Python "object() takes no parameters" error - python

I'm having this problem when I clearly use init function to declare the parameters. Link my code there:
class Node:
def _init_(self,pieza,turno,listaAsignados,parent,costeCamino,coste):#Initialize a Node
self.pieza = pieza
self.turno = turno
self.listaAsignados = listaAsignados
self.parent = parent
self.costeCamino = costeCamino
self.costeNodo = costeNodo
def calculateCost(C, i, j, listaPadre,M): #Calculate Cost of the next element
initCost = 0
cost = 0
listaDisponibles = [1]*M
for i in range(i,M-1):
minNum = 9999999999
minIndex = -1
for j in range(j,M-1):
if(not listaPadre[j] and listaDisponibles[j] and C[i][j]< minNum ):
minIndex = j
minNumber = costMatrix[i][j]
cost = cost+ minNumber
return cost
import heapq
def branch_bound(C):
"""
-C = Matrix of costs
"""
items=[]
priorityQueue = []
heapq.heapify(priorityQueue)
listaAsignados = [0]*M#Asigned list for the matrix
raiz = Node(-1,-1,listaAsignados,None,0,0)
heapq.heappush(listaAsignados,[raiz.cost,raiz])
while (priorityQueue):
examinateNode = heapq.heappop(priorityQueue)
examinateNode = examinateNode[1]
i = examinateNode.pieza+1
if (i == M):
return examinateNode.cost
for j in range(0,M-1):
if(examinateNode.listaAsignados[j] == 0):
costeCamino = examinateNode.pathCost+ C[i][j]
costeHijo = costeCamino+ calculateCost(C, i, j, examinateNode.listaAsignados,M)
nodoHijo = Node(i,j,examinateNode.listaAsignados,examinateNode,costeCamino,costeHijo)
heapq.heappush(listaAsignados,[nodoHijo.cost,nodoHijo])
return items
If someone can explain me why this error is going on I will appreciate it. I don't know why if I have a constructor the error is going on:
<ipython-input-10-8d5dfd71f776> in branch_bound(C)
11 heapq.heapify(priorityQueue)
12 listaAsignados = [0]*M
13 raiz = Node(-1,-1,listaAsignados,None,0,0)<-------
14 heapq.heappush(listaAsignados,[raiz.cost,raiz])
15
TypeError: object() takes no parameters

You need to write __init__ instead of _init_.

Related

A* algorithm TypeError: cannot unpack non-iterable int object

This is the python code which uses A* algorithm for finding solution for 8 puzzle problems, I got some error messages, how can I fix it?(The error message is under the code)
There are several object-oriented programming concepts for Problems class, Node class that are implemented to express the problem solution search that you need to understand in order to make the Python program complete. The priority queue is to make the nodes to be explored to be sorted according to their f-evaluation function score and return the min one as the first node to be searched next.
There is also a memorize function to memorize the heuristic value of state as a look-up table so that you don’t need to calculate the redundant computing of heuristic estimation value, so you can ignore it at this point if you don’t understand.
The components you need to implement is to make the abstract part of the program realizable for 8 -puzzle with the successor methods attached to a problem class which consists of initial state and goal state. Make sure the program can run correctly to generate the solution sequence that move the empty tile so that the 8-puzzle can move "Up", "Down", "Left", "Right", from initial state to goal state.
import math
infinity = math.inf
from itertools import chain
import numpy as np
import bisect
class memoize:
def __init__(self, f, memo={}):
self.f = f
self.memo = {}
def __call__(self, *args):
if not str(args) in self.memo:
self.memo[str(args)] = self.f(*args)
return self.memo[str(args)]
def coordinate(state):
index_state = {}
index = [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2], [2,0], [2,1], [2,2]]
for i in range(len(state)):
index_state[state[i]] = index[i]
return index_state
def getInvCount(arr):
inv_count = 0
empty_value = -1
for i in range(0, 9):
for j in range(i + 1, 9):
if arr[j] != empty_value and arr[i] != empty_value and arr[i] > arr[j]:
inv_count += 1
return inv_count
def isSolvable(puzzle) :
inv_count = getInvCount([j for sub in puzzle for j in sub])
return (inv_count % 2 == 0)
def linear(state):
return sum([1 if state[i] != goal[i] else 0 for i in range(9)])
#memoize
def manhattan(state):
index_goal = coordinate(goal)
index_state = coordinate(state)
mhd = 0
for i in range(9):
for j in range(2):
mhd = abs(index_goal[i][j] - index_state[i][j]) + mhd
return mhd
#memoize
def sqrt_manhattan(state):
index_goal = coordinate(goal)
index_state = coordinate(state)
mhd = 0
for i in range(9):
for j in range(2):
mhd = (index_goal[i][j] - index_state[i][j])**2 + mhd
return math.sqrt(mhd)
#memoize
def max_heuristic(state):
score1 = manhattan(state)
score2 = linear(state)
return max(score1, score2)
class PriorityQueueElmt:
def __init__(self,val,e):
self.val = val
self.e = e
def __lt__(self,other):
return self.val < other.val
def value(self):
return self.val
def elem(self):
return self.e
class Queue:
def __init__(self):
pass
def extend(self, items):
for item in items: self.append(item)
class PriorityQueue(Queue):
def __init__(self, order=min, f=None):
self.A=[]
self.order=order
self.f=f
def append(self, item):
queueElmt = PriorityQueueElmt(self.f(item),item)
bisect.insort(self.A, queueElmt)
def __len__(self):
return len(self.A)
def pop(self):
if self.order == min:
return self.A.pop(0).elem()
else:
return self.A.pop().elem()
# Heuristics for 8 Puzzle Problem
class Problem:
def __init__(self, initial, goal=None):
self.initial = initial; self.goal = goal
def successor(self, state):
reachable = []
def get_key(val):
for key, value in index_state.items():
if val == value:
return key
return -1
def candidate(state, Position):
state = state.copy()
zero_index = state.index(0)
swap_index = state.index(get_key(Position))
state[zero_index], state[swap_index] = state[swap_index], state[zero_index]
return state
index_state = coordinate(state)
zero_position = index_state[0]
move_pair = {"left":[zero_position[0], zero_position[1] - 1],
"right":[zero_position[0], zero_position[1] + 1],
"up":[zero_position[0] - 1, zero_position[1]],
"down":[zero_position[0] + 1, zero_position[1]]
}
for action, position in move_pair.items():
#print(action, position)
if get_key(position) != -1:
reachable.append((action, candidate(state, position)))
#print(reachable)
return reachable
def goal_test(self, state):
return state == self.goal
def path_cost(self, c, state1, action, state2):
return c + 1
def value(self):
abstract
class Node:
def __init__(self, state, parent=None, action=None, path_cost=0, depth =0):
self.parent = parent
if parent:
self.depth = parent.depth + 1
else:
self.depth = 0
self.path_cost = path_cost
self.state = state
if action:
self.action = action
else: self.action = "init"
def __repr__(self):
return "Node state:\n " + str(np.array(self.state).reshape(3,3)) +"\n -> action: " + self.action + "\n -> depth: " + str(self.depth)
def path(self):
x, result = self, [self]
while x.parent:
result.append(x.parent)
x = x.parent
return result
def expand(self, problem):
for (act,n) in problem.successor(self.state):
if n not in [node.state for node in self.path()]:
yield Node(n, self, act,
problem.path_cost(self.path_cost, self.state, act, n))
def graph_search(problem, fringe):
closed = {}
fringe.append(Node(problem.initial,depth=0))
while fringe:
node = fringe.pop()
if problem.goal_test(node.state):
return node
if str(node.state) not in closed:
closed[str(node.state)] = True
fringe.extend(node.expand(problem))
return None
def best_first_graph_search(problem, f):
return graph_search(problem, PriorityQueue(min, f))
def astar_search(problem, h = None):
h = h or problem.h
def f(n):
return max(getattr(n, 'f', -infinity), n.path_cost + h(n.state))
return best_first_graph_search(problem, f)
def print_path(path, method):
print("*" * 30)
print("\nPath: (%s distance)" % method)
for i in range(len(path)-1, -1, -1):
print("-" * 15)
print(path[i])
goal = [1, 2, 3, 4, 5, 6, 7, 8, 0]
# Solving the puzzle
puzzle = [7, 2, 4, 5, 0, 6, 8, 3, 1]
if(isSolvable(np.array(puzzle).reshape(3,3))): # even true
# checks whether the initialized configuration is solvable or not
print("Solvable!")
problem = Problem(puzzle,goal)
path = astar_search(problem, manhattan).path()
print_path(path, "manhattan")
path = astar_search(problem, linear).path()
print_path(path, "linear")
path = astar_search(problem, sqrt_manhattan).path()
print_path(path, "sqrt_manhattan")
path = astar_search(problem, max_heuristic).path()
print_path(path, "max_heuristic")
else :
print("Not Solvable!") # non-even false
TypeError Traceback (most recent call last)
<ipython-input-124-2a60ddc8c009> in <module>
9 problem = Problem(puzzle,goal)
10
---> 11 path = astar_search(problem, manhattan).path()
12 print_path(path, "manhattan")
13
<ipython-input-123-caa97275712e> in astar_search(problem, h)
18 def f(n):
19 return max(getattr(n, 'f', -infinity), n.path_cost + h(n.state))
---> 20 return best_first_graph_search(problem, f)
21
22 def print_path(path, method):
<ipython-input-123-caa97275712e> in best_first_graph_search(problem, f)
12
13 def best_first_graph_search(problem, f):
---> 14 return graph_search(problem, PriorityQueue(min, f))
15
16 def astar_search(problem, h = None):
<ipython-input-123-caa97275712e> in graph_search(problem, fringe)
8 if str(node.state) not in closed:
9 closed[str(node.state)] = True
---> 10 fringe.extend(node.expand(problem))
11 return None
12
<ipython-input-121-e5a968bd54f0> in extend(self, items)
18
19 def extend(self, items):
---> 20 for item in items: self.append(item)
21
22 class PriorityQueue(Queue):
<ipython-input-122-db21613469b9> in expand(self, problem)
69
70 def expand(self, problem):
---> 71 for (act,n) in problem.successor(self.state):
72 if n not in [node.state for node in self.path()]:
73 yield Node(n, self, act,
TypeError: cannot unpack non-iterable int object
I got some error messages, how can I fix it?
There is one error message, The pieces of codes you get in the error message are the stack trace, which might help you to know how the execution got at the final point where the error occurred. In this case that is not so important. The essence of the error is this:
for (act,n) in problem.successor(self.state)
TypeError: cannot unpack non-iterable int object
So this means that the successor method returned an int instead of a list.
Looking at the code for successor, I notice that it intends to return a list called reachable, but there is a return statement right in the middle of the code, leaving the largest part of that code unexecuted (so-called "dead code"):
return state
This statement makes no sense where it is positioned. It seems to be an indentation problem: that return belongs inside the function just above it, like this:
def candidate(state, Position):
state = state.copy()
zero_index = state.index(0)
swap_index = state.index(get_key(Position))
state[zero_index], state[swap_index] = state[swap_index], state[zero_index]
return state # <-- indentation!

Why k-means clustering give me different answers when initialized with different centroids?

I followed the pseudo code for k-means clustering to write this code. This code gives different answers when initialized the clusters' centroids with different values and none of those answers are correct. Can you help me please?
I tested with 15 nodes, tolerance = 0.00001 and iterations = 100000
Thanks in advance.
class kMeans:
def __init__(self, coordinates, tolerance, iter, nof):
self.grid = coordinates
self.N = coordinates.shape[0]
self.t = tolerance
self.nof = nof
self.f = None
def kMeans(self, nof):
assign = [0]*self.N
self.fac = np.empty([nof,2])
for i in range(nof):
for j in range(2):
self.fac[i,j] = self.grid[i+10,j]
for itr in range(iter):
for n in range(self.N):
distance = [0]*nof
for f in range(nof):
distance[f] = math.sqrt((self.grid[n,0]-self.fac[f,0])**2 + (self.grid[n,1]-self.fac[f,1])**2 )
assign[n] = np.argmin(distance)
for fa in range(nof):
l = []
x,y = 0,0
for asg in range(self.N):
if fa == assign[asg]:
l.append(asg)
x = np.mean(self.grid[l,0])
y = np.mean(self.grid[l,1])
if abs(x-self.fac[fa,0]) >= self.t:
self.fac[fa,0] = x
if abs(y-self.fac[fa,1]) >= self.t:
self.fac[fa,1] = y
continue
print('dist:',distance)
print('assign:',assign)
print('fac:',self.fac)
print('locate:', self.grid[l,1])
self.f = self.fac
return self.fac
'''

Class method for merge sort recursively

I am trying to create a method for merge sort recursively. I am not so familiar with objects and i am trying to get this right. I know the algorithm works as a stand alone function, but when trying to implement as a class method, i get error.
The problem lies in this two lines of code:
left_list = left_list.merge_sort()
right_list = right_list.merge_sort()
class Lists(object):
def __init__(self):
self.capacity = 8
self.arr = [None] * capacity
self.size = 0
def merge_sort(self):
if self.size <= 1:
return self.arr
middle = self.size // 2
left_list = self.arr[:middle]
right_list = self.arr[middle:]
left_list = left_list.merge_sort()
right_list = right_list.merge_sort()
return list(self.merge(left_list, right_list))
def merge(self, left_half, right_half):
res = []
while len(left_half) != 0 and len(right_half) != 0:
if left_half[0] < right_half[0]:
res.append(left_half[0])
left_half.remove(left_half[0])
else:
res.append(right_half[0])
right_half.remove(right_half[0])
if len(left_half) == 0:
res = res + right_half
else:
res = res + left_half
return res
And of course is another function append, that appends each time at the self.arr and increases the size by 1 each time an element is appended.

Calling a method within other method definitions and 'object has no attribute'

So I've been solving problems utilizing classes for the sake of practicing, but I've been having troubles with calling a method defined in a class, within a method definition of the same class
class Hive:
def __init__(self, arr):
self._arr = arr
self._index = ['Re','Pt','Cc','Ea','Tb','Cm','Ex']
self._number = [0] * 7
self._ratio = []
self._len = len(self._arr)
def number(self):
for i in range(7):
for j in range(self._len):
if self._index[i] == self._arr[j]:
self._number[i] += 1
return self._number
def rate(self):
population = self._arr.number()
for x in range(7):
self._ratio.append(population[x] / self._len)
return self._ratio
def prnt(self):
population2= self._arr.number()
rate2 = self._arr.rate()
for k in range(7):
print("%s %d %.2f" % (self._index[k], population2[k], rate2[k]))
print("Total", str(self._len), "1.00")
arr = input().split()
Colony = Hive(arr)
Colony.prnt()
This ends up with an error that states the following:
Traceback (most recent call last):
File "inee.py", line 33, in <module>
Colony.prnt()
File "inee.py", line 25, in prnt
population2= self._arr.number()
AttributeError: 'list' object has no attribute 'number'
So the only way I could remedy this with my current knowledge was to take care of list assignments outside the method definitions:
class Hive:
def __init__(self, arr):
self._arr = arr
self._index = ['Re','Pt','Cc','Ea','Tb','Cm','Ex']
self._number = [0] * 7
self._ratio = []
self._len = len(self._arr)
def number(self):
for i in range(7):
for j in range(self._len):
if self._index[i] == self._arr[j]:
self._number[i] += 1
return self._number
def rate(self, array):
for x in range(7):
self._ratio.append(array[x] / self._len)
return self._ratio
def prnt(self, array2, array3):
for k in range(7):
print("%s %d %.2f" % (self._index[k], array2[k], array3[k]))
print("Total", str(self._len), "1.00")
arr = input().split()
initial = Hive(arr)
population = initial.number()
rateList = initial.rate(population)
initial.prnt(population, rateList)
This yielded results I wanted, but what's wrong with the first one? Is that not a correct way of calling methods within a method definition within a class?
By callint prnt()-method, you are referring to self._arr. This is not your Hive-object which has the number()-method. It's simply a list. A list does not have a number() attribute. The way you wrote your script you can only call number()-method on the Hive-object itself: self.number(), instead of self._arr.number().
This counts for rate()-method and prnt()-method:
def rate(self):
population = self.number() # <-- here
for x in range(7):
self._ratio.append(population[x] / self._len)
return self._ratio
def prnt(self):
population2 = self.number() # <-- here
rate2 = self.rate() # <-- and here
for k in range(7):
print("%s %d %.2f" % (self._index[k], population2[k], rate2[k]))
print("Total", str(self._len), "1.00")
The second variant you provided cannot work, because you're using number()-method on Hive-object which has no longer a defined attribute number(), because you outsourced it. But you can use it now as a function like this:
>>> arr = ["This", "is", "a", "test", "Re", "Cc", "Tb"]
>>> initial = Hive(arr)
>>> population = number(initial)
>>> print(population)
[1, 0, 1, 0, 1, 0, 0]

Issue with python __eq__ method in checking if 2 lists are equal

I have a python program in which I have a class called Vector and an empty list inside of that class which is being populated runtime.
Here is the init:
def __init__(self,n):
self.vector = [];
self.n = n;
for x in range(n):
self.vector.append(False);
And here is the eq:
def __eq__(self, other):
t = True
for x in range(self.n):
if self.vector[x] != other.vector[x]:
t = False;
return t
however, when I try to check if 2 objects of this type are equal, I always get true, even though I changed values inside of vector in Vector class.
Here is the code where I do the above:
vectors = []
n = tmp.size();
k = calculateCombinationCount(n,int(n/2))
for i in range(k):
for j in range(0,n-1):
if (tmp.vector[j] != tmp.vector[j+1]):
t = True
for x in vectors:
if x == tmp:
t = False;
if t:
vectors.append(tmp)
tmp.printVector();
tmp.swap(j,j+1);
I would appreciate any help that you can provide. Thank you :)
EDIT:
def swap(self,i,j):
tmp = self.vector[i]
self.vector[i] = self.vector[j]
self.vector[j] = tmp
def calculateCombinationCount(n,r):
k = factorial(n)/(factorial(int(r))*factorial(int(n-r)))
return int(k)
Right so I've updated your code to be much more pythonic (I can tell you come from another language, Java?).
from math import factorial
class Vector:
def __init__(self, size):
self.size = size
self.vector = [False] * size
def __eq__(self, other):
"""
Same if self.size == other.size
"""
assert self.size == other.size, (self.size, other.size)
return self.vector == other.vector
def print_vector(self):
print(self.vector)
def swap(self, i, j):
"""
More efficient and pythonic
"""
self.vector[i], self.vector[j] = self.vector[j], self.vector[i]
def calculate_combination_count(n, r):
"""
This is slow, I'd replace it with scipy.special.comb
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.comb.html#scipy.special.comb
"""
return factorial(n) // (factorial(r) * factorial(n-r))
tmp = Vector(10)
vectors = []
n = tmp.size
k = calculate_combination_count(n, n // 2)
for i in range(k):
for j in range(0, n-1):
if tmp.vector[j] != tmp.vector[j + 1]:
if not any(vec == tmp for vec in vectors): # much more efficient
vectors.append(tmp)
tmp.print_vector()
tmp.swap(j, j + 1)
else: # Just to prove why it doesn't work
print('tmp.vector is all False: {}'.format(not all(tmp.vector)))
This prints out tmp.vector is all False: True repeatedly. I think this is your problem.
If you

Categories

Resources