
plt.show()

How to rotate a cylinder without causing a 'sheared' appearance

I have plotted a 'tear drop' shaped cylinder in matplotlib. To obtain the tear drop shape I plotted a normal cylinder from theta = 0 to theta = pi and an ellipse from theta = pi to theta = 2pi. However I am now trying to 'spin' the cylinder around it's axis which here is given conveniently by the z-axis.
I tried using the rotation matrix for rotating around the z-axis which Wikipedia gives as:
However when I try to rotate through -pi/3 radians, the cylinder becomes very disfigured.
Is there anyway to prevent this from happening?
Here is my code:
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from math import sin, cos, pi
import math
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
theta = np.linspace(0,2*pi, 1200)
Z = np.linspace(0,5,1000+600)
Z,theta = np.meshgrid(Z, theta)
X = []
Y = []
R = 0.003
#calculate the x and y values
for i in theta:
cnt = 0
tempX = []
tempY = []
for j in i:
#circle
if(i[0]<=pi):
tempX.append(R*cos(j))
tempY.append(R*sin(j))
cnt+=1
#ellipse
else:
tempX.append(R*cos(j))
tempY.append(0.006*sin(j))
X.append(tempX)
Y.append(tempY)
X1 = np.array(X)
Y1 = np.array(Y)
#rotate around the Z axis
a = -pi/3
for i in range(len(X)):
X1[i] = cos(a)*X1[i]-sin(a)*Y1[i]
Y1[i] = sin(a)*X1[i]+cos(a)*Y1[i]
#plot
ax.plot_surface(X1,Y1,Z,linewidth = 0, shade = True, alpha = 0.3)
ax.set_xlim(-0.01,0.01)
ax.set_ylim(-0.01, 0.01)
azimuth = 173
elevation = 52
ax.view_init(elevation, azimuth)
plt.show()
Your rotating is flawed: To calculate Y1[i] you need the old value of X1[i], but you already updated it. You can try something like
X1[i], Y1[i] = cos(a)*X1[i]-sin(a)*Y1[i], sin(a)*X1[i]+cos(a)*Y1[i]
if you want to make the matrix multiplication a bit more obvious (and fix the bug) you could also do the following (please doublecheck that the matrix is correct and that the multiplication is in the right order, I did not test this):
rotation_matrix = np.array([[cos(a), -sin(a)], [sin(a), cos(a)]])
x, y = zip(*[(x,y) # rotation_matrix for x,y in zip(x,y)])
the # is new in 3.5 and for numpy array it's defined to be the matrix multiplication. If you are on a version below 3.5 you can use np.dot.
The zip(*...) is necessary to get a pair of lists instead of a list of pairs. See also this answer

Method to uniformly randomly populate a disk with points in python

I have an application that requires a disk populated with 'n' points in a quasi-random fashion. I want the points to be somewhat random, but still have a more or less regular density over the disk.
My current method is to place a point, check if it's inside the disk, and then check if it is also far enough away from all other points already kept. My code is below:
import os
import random
import math
# ------------------------------------------------ #
# geometric constants
center_x = -1188.2
center_y = -576.9
center_z = -3638.3
disk_distance = 2.0*5465.6
disk_diam = 5465.6
# ------------------------------------------------ #
pts_per_disk = 256
closeness_criteria = 200.0
min_closeness_criteria = disk_diam/closeness_criteria
disk_center = [(center_x-disk_distance),center_y,center_z]
pts_in_disk = []
while len(pts_in_disk) < (pts_per_disk):
potential_pt_x = disk_center[0]
potential_pt_dy = random.uniform(-disk_diam/2.0, disk_diam/2.0)
potential_pt_y = disk_center[1]+potential_pt_dy
potential_pt_dz = random.uniform(-disk_diam/2.0, disk_diam/2.0)
potential_pt_z = disk_center[2]+potential_pt_dz
potential_pt_rad = math.sqrt((potential_pt_dy)**2+(potential_pt_dz)**2)
if potential_pt_rad < (disk_diam/2.0):
far_enough_away = True
for pt in pts_in_disk:
if math.sqrt((potential_pt_x - pt[0])**2+(potential_pt_y - pt[1])**2+(potential_pt_z - pt[2])**2) > min_closeness_criteria:
pass
else:
far_enough_away = False
break
if far_enough_away:
pts_in_disk.append([potential_pt_x,potential_pt_y,potential_pt_z])
outfile_name = "pt_locs_x_lo_"+str(pts_per_disk)+"_pts.txt"
outfile = open(outfile_name,'w')
for pt in pts_in_disk:
outfile.write(" ".join([("%.5f" % (pt[0]/1000.0)),("%.5f" % (pt[1]/1000.0)),("%.5f" % (pt[2]/1000.0))])+'\n')
outfile.close()
In order to get the most even point density, what I do is basically iteratively run this script using another script, with the 'closeness' criteria reduced for each successive iteration. At some point, the script can not finish, and I just use the points of the last successful iteration.
So my question is rather broad: is there a better way to do this? My method is ok for now, but my gut says that there is a better way to generate such a field of points.
An illustration of the output is graphed below, one with a high closeness criteria, and another with a 'lowest found' closeness criteria (what I want).
A simple solution based on Disk Point Picking from MathWorld:
import numpy as np
import matplotlib.pyplot as plt
n = 1000
r = np.random.uniform(low=0, high=1, size=n) # radius
theta = np.random.uniform(low=0, high=2*np.pi, size=n) # angle
x = np.sqrt(r) * np.cos(theta)
y = np.sqrt(r) * np.sin(theta)
# for plotting circle line:
a = np.linspace(0, 2*np.pi, 500)
cx,cy = np.cos(a), np.sin(a)
fg, ax = plt.subplots(1, 1)
ax.plot(cx, cy,'-', alpha=.5) # draw unit circle line
ax.plot(x, y, '.') # plot random points
ax.axis('equal')
ax.grid(True)
fg.canvas.draw()
plt.show()
It gives.
Alternatively, you also could create a regular grid and distort it randomly:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.tri as tri
n = 20
tt = np.linspace(-1, 1, n)
xx, yy = np.meshgrid(tt, tt) # create unit square grid
s_x, s_y = xx.ravel(), yy.ravel()
ii = np.argwhere(s_x**2 + s_y**2 <= 1).ravel() # mask off unwanted points
x, y = s_x[ii], s_y[ii]
triang = tri.Triangulation(x, y) # create triangluar grid
# distort the grid
g = .5 # distortion factor
rx = x + np.random.uniform(low=-g/n, high=g/n, size=x.shape)
ry = y + np.random.uniform(low=-g/n, high=g/n, size=y.shape)
rtri = tri.Triangulation(rx, ry, triang.triangles) # distorted grid
# for circle:
a = np.linspace(0, 2*np.pi, 500)
cx,cy = np.cos(a), np.sin(a)
fg, ax = plt.subplots(1, 1)
ax.plot(cx, cy,'k-', alpha=.2) # circle line
ax.triplot(triang, "g-", alpha=.4)
ax.triplot(rtri, 'b-', alpha=.5)
ax.axis('equal')
ax.grid(True)
fg.canvas.draw()
plt.show()
It gives
The triangles are just there for visualization. The obvious disadvantage is that depending on your choice of grid, either in the middle or on the borders (as shown here), there will be more or less large "holes" due to the grid discretization.
If you have a defined area like a disc (circle) that you wish to generate random points within you are better off using an equation for a circle and limiting on the radius:
x^2 + y^2 = r^2 (0 < r < R)
or parametrized to two variables
cos(a) = x/r
sin(a) = y/r
sin^2(a) + cos^2(a) = 1
To generate something like the pseudo-random distribution with low density you should take the following approach:
For randomly distributed ranges of r and a choose n points.
This allows you to generate your distribution to roughly meet your density criteria.
To understand why this works imagine your circle first divided into small rings of length dr, now imagine your circle divided into pie slices of angle da. Your randomness now has equal probability over the whole boxed area arou d the circle. If you divide the areas of allowed randomness throughout your circle you will get a more even distribution around the overall circle and small random variation for the individual areas giving you the psudo-random look and feel you are after.
Now your job is just to generate n points for each given area. You will want to have n be dependant on r as the area of each division changes as you move out of the circle. You can proportion this to the exact change in area each space brings:
for the n-th to n+1-th ring:
d(Area,n,n-1) = Area(n) - Area(n-1)
The area of any given ring is:
Area = pi*(dr*n)^2 - pi*(dr*(n-1))
So the difference becomes:
d(Area,n,n-1) = [pi*(dr*n)^2 - pi*(dr*(n-1))^2] - [pi*(dr*(n-1))^2 - pi*(dr*(n-2))^2]
d(Area,n,n-1) = pi*[(dr*n)^2 - 2*(dr*(n-1))^2 + (dr*(n-2))^2]
You could expound this to gain some insight on how much n should increase but it may be faster to just guess at some percentage increase (30%) or something.
The example I have provided is a small subset and decreasing da and dr will dramatically improve your results.
Here is some rough code for generating such points:
import random
import math
R = 10.
n_rings = 10.
n_angles = 10.
dr = 10./n_rings
da = 2*math.pi/n_angles
base_points_per_division = 3
increase_per_level = 1.1
points = []
ring = 0
while ring < n_rings:
angle = 0
while angle < n_angles:
for i in xrange(int(base_points_per_division)):
ra = angle*da + da*math.random()
rr = r*dr + dr*random.random()
x = rr*math.cos(ra)
y = rr*math.sin(ra)
points.append((x,y))
angle += 1
base_points_per_division = base_points_per_division*increase_per_level
ring += 1
I tested it with the parameters:
n_rings = 20
n_angles = 20
base_points = .9
increase_per_level = 1.1
And got the following results:
It looks more dense than your provided image, but I imagine further tweaking of those variables could be beneficial.
You can add an additional part to scale the density properly by calculating the number of points per ring.
points_per_ring = densitymath.pi(dr**2)*(2*n+1)
points_per_division = points_per_ring/n_angles
This will provide a an even better scaled distribution.
density = .03
points = []
ring = 0
while ring < n_rings:
angle = 0
base_points_per_division = density*math.pi*(dr**2)*(2*ring+1)/n_angles
while angle < n_angles:
for i in xrange(int(base_points_per_division)):
ra = angle*da + min(da,da*random.random())
rr = ring*dr + dr*random.random()
x = rr*math.cos(ra)
y = rr*math.sin(ra)
points.append((x,y))
angle += 1
ring += 1
Giving better results using the following parameters
R = 1.
n_rings = 10.
n_angles = 10.
density = 10/(dr*da) # ~ ten points per unit area
With a graph...
and for fun you can graph the divisions to see how well it is matching your distriubtion and adjust.
Depending on how random the points need to be, it may be simple enough to just make a grid of points within the disk, and then displace each point by some small but random amount.
It may be that you want more randomness, but if you just want to fill your disc with an even-looking distribution of points that aren't on an obvious grid, you could try a spiral with a random phase.
import math
import random
import pylab
n = 300
alpha = math.pi * (3 - math.sqrt(5)) # the "golden angle"
phase = random.random() * 2 * math.pi
points = []
for k in xrange(n):
theta = k * alpha + phase
r = math.sqrt(float(k)/n)
points.append((r * math.cos(theta), r * math.sin(theta)))
pylab.scatter(*zip(*points))
pylab.show()
Probability theory ensures that the rejection method is an appropriate method
to generate uniformly distributed points within the disk, D(0,r), centered at origin and of radius r. Namely, one generates points within the square [-r,r] x [-r,r], until a point falls within the disk:
do{
generate P in [-r,r]x[-r,r];
}while(P[0]**2+P[1]**2>r);
return P;
unif_rnd_disk is a generator function implementing this rejection method:
import matplotlib.pyplot as plt
import numpy as np
import itertools
def unif_rnd_disk(r=1.0):
pt=np.zeros(2)
while True:
yield pt
while True:
pt=-r+2*r*np.random.random(2)
if (pt[0]**2+pt[1]**2<=r):
break
G=unif_rnd_disk()# generator of points in disk D(0,r=1)
X,Y=zip(*[pt for pt in itertools.islice(G, 1, 1000)])
plt.scatter(X, Y, color='r', s=3)
plt.axis('equal')
If we want to generate points in a disk centered at C(a,b), we have to apply a translation to the points in the disk D(0,r):
C=[2.0, -3.5]
plt.scatter(C[0]+np.array(X), C[1]+np.array(Y), color='r', s=3)
plt.axis('equal')

Categories

Resources