This may have been answered somewhere else, but I was wondering if there was any way to remove an attribute/method decorated with #property in a subclass.
Example:
from datetime import datetime
class A():
def __init__(self, num):
self._num = num
#property
def id(self):
return self._num * datetime.now().timestamp()
class B(A):
def __init__(self, id, num):
super().__init__(num)
self.id = id
The above code does not run if you attempt to create an instance of class B. AttributeError: can't set attribute
The base class uses a property because it needs to evaluate its ID on the fly, while my sub class is able to know its ID when it is created. The id attribute is accessed OFTEN, and I am seeing a significant performance hit because I have to use a property to serve this attribute, instead of just accessing it directly. (From what I have read, properties increase time-to-access by 5x). My application is currently spending around 10% of runtime getting this property.
Is there any way I can short-circuit the property in a sub class?
I'm going to go through several possibilities here. Some of them do what you literally asked. Some of them don't, but they may be better options anyway.
First, your example base class changes the value of obj.id on every access due to the passage of time. That's really bizarre and doesn't seem like a useful concept of "ID". If your real use case has a stable obj.id return value, then you can cache it to avoid the expense of recomputation:
def __init__(self):
...
self._id = None
#property
def id(self):
if self._id is not None:
return self._id
retval = self._id = expensive_computation()
return retval
This may mitigate the expense of the property. If you need more mitigation, look for places where you access id repeatedly, and instead, access it once and save it in a variable. Local variable lookup outperforms attribute access no matter how the attribute is implemented. (Of course, if you actually do have weird time-variant IDs, then this sort of refactoring may not be valid.)
Second, you can't override a property with a "regular" attribute, but you can create your own version of property that can be overridden this way. Your property blocks attribute setting, and takes priority over "regular" attributes even if you force an entry into the instance __dict__, because property has a __set__ method (even if you don't write a setter). Writing your own descriptor without a __set__ would allow overriding. You could do it with a generic LowPriorityProperty:
class LowPriorityProperty(object):
"""
Like #property, but no __set__ or __delete__, and does not take priority
over the instance __dict__.
"""
def __init__(self, fget):
self.fget = fget
def __get__(self, instance, owner=None):
if instance is None:
return self
return self.fget(instance)
class Foo(object):
...
#LowPriorityProperty
def id(self):
...
class Bar(Foo):
def __init__(self):
super(Bar, self).__init__()
self.id = whatever
...
Or with a role-specific descriptor class:
class IDDescriptor(object):
def __get__(self, instance, owner=None):
if instance is None:
return self
# Remember, self is the descriptor. instance is the object you're
# trying to compute the id attribute of.
return whatever(instance)
class Foo(object):
id = IDDescriptor()
...
class Bar(Foo):
def __init__(self):
super(Bar, self).__init__()
self.id = whatever
...
The role-specific descriptor performs better than the generic LowPriorityProperty, but both perform worse than property due to implementing more logic in Python instead of C.
Finally, you can't override a property with a "regular" attribute, but you can override it with another descriptor, such as another property, or such as the descriptors created for __slots__. If you're really, really pressed for performance, __slots__ is probably more performant than any descriptor you could implement manually, but the interaction between __slots__ and the property is weird and obscure and you'll probably want to leave a comment explaining what you're doing.
class Foo(object):
#property
def id(self):
...
class Bar(Foo):
__slots__ = ('id',)
def __init__(self):
super(Bar, self).__init__()
self.id = whatever
...
add a class C as common ancestor, without id. inherit A and B from it and implement id there as needed. Python wont care that id doesn’t exist on C.
refactor non-id code/attributes from A to C.
Suitability depends on whether OP controls class hierarchy and instantiation mechanisms.
I also found a workaround to get it working as is:
from datetime import datetime
class A():
def __init__(self, num):
self._num = num
#property
def id(self):
return self._num * datetime.now().timestamp()
class B(A):
#this fixes the problem
id = None
def __init__(self, id, num):
super().__init__(num)
self.id = id
b = B("id", 3)
print(vars(b))
This will output:
{'_num': 3, 'id': 'id'}
The trick is id = None on class B. Basically, Python's attribute/method lookup mechanism will stop at the first class with id as an attribute in the MRO. With id = None on class B, the lookup stops there and it never gets as far as that pesky #property on A.
If I comment it back out, as per the OP:
self.id = id
AttributeError: can't set attribute
Related
I'm reading Fluent Python chapter 19 > A Proper Look at Properties, and I'm confused about the following words:
Properties are always class attributes, but they actually manage attribute access in the instances of the class.
The example code is:
class LineItem:
def __init__(self, description, weight, price):
self.description = description
self.weight = weight # <1>
self.price = price
def subtotal(self):
return self.weight * self.price
#property # <2>
def weight(self): # <3>
return self.__weight # <4>
#weight.setter # <5>
def weight(self, value):
if value > 0:
self.__weight = value # <6>
else:
raise ValueError('value must be > 0') # <7>
From my previous experiences, class attributes are belong to the class itself and shared by all the instances. But here, weight, the property, is an instance method and the value returned by it is different between instances. How is it eligible to be a class attribute? Doesn't it that all the class attributes should be the same for any instances?
I think I misunderstand something, so I hope to get a correct explanation. Thanks!
A distinction is made because when you define a #property on a class, that property object becomes an attribute on the class. Whereas when you define attributes against an instance of your class (in your __init__ method), that attribute only exists against that object. This might be confusing if you do:
>>> dir(LineItem)
['__class__', ..., '__weakref__', 'subtotal', 'weight']
>>> item = LineItem("an item", 3, 1.12)
>>> dir(item)
['__class__', ..., '__weakref__', 'description', 'price', 'subtotal', 'weight']
Notice how both subtotal and weight exist as attributes on your class.
I think it's also worth noting that when you define a class, code under that class is executed. This includes defining variables (which then become class attributes), defining functions, and anything else.
>>> import requests
>>> class KindOfJustANamespace:
... text = requests.get("https://example.com").text
... while True:
... break
... for x in range(2):
... print(x)
...
0
1
>>> KindOfJustANamespace.text
'<!doctype html>\n<html>\n<head>\n <title>Example Domain...'
A #decorator is just "syntactic sugar". Meaning #property over a function if the same as function = property(function). This applies to functions defined inside a class as well, but now the function is part of the class's namespace.
class TestClass:
#property
def foo(self):
return "foo"
# ^ is the same as:
def bar(self):
return "bar"
bar = property(bar)
A good explanation of property in Python can be found here: https://stackoverflow.com/a/17330273/7220776
From my previous experiences, class attributes are belong to the class itself and shared by all the instances.
That's right.
But here, weight, the property, is an instance method
No, it's a property object. When you do:
#decorator
def func():
return 42
it's actually syntactic sugar for
def func():
return 42
func = decorator(func)
IOW the def statement is executed, the function object created, but instead of beeing bound to it's name, it's passed to the decorator callable, and the name is bound to whatever decorator() returned.
In this case the decorator is the property class itself, so the weight attribute is a property instance. You can check this out by yourself by inspecting LineItem.weight (which will return the property object itself).
and the value returned by it is different between instances.
Well yes of course, how is this surprising ? LineItem.subtotal is a class attribute also (like all methods), yet it returns values from the instance it's called on (which is passed to the function as the self param).
How is it eligible to be a class attribute? Doesn't it that all the class attributes should be the same for any instances?
The class attributes ARE the same for all instances of a class, yes. There's only one single subtotal function for all instances of LineItem.
A property is mainly a shortcut to make a function (or a pair of functions if you specify a setter) look like it's a plain attribute, so when you type mylinitem.weight, what is really executed is LineItem.weight.fget(mylineitem), where fget is the getter function you decorated with #property. The mechanism behind this is known as the "descriptor protocol", which is also used to turn mylineitem.subtotal() into LineItem.subtotal(mylineitem) (python functions implement the descriptor protocol to return "method" objects, which are themselves wrappers around the function and the current instance and insert the instance as first argument to the function call).
So it's not suprising that properties are class attributes - you only need one property instance to "serve" all instances of the class -, and moreover, properties - like all descriptors FWIW - MUST actually be class attributes to work as expected, since the descriptor protocol is only invoked on class attributes (there's no use case for a "per instance" computed attribute since the function in charge of the "computation" will get the instance as parameter).
I finally understand the descriptor and property concept through Simeon Franklin's excellent presentation, the following contents can be seen as a summary on his lecture notes. Thanks to him!
To understand properties, you first need to understand descriptors, because a property is implemented by a descriptor and python's decorator syntactic sugar. Don't worry, it's not that difficult.
What is a descriptor:
a descriptor is any object that implements at least one of methods named __get__(), __set__(), and __delete__().
Descriptor can be divided into two categories:
A data descriptor implements both __get__() and __set__().
A non-data descriptor implements only __get__().
According to python's HowTo:
a descriptor is an object attribute with “binding behavior”, one whose attribute access has been overridden by methods in the descriptor protocol.
Then what is the descriptor protocol? Basically speaking, it's just says that when Python interpreter comes across an attribute access like obj.attr,it will search in some order to resolve this .attr , and if this attr is a descriptor attribute, then this descriptor will take some precedence in this specific order and this attribute access will be translated into a method call on this descriptor according to the descriptor protocol, possibly shadowing a namesake instance attribute or class attribute. More concretely, if attr is a data descriptor, then obj.attr will be translated into the calling result of this descriptor's __get__ method; if attr is not a data descriptor and is an instance attribute, this instance attribute will be matched; if attr is not in above, and it is a non-data descriptor, we get the calling result of this non-data descriptor's __get__ method. Full rules on attribute resolution can be found here .
Now let's talk about property. If you have looked at Python' descriptor HowTo, you can find a pure Python version implementation of property:
class Property(object):
"Emulate PyProperty_Type() in Objects/descrobject.c"
def __init__(self, fget=None, fset=None, fdel=None, doc=None):
self.fget = fget
self.fset = fset
self.fdel = fdel
if doc is None and fget is not None:
doc = fget.__doc__
self.__doc__ = doc
def __get__(self, obj, objtype=None):
if obj is None:
return self
if self.fget is None:
raise AttributeError("unreadable attribute")
return self.fget(obj)
def __set__(self, obj, value):
if self.fset is None:
raise AttributeError("can't set attribute")
self.fset(obj, value)
def __delete__(self, obj):
if self.fdel is None:
raise AttributeError("can't delete attribute")
self.fdel(obj)
def getter(self, fget):
return type(self)(fget, self.fset, self.fdel, self.__doc__)
def setter(self, fset):
return type(self)(self.fget, fset, self.fdel, self.__doc__)
def deleter(self, fdel):
return type(self)(self.fget, self.fset, fdel, self.__doc__)
Apparently,property is a data descriptor!
#property just uses python's decorator syntactic sugar.
#property
def attr(self):
pass
is equivalent to:
attr = property(attr)
So, attr is no longer an instance method as I posted in thie question, but is translated into a class attribute by the decorator syntactic sugar as the author said. It's a descriptor object attribute.
How is it eligible to be a class attribute?
OK, we solved it now.
Then:
Doesn't it that all the class attributes should be the same for any instances?
No!
I steal an example from Simeon Franklin's excellent presentation .
>>> class MyDescriptor(object):
... def __get__(self, obj, type):
... print self, obj, type
... def __set__(self, obj, val):
... print "Got %s" % val
...
>>> class MyClass(object):
... x = MyDescriptor() # Attached at class definition time!
...
>>> obj = MyClass()
>>> obj.x # a function call is hiding here
<...MyDescriptor object ...> <....MyClass object ...> <class '__main__.MyClass'>
>>>
>>> MyClass.x # and here!
<...MyDescriptor object ...> None <class '__main__.MyClass'>
>>>
>>> obj.x = 4 # and here
Got 4
Pay attention to obj.x and its output. The second element in its output is <....MyClass object ...> . It's the specific instance obj . Shortly speaking, because this attribute access has been translated into a __get__ method call, and this __get__ method get the specific instance argument as its method signature descr.__get__(self, obj, type=None) demands, it can return different values according to which instance it is been called by.
Note: my English explanation maybe not clear enough, so I highly recommend you to look at Simeon Franklin's notes and Python's descriptor HowTo.
You didn't misunderstand. Don't worry, just read on. It will become clear in the next chapter.
The same book explains in chapter 20 that they can be a class attributes because of the descriptor protocol. The documentation explains how properties are implemented as descriptors.
As you see from the example, properties are really class attributes (methods). When called, they get a reference to the instance, and writes/reads to its underlying __dict__.
I think the example is wrong, the init shoul look like this:
def __init__(self, description, weight, price):
self.description = description
self.__weight = weight # <1>
self.__price = price
self.__weight and self.__price are the internal attributes hidden in the class by the properties
The Scenario:
class A:
def __init__(self, key, secret):
self.key = key
self.secret = secret
def same_name_method(self):
do_some_staff
def method_a(self):
pass
class B:
def __init__(self, key, secret):
self.key = key
self.secret = secret
def same_name_method(self):
do_another_staff
def method_b(self):
pass
class C(A,B):
def __init__(self, *args, **kwargs):
# I want to init both class A and B's key and secret
## I want to rename class A and B's same method
any_ideas()
...
What I Want:
I want the instance of class C initialize both class A and B, because they are different api key.
And I want rename class A and B's same_name_method, so I will not confused at which same_name_method.
What I Have Done:
For problem one, I have done this:
class C(A,B):
def __init__(self, *args, **kwargs):
A.__init__(self, a_api_key,a_api_secret)
B.__init__(self, b_api_key,b_api_secret)
Comment: I know about super(), but for this situation I do not know how to use it.
For problem two, I add a __new__ for class C
def __new__(cls, *args, **kwargs):
cls.platforms = []
cls.rename_method = []
for platform in cls.__bases__:
# fetch platform module name
module_name = platform.__module__.split('.')[0]
cls.platforms.append(module_name)
# rename attr
for k, v in platform.__dict__.items():
if not k.startswith('__'):
setattr(cls, module_name+'_'+k, v)
cls.rename_method.append(k)
for i in cls.rename_method:
delattr(cls, i) ## this line will raise AttributeError!!
return super().__new__(cls)
Comment: because I rename the new method names and add it to cls attr. I need to delete the old method attr, but do not know how to delattr. Now I just leave them alone, did not delete the old methods.
Question:
Any Suggestions?
So, you want some pretty advanced things, some complicated things, and you don't understand well how classes behave in Python.
So, for your first thing: initializing both classes, and every other method that should run in all classes: the correct solution is to make use of cooperative calls to super() methods.
A call to super() in Python returns you a very special proxy objects that reflects all methods available in the next class, obeying the proper method Resolution Order.
So, if A.__init__ and B.__init__ have to be called, both methods should include a super().__init__ call - and one will call the other's __init__ in the appropriate order, regardless of how they are used as bases in subclasses. As object also have __init__, the last super().__init__ will just call it that is a no-op. If you have more methods in your classes that should be run in all base classes, you'd rather build a proper base class so that the top-most super() call don't try to propagate to a non-existing method.
Otherwise, it is just:
class A:
def __init__(self, akey, asecret, **kwargs):
self.key = akey
self.secret = asecret
super().__init__(**kwargs)
class B:
def __init__(self, bkey, bsecret, **kwargs):
self.key = bkey
self.secret = bsecret
super().__init__(**kwargs)
class C(A,B):
# does not even need an explicit `__init__`.
I think you can get the idea. Of course, the parameter names have to differ - ideally, when writing C you don't have to worry about parameter order - but when calling C you have to worry about suplying all mandatory parameters for C and its bases. If you can't rename the parameters in A or B to be distinct, you could try to use the parameter order for the call, though, with each __init__ consuming two position-parameters - but that will require some extra care in inheritance order.
So - up to this point, it is basic Python multiple-inheritance "howto", and should be pretty straightforward. Now comes your strange stuff.
As for the auto-renaming of methods: first things first -
are you quite sure you need inheritance? Maybe having your granular classes for each external service, and a registry and dispatch class that call the methods on the others by composition would be more sane. (I may come back to this later)
Are you aware that __new__ is called for each instantiation of the class, and all class-attribute mangling you are performing there happens at each new instance of your classes?
So, if the needed method-renaming + shadowing needs to take place at class creation time, you can do that using the special method __init_subclass__ that exists from Python 3.6. It is a special class method that is called once for each derived class of the class it is defined on. So, just create a base class, from which A and B themselves will inherit, and move a properly modified version the thing you are putting in __new__ there. If you are not using Python 3.6, this should be done on the __new__ or __init__ of a metaclass, not on the __new__ of the class itself.
Another approach would be to have a custom __getattribute__ method - this could be crafted to provide namespaces for the base classes. It would owrk ony on instances, not on the classes themselves (but could be made to, again, using a metaclass). __getattribute__ can even hide the same-name-methods.
class Base:
#classmethod
def _get_base_modules(cls):
result = {}
for base in cls.__bases__:
module_name = cls.__module__.split(".")[0]
result[module_name] = base
return result
#classmethod
def _proxy(self, module_name):
class base:
def __dir__(base_self):
return dir(self._base_modules[module_name])
def __getattr__(base_self, attr):
original_value = self._base_modules[module_name].__dict__[attr]
if hasattr(original_value, "__get__"):
original_value = original_value.__get__(self, self.__class__)
return original_value
base.__name__ = module_name
return base()
def __init_subclass__(cls):
cls._base_modules = cls._get_base_modules()
cls._shadowed = {name for module_class in cls._base_modules.values() for name in module_class.__dict__ if not name.startswith("_")}
def __getattribute__(self, attr):
if attr.startswith("_"):
return super().__getattribute__(attr)
cls = self.__class__
if attr in cls._shadowed:
raise AttributeError(attr)
if attr in cls._base_modules:
return cls._proxy(attr)
return super().__getattribute__(attr)
def __dir__(self):
return super().dir() + list(self._base_modules)
class A(Base):
...
class B(Base):
...
class C(A, B):
...
As you can see - this is some fun, but starts getting really complicated - and all the hoola-boops that are needed to retrieve the actual attributes from the superclasses after ading an artificial namespace seem to indicate your problem is not calling for using inheritance after all, as I suggested above.
Since you have your small, functional, atomic classes for each "service" , you could use a plain, simple, non-meta-at-all class that would work as a registry for the various services - and you can even enhance it to call the equivalent method in several of the services it is handling with a single call:
class Services:
def __init__(self):
self.registry = {}
def register(self, cls, key, secret):
name = cls.__module__.split(".")[0]
service= cls(key, secret)
self.registry[name] = service
def __getattr__(self, attr):
if attr in self.registry:
return self.registry[attr]
I have a master class for a planet:
class Planet:
def __init__(self,name):
self.name = name
(...)
def destroy(self):
(...)
I also have a few classes that inherit from Planet and I want to make one of them unable to be destroyed (not to inherit the destroy function)
Example:
class Undestroyable(Planet):
def __init__(self,name):
super().__init__(name)
(...)
#Now it shouldn't have the destroy(self) function
So when this is run,
Undestroyable('This Planet').destroy()
it should produce an error like:
AttributeError: Undestroyable has no attribute 'destroy'
The mixin approach in other answers is nice, and probably better for most cases. But nevertheless, it spoils part of the fun - maybe obliging you to have separate planet-hierarchies - like having to live with two abstract classes each ancestor of "destroyable" and "non-destroyable".
First approach: descriptor decorator
But Python has a powerful mechanism, called the "descriptor protocol", which is used to retrieve any attribute from a class or instance - it is even used to ordinarily retrieve methods from instances - so, it is possible to customize the method retrieval in a way it checks if it "should belong" to that class, and raise attribute error otherwise.
The descriptor protocol mandates that whenever you try to get any attribute from an instance object in Python, Python will check if the attribute exists in that object's class, and if so, if the attribute itself has a method named __get__. If it has, __get__ is called (with the instance and class where it is defined as parameters) - and whatever it returns is the attribute. Python uses this to implement methods: functions in Python 3 have a __get__ method that when called, will return another callable object that, in turn, when called will insert the self parameter in a call to the original function.
So, it is possible to create a class whose __get__ method will decide whether to return a function as a bound method or not depending on the outer class been marked as so - for example, it could check an specific flag non_destrutible. This could be done by using a decorator to wrap the method with this descriptor functionality
class Muteable:
def __init__(self, flag_attr):
self.flag_attr = flag_attr
def __call__(self, func):
"""Called when the decorator is applied"""
self.func = func
return self
def __get__(self, instance, owner):
if instance and getattr(instance, self.flag_attr, False):
raise AttributeError('Objects of type {0} have no {1} method'.format(instance.__class__.__name__, self.func.__name__))
return self.func.__get__(instance, owner)
class Planet:
def __init__(self, name=""):
pass
#Muteable("undestroyable")
def destroy(self):
print("Destroyed")
class BorgWorld(Planet):
undestroyable = True
And on the interactive prompt:
In [110]: Planet().destroy()
Destroyed
In [111]: BorgWorld().destroy()
...
AttributeError: Objects of type BorgWorld have no destroy method
In [112]: BorgWorld().destroy
AttributeError: Objects of type BorgWorld have no destroy method
Perceive that unlike simply overriding the method, this approach raises the error when the attribute is retrieved - and will even make hasattr work:
In [113]: hasattr(BorgWorld(), "destroy")
Out[113]: False
Although, it won't work if one tries to retrieve the method directly from the class, instead of from an instance - in that case the instance parameter to __get__ is set to None, and we can't say from which class it was retrieved - just the owner class, where it was declared.
In [114]: BorgWorld.destroy
Out[114]: <function __main__.Planet.destroy>
Second approach: __delattr__ on the metaclass:
While writting the above, it occurred me that Pythn does have the __delattr__ special method. If the Planet class itself implements __delattr__ and we'd try to delete the destroy method on specifc derived classes, it wuld nt work: __delattr__ gards the attribute deletion of attributes in instances - and if you'd try to del the "destroy" method in an instance, it would fail anyway, since the method is in the class.
However, in Python, the class itself is an instance - of its "metaclass". That is usually type . A proper __delattr__ on the metaclass of "Planet" could make possible the "disinheitance" of the "destroy" method by issuing a `del UndestructiblePlanet.destroy" after class creation.
Again, we use the descriptor protocol to have a proper "deleted method on the subclass":
class Deleted:
def __init__(self, cls, name):
self.cls = cls.__name__
self.name = name
def __get__(self, instance, owner):
raise AttributeError("Objects of type '{0}' have no '{1}' method".format(self.cls, self.name))
class Deletable(type):
def __delattr__(cls, attr):
print("deleting from", cls)
setattr(cls, attr, Deleted(cls, attr))
class Planet(metaclass=Deletable):
def __init__(self, name=""):
pass
def destroy(self):
print("Destroyed")
class BorgWorld(Planet):
pass
del BorgWorld.destroy
And with this method, even trying to retrieve or check for the method existense on the class itself will work:
In [129]: BorgWorld.destroy
...
AttributeError: Objects of type 'BorgWorld' have no 'destroy' method
In [130]: hasattr(BorgWorld, "destroy")
Out[130]: False
metaclass with a custom __prepare__ method.
Since metaclasses allow one to customize the object that contains the class namespace, it is possible to have an object that responds to a del statement within the class body, adding a Deleted descriptor.
For the user (programmer) using this metaclass, it is almost the samething, but for the del statement been allowed into the class body itself:
class Deleted:
def __init__(self, name):
self.name = name
def __get__(self, instance, owner):
raise AttributeError("No '{0}' method on class '{1}'".format(self.name, owner.__name__))
class Deletable(type):
def __prepare__(mcls,arg):
class D(dict):
def __delitem__(self, attr):
self[attr] = Deleted(attr)
return D()
class Planet(metaclass=Deletable):
def destroy(self):
print("destroyed")
class BorgPlanet(Planet):
del destroy
(The 'deleted' descriptor is the correct form to mark a method as 'deleted' - in this method, though, it can't know the class name at class creation time)
As a class decorator:
And given the "deleted" descriptor, one could simply inform the methods to be removed as a class decorator - there is no need for a metaclass in this case:
class Deleted:
def __init__(self, cls, name):
self.cls = cls.__name__
self.name = name
def __get__(self, instance, owner):
raise AttributeError("Objects of type '{0}' have no '{1}' method".format(self.cls, self.name))
def mute(*methods):
def decorator(cls):
for method in methods:
setattr(cls, method, Deleted(cls, method))
return cls
return decorator
class Planet:
def destroy(self):
print("destroyed")
#mute('destroy')
class BorgPlanet(Planet):
pass
Modifying the __getattribute__ mechanism:
For sake of completeness - what really makes Python reach methods and attributes on the super-class is what happens inside the __getattribute__ call. n the object version of __getattribute__ is where the algorithm with the priorities for "data-descriptor, instance, class, chain of base-classes, ..." for attribute retrieval is encoded.
So, changing that for the class is an easy an unique point to get a "legitimate" attribute error, without need for the "non-existent" descritor used on the previous methods.
The problem is that object's __getattribute__ does not make use of type's one to search the attribute in the class - if it did so, just implementing the __getattribute__ on the metaclass would suffice. One have to do that on the instance to avoid instance lookp of an method, and on the metaclass to avoid metaclass look-up. A metaclass can, of course, inject the needed code:
def blocker_getattribute(target, attr, attr_base):
try:
muted = attr_base.__getattribute__(target, '__muted__')
except AttributeError:
muted = []
if attr in muted:
raise AttributeError("object {} has no attribute '{}'".format(target, attr))
return attr_base.__getattribute__(target, attr)
def instance_getattribute(self, attr):
return blocker_getattribute(self, attr, object)
class M(type):
def __init__(cls, name, bases, namespace):
cls.__getattribute__ = instance_getattribute
def __getattribute__(cls, attr):
return blocker_getattribute(cls, attr, type)
class Planet(metaclass=M):
def destroy(self):
print("destroyed")
class BorgPlanet(Planet):
__muted__=['destroy'] # or use a decorator to set this! :-)
pass
If Undestroyable is a unique (or at least unusual) case, it's probably easiest to just redefine destroy():
class Undestroyable(Planet):
# ...
def destroy(self):
cls_name = self.__class__.__name__
raise AttributeError("%s has no attribute 'destroy'" % cls_name)
From the point of view of the user of the class, this will behave as though Undestroyable.destroy() doesn't exist … unless they go poking around with hasattr(Undestroyable, 'destroy'), which is always a possibility.
If it happens more often that you want subclasses to inherit some properties and not others, the mixin approach in chepner's answer is likely to be more maintainable. You can improve it further by making Destructible an abstract base class:
from abc import abstractmethod, ABCMeta
class Destructible(metaclass=ABCMeta):
#abstractmethod
def destroy(self):
pass
class BasePlanet:
# ...
pass
class Planet(BasePlanet, Destructible):
def destroy(self):
# ...
pass
class IndestructiblePlanet(BasePlanet):
# ...
pass
This has the advantage that if you try to instantiate the abstract class Destructible, you'll get an error pointing you at the problem:
>>> Destructible()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Destructible with abstract methods destroy
… similarly if you inherit from Destructible but forget to define destroy():
class InscrutablePlanet(BasePlanet, Destructible):
pass
>>> InscrutablePlanet()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class InscrutablePlanet with abstract methods destroy
Rather than remove an attribute that is inherited, only inherit destroy in the subclasses where it is applicable, via a mix-in class. This preserves the correct "is-a" semantics of inheritance.
class Destructible(object):
def destroy(self):
pass
class BasePlanet(object):
...
class Planet(BasePlanet, Destructible):
...
class IndestructiblePlanet(BasePlanet): # Does *not* inherit from Destructible
...
You can provide suitable definitions for destroy in any of Destructible, Planet, or any class that inherits from Planet.
Metaclasses and descriptor protocols are fun, but perhaps overkill. Sometimes, for raw functionality, you can't beat good ole' __slots__.
class Planet(object):
def __init__(self, name):
self.name = name
def destroy(self):
print("Boom! %s is toast!\n" % self.name)
class Undestroyable(Planet):
__slots__ = ['destroy']
def __init__(self,name):
super().__init__(name)
print()
x = Planet('Pluto') # Small, easy to destroy
y = Undestroyable('Jupiter') # Too big to fail
x.destroy()
y.destroy()
Boom! Pluto is toast!
Traceback (most recent call last):
File "planets.py", line 95, in <module>
y.destroy()
AttributeError: destroy
You cannot inherit only a portion of a class. Its all or nothing.
What you can do is to put the destroy function in a second level of the class, such you have the Planet-class without the destry-function, and then you make a DestroyablePlanet-Class where you add the destroy-function, which all the destroyable planets use.
Or you can put a flag in the construct of the Planet-Class which determines if the destroy function will be able to succeed or not, which is then checked in the destroy-function.
If you have multiple layers of inheritance and know that a particular variable exists, is there a way to trace back to where the variable originated? Without having to navigate backwards by looking through each file and classes. Possibly calling some sort of function that will do it?
Example:
parent.py
class parent(object):
def __init__(self):
findMe = "Here I am!"
child.py
from parent import parent
class child(parent):
pass
grandson.py
from child import child
class grandson(child):
def printVar(self):
print self.findMe
Try to locate where the findMe variable came from with a function call.
If the "variable" is an instance variable - , so , if at any point in chain of __init__ methods you do:
def __init__(self):
self.findMe = "Here I am!"
It is an instance variable from that point on, and cannot, for all effects, be made distinct of any other instance variable. (Unless you put in place a mechanism, like a class with a special __setattr__ method, that will keep track of attributes changing, and introspect back which part of the code set the attribute - see last example on this answer)
Please also note that on your example,
class parent(object):
def __init__(self):
findMe = "Here I am!"
findMe is defined as a local variable to that method and does not even exist after __init__ is finished.
Now, if your variable is set as a class attribute somewhere on the inheritance chain:
class parent(object):
findMe = False
class childone(parent):
...
It is possible to find the class where findMe is defined by introspecting each class' __dict__ in the MRO (method resolution order) chain . Of course, there is no way, and no sense, in doing that without introspecting all classes in the MRO chain - except if one keeps track of attributes as defined, like in the example bellow this - but introspecting the MRO itself is a oneliner in Python:
def __init__(self):
super().__init__()
...
findme_definer = [cls for cls in self.__class__.__mro__ if "findMe" in cls.__dict__][0]
Again - it would be possible to have a metaclass to your inheritance chain which would keep track of all defined attributes in the inheritance tree, and use a dictionary to retrieve where each attribute is defined. The same metaclass could also auto-decorate all __init__ (or all methods), and set a special __setitem__ so that it could track instance attributes as they are created, as listed above.
That can be done, is a bit complicated, would be hard to maintain, and probably is a signal you are taking the wrong approach to your problem.
So, the metaclass to record just class attributes could simply be (python3 syntax - define a __metaclass__ attribute on the class body if you are still using Python 2.7):
class MetaBase(type):
definitions = {}
def __init__(cls, name, bases, dct):
for attr in dct.keys():
cls.__class__.definitions[attr] = cls
class parent(metaclass=MetaBase):
findMe = 5
def __init__(self):
print(self.__class__.definitions["findMe"])
Now, if one wants to find which of the superclasses defined an attribute of the currentclass, just a "live" tracking mechanism, wrapping each method in each class can work - it is a lot trickier.
I've made it - even if you won't need this much, this combines both methods - keeping track of class attributes in the class'class definitions and on an instance _definitions dictionary - since in each created instance an arbitrary method might have been the last to set a particular instance attribute: (This is pure Python3, and maybe not that straighforward porting to Python2 due to the "unbound method" that Python2 uses, and is a simple function in Python3)
from threading import current_thread
from functools import wraps
from types import MethodType
from collections import defaultdict
def method_decorator(func, cls):
#wraps(func)
def wrapper(self, *args, **kw):
self.__class__.__class__.current_running_class[current_thread()].append(cls)
result = MethodType(func, self)(*args, **kw)
self.__class__.__class__.current_running_class[current_thread()].pop()
return result
return wrapper
class MetaBase(type):
definitions = {}
current_running_class = defaultdict(list)
def __init__(cls, name, bases, dct):
for attrname, attr in dct.items():
cls.__class__.definitions[attr] = cls
if callable(attr) and attrname != "__setattr__":
setattr(cls, attrname, method_decorator(attr, cls))
class Base(object, metaclass=MetaBase):
def __setattr__(self, attr, value):
if not hasattr(self, "_definitions"):
super().__setattr__("_definitions", {})
self._definitions[attr] = self.__class__.current_running_class[current_thread()][-1]
return super().__setattr__(attr,value)
Example Classes for the code above:
class Parent(Base):
def __init__(self):
super().__init__()
self.findMe = 10
class Child1(Parent):
def __init__(self):
super().__init__()
self.findMe1 = 20
class Child2(Parent):
def __init__(self):
super().__init__()
self.findMe2 = 30
class GrandChild(Child1, Child2):
def __init__(self):
super().__init__()
def findall(self):
for attr in "findMe findMe1 findMe2".split():
print("Attr '{}' defined in class '{}' ".format(attr, self._definitions[attr].__name__))
And on the console one will get this result:
In [87]: g = GrandChild()
In [88]: g.findall()
Attr 'findMe' defined in class 'Parent'
Attr 'findMe1' defined in class 'Child1'
Attr 'findMe2' defined in class 'Child2'
Python 3 doesn't allow you to reference a class inside its body (except in methods):
class A:
static_attribute = A()
def __init__(self):
...
This raises a NameError in the second line because 'A' is not defined.
Alternatives
I have quickly found one workaround:
class A:
#property
#classmethod
def static_property(cls):
return A()
def __init__(self):
...
Although this isn't exactly the same since it returns a different instance every time (you could prevent this by saving the instance to a static variable the first time).
Are there simpler and/or more elegant alternatives?
EDIT:
I have moved the question about the reasons for this restriction to a separate question
The expression A() can't be run until the class A has been defined. In your first block of code, the definition of A is not complete at the point you are trying to execute A().
Here is a simpler alternative:
class A:
def __init__(self):
...
A.static_attribute = A()
When you define a class, Python immediately executes the code within the definition. Note that's different than defining a function where Python compiles the code, but doesn't execute it.
That's why this will create an error:
class MyClass(object):
a = 1 / 0
But this won't:
def my_func():
a = 1 / 0
In the body of A's class definition, A is not yet defined, so you can't reference it until after it's been defined.
There are several ways you can accomplish what you're asking, but it's not clear to me why this would be useful in the first place, so if you can provide more details about your use case, it'll be easier to recommend which path to go down.
The simplest would be what khelwood posted:
class A(object):
pass
A.static_attribute = A()
Because this is modifying class creation, using a metaclass could be appropriate:
class MetaA(type):
def __new__(mcs, name, bases, attrs):
cls = super(MetaA, mcs).__new__(mcs, name, bases, attrs)
cls.static_attribute = cls()
return cls
class A(object):
__metaclass__ = MetaA
Or you could use descriptors to have the instance lazily created or if you wanted to customize access to it further:
class MyDescriptor(object):
def __get__(self, instance, owner):
owner.static_attribute = owner()
return owner.static_attribute
class A(object):
static_attribute = MyDescriptor()
Using the property decorator is a viable approach, but it would need to be done something like this:
class A:
_static_attribute = None
#property
def static_attribute(self):
if A._static_attribute is None:
A._static_attribute = A()
return A._static_attribute
def __init__(self):
pass
a = A()
print(a.static_attribute) # -> <__main__.A object at 0x004859D0>
b = A()
print(b.static_attribute) # -> <__main__.A object at 0x004859D0>
You can use a class decorator:
def set_static_attribute(cls):
cls.static_attribute = cls()
return cls
#set_static_attribute
class A:
pass
Now:
>>>> A.static_attribute
<__main__.A at 0x10713a0f0>
Applying the decorator on top of the class makes it more explicit than setting static_attribute after a potentially long class definition. The applied decorator "belongs" to the class definition. So if you move the class around in your source code you will more likely move it along than an extra setting of the attribute outside the class.