I would like to do a regression with a rolling window, but I got only one parameter back after the regression:
rolling_beta = sm.OLS(X2, X1, window_type='rolling', window=30).fit()
rolling_beta.params
The result:
X1 5.715089
dtype: float64
What could be the problem?
Thanks in advance, Roland
I think the problem is that the parameters window_type='rolling' and window=30 simply do not do anything. First I'll show you why, and at the end I'll provide a setup I've got lying around for linear regressions on rolling windows.
1. The problem with your function:
Since you haven't provided some sample data, here's a function that returns a dataframe of a desired size with some random numbers:
# Function to build synthetic data
import numpy as np
import pandas as pd
import statsmodels.api as sm
from collections import OrderedDict
def sample(rSeed, periodLength, colNames):
np.random.seed(rSeed)
date = pd.to_datetime("1st of Dec, 1999")
cols = OrderedDict()
for col in colNames:
cols[col] = np.random.normal(loc=0.0, scale=1.0, size=periodLength)
dates = date+pd.to_timedelta(np.arange(periodLength), 'D')
df = pd.DataFrame(cols, index = dates)
return(df)
Output:
X1 X2
2018-12-01 -1.085631 -1.294085
2018-12-02 0.997345 -1.038788
2018-12-03 0.282978 1.743712
2018-12-04 -1.506295 -0.798063
2018-12-05 -0.578600 0.029683
.
.
.
2019-01-17 0.412912 -1.363472
2019-01-18 0.978736 0.379401
2019-01-19 2.238143 -0.379176
Now, try:
rolling_beta = sm.OLS(df['X2'], df['X1'], window_type='rolling', window=30).fit()
rolling_beta.params
Output:
X1 -0.075784
dtype: float64
And this at least represents the structure of your output too, meaning that you're expecting an estimate for each of your sample windows, but instead you get a single estimate. So I looked around for some other examples using the same function online and in the statsmodels docs, but I was unable to find specific examples that actually worked. What I did find were a few discussions talking about how this functionality was deprecated a while ago. So then I tested the same function with some bogus input for the parameters:
rolling_beta = sm.OLS(df['X2'], df['X1'], window_type='amazing', window=3000000).fit()
rolling_beta.params
Output:
X1 -0.075784
dtype: float64
And as you can see, the estimates are the same, and no error messages are returned for the bogus input. So I suggest that you take a look at the function below. This is something I've put together to perform rolling regression estimates.
2. A function for regressions on rolling windows of a pandas dataframe
df = sample(rSeed = 123, colNames = ['X1', 'X2', 'X3'], periodLength = 50)
def RegressionRoll(df, subset, dependent, independent, const, win, parameters):
"""
RegressionRoll takes a dataframe, makes a subset of the data if you like,
and runs a series of regressions with a specified window length, and
returns a dataframe with BETA or R^2 for each window split of the data.
Parameters:
===========
df: pandas dataframe
subset: integer - has to be smaller than the size of the df
dependent: string that specifies name of denpendent variable
inependent: LIST of strings that specifies name of indenpendent variables
const: boolean - whether or not to include a constant term
win: integer - window length of each model
parameters: string that specifies which model parameters to return:
BETA or R^2
Example:
========
RegressionRoll(df=df, subset = 50, dependent = 'X1', independent = ['X2'],
const = True, parameters = 'beta', win = 30)
"""
# Data subset
if subset != 0:
df = df.tail(subset)
else:
df = df
# Loopinfo
end = df.shape[0]
win = win
rng = np.arange(start = win, stop = end, step = 1)
# Subset and store dataframes
frames = {}
n = 1
for i in rng:
df_temp = df.iloc[:i].tail(win)
newname = 'df' + str(n)
frames.update({newname: df_temp})
n += 1
# Analysis on subsets
df_results = pd.DataFrame()
for frame in frames:
#print(frames[frame])
# Rolling data frames
dfr = frames[frame]
y = dependent
x = independent
if const == True:
x = sm.add_constant(dfr[x])
model = sm.OLS(dfr[y], x).fit()
else:
model = sm.OLS(dfr[y], dfr[x]).fit()
if parameters == 'beta':
theParams = model.params[0:]
coefs = theParams.to_frame()
df_temp = pd.DataFrame(coefs.T)
indx = dfr.tail(1).index[-1]
df_temp['Date'] = indx
df_temp = df_temp.set_index(['Date'])
if parameters == 'R2':
theParams = model.rsquared
df_temp = pd.DataFrame([theParams])
indx = dfr.tail(1).index[-1]
df_temp['Date'] = indx
df_temp = df_temp.set_index(['Date'])
df_temp.columns = [', '.join(independent)]
df_results = pd.concat([df_results, df_temp], axis = 0)
return(df_results)
df_rolling = RegressionRoll(df=df, subset = 50, dependent = 'X1', independent = ['X2'], const = True, parameters = 'beta',
win = 30)
Output: A dataframe with beta estimates for OLS of X2 on X1 for each 30 period window of the data.
const X2
Date
2018-12-30 0.044042 0.032680
2018-12-31 0.074839 -0.023294
2019-01-01 -0.063200 0.077215
.
.
.
2019-01-16 -0.075938 -0.215108
2019-01-17 -0.143226 -0.215524
2019-01-18 -0.129202 -0.170304
Related
import os
import sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import RandomizedSearchCV
from sklearn.metrics import plot_roc_curve
from sklearn.metrics import accuracy_score, classification_report
#kindly download the data FIRST which is required and then update the path accordingly for the variables you have to give the path
# variable1 = pd.read_csv(r"give the path to the data")
variable1 = pd.read_csv(r"C:/Users/hp/Desktop/NIFTY/TCS.csv")
variable2 = pd.read_csv(r"C:/Users/hp/Desktop/NIFTY/WIPRO.csv")
variable3 = pd.read_csv(r"C:/Users/hp/Desktop/NIFTY/HDFC.csv")
variable4 = pd.read_csv(r"C:/Users/hp/Desktop/NIFTY/ITC.csv")
frames = [variable1,variable2,variable3,variable4]
all = pd.concat(frames)
print(all)
price_data = all [['Symbol','Date','Close','High','Low','Open','Volume']]
First, for average investors, the return of an asset is a complete and scale–free summary of the investment opportunity. Second, return series are easier to handle than prices series as they have more attractive statistical properties
# sort the values by symbol and then date
price_data.sort_values(by = ['Symbol','Date'], inplace = True)
# calculate the change in price
price_data['change_in_price'] = price_data['Close'].diff()
# identify rows where the symbol changes
mask = price_data['Symbol'] != price_data['Symbol'].shift(1)
# For those rows, let's make the value null
price_data['change_in_price'] = np.where(mask == True, np.nan, price_data['change_in_price'])
# print the rows that have a null value, should only be 5
price_data[price_data.isna().any(axis = 1)]
days_out = 30
# Group by symbol, then apply the rolling function and grab the Min and Max.
price_data_smoothed = price_data.groupby(['Symbol'])
[['Close','Low','High','Open','Volume']].transform(lambda x: x.ewm(span = days_out).mean())
# Join the smoothed columns with the symbol and datetime column from the old data frame.
smoothed_df = pd.concat([price_data[['Symbol','Date']], price_data_smoothed], axis=1, sort=False)
smoothed_df
days_out = 30
# create a new column that will house the flag, and for each group calculate the diff compared to 30 days ago. Then use Numpy to define the sign.
smoothed_df['Signal_Flag'] = smoothed_df.groupby('Symbol')['Close'].transform(lambda x :
np.sign(x.diff(days_out)))
# print the first 50 rows
smoothed_df.head(50)
up to here it is working but when i execute the below code then it throws an error cannot reindex from a duplicate axis
n = 14
# First make a copy of the data frame twice
up_df, down_df = price_data[['Symbol','change_in_price']].copy(),
price_data[['Symbol','change_in_price']].copy()
# For up days, if the change is less than 0 set to 0.
up_df.loc['change_in_price'] = up_df.loc[(up_df['change_in_price'] < 0), 'change_in_price'] = 0
# For down days, if the change is greater than 0 set to 0.
down_df.loc['change_in_price'] = down_df.loc[(down_df['change_in_price'] > 0), 'change_in_price']
= 0
# We need change in price to be absolute.
down_df['change_in_price'] = down_df['change_in_price'].abs()
# Calculate the EWMA (Exponential Weighted Moving Average), meaning older values are given less weight compared to newer values.
ewma_up = up_df.groupby('Symbol')['change_in_price'].transform(lambda x: x.ewm(span = n).mean())
ewma_down = down_df.groupby('Symbol')['change_in_price'].transform(lambda x: x.ewm(span =
n).mean())
# Calculate the Relative Strength
relative_strength = ewma_up / ewma_down
# Calculate the Relative Strength Index
relative_strength_index = 100.0 - (100.0 / (1.0 + relative_strength))
# Add the info to the data frame.
price_data['down_days'] = down_df['change_in_price']
price_data['up_days'] = up_df['change_in_price']
price_data['RSI'] = relative_strength_index
# Display the head.
price_data.head(30)
I have the following DataFrame of market data:
DP PE BM CAPE
date
1990-01-31 0.0345 13.7235 0.503474 6.460694
1990-02-01 0.0346 13.6861 0.504719 6.396440
1990-02-02 0.0343 13.7707 0.501329 6.440094
1990-02-05 0.0342 13.7676 0.500350 6.460417
1990-02-06 0.0344 13.6814 0.503550 6.419991
... ... ... ... ...
2015-04-28 0.0201 18.7347 0.346717 26.741581
2015-04-29 0.0202 18.6630 0.348080 26.637641
2015-04-30 0.0205 18.4793 0.351642 26.363959
2015-05-01 0.0204 18.6794 0.347814 26.620701
2015-05-04 0.0203 18.7261 0.346813 26.695087
For every day in this timeseries, I want to compute the largest PCA component using a backwards looking expanded window. The following code gives me the DF from above:
def get_PCAprice_daily(start_date = '1990-06-08', end_date = '2015-09-30'):
start_date = pd.to_datetime(start_date, yearfirst=True) - pd.DateOffset(years=1)
end_date = pd.to_datetime(end_date, yearfirst=True)
if(start_date > end_date):
print("Invalid date range provided")
return 1
dp = get_DP_daily().reset_index()
pe = get_PE_daily().reset_index()
bm = get_BM_daily().reset_index()
cape = get_CAPE_daily().reset_index()
variables = [pe, bm, cape]
for var in variables:
dp = dp.merge(var, how='left', on='date')
df = dp.set_index('date')
df = df.loc[start_date:end_date].dropna()
I've tried several different ways myself, however none seem to allow me to access the eigenvalues and vectors of the PCA so that I can do what this post says to remove noise by keeping consistent signs. This is a graph of what my current PCA values look like, and the sign-switching is a very big issue:
My incorrect PCA computation code:
window = 252*5
# Initialize an empty df of appropriate size for the output
df_pca = pd.DataFrame( np.zeros((df.shape[0] - window + 1, df.shape[1])) )
# Define PCA fit-transform function
# Note: Instead of attempting to return the result,
# it is written into the previously created output array.
def rolling_pca(window_data):
pca = PCA()
transf = pca.fit_transform(df.iloc[window_data])
df_pca.iloc[int(window_data[0])] = transf[0,:]
return True
# Create a df containing row indices for the workaround
df_idx = pd.DataFrame(np.arange(df.shape[0]))
# Use `rolling` to apply the PCA function
_ = df_idx.rolling(window).apply(rolling_pca)
df = df.reset_index()
df = df.join(pd.DataFrame(df_pca[0]))
df.rename(columns={0: 'PCAprice'}, inplace=True)
df['PCAprice'] = df['PCAprice'].shift(window)
I have a dataframe X with several columns and a dataframe y with only one column (series). The rows in X represent timesteps and I want to find the interval I need to shift each column of X to obtain the highest correlation with y. I wrote a function that loops over all columns and then loops over all timesteps and correlates the X column with y. If the R² is better than before I store the timestep. However, with over 300 columns this routine is really taking some time and I need to increase the performance. Is there a nice way to simplify this code?
(In the example I used the iris data set which is of course not a timeseries...)
from sklearn import datasets
import pandas as pd
import numpy as np
#import matplotlib.pyplot as plt
from copy import deepcopy
def get_best_shift(dfX, dfy, ti=60, maxt=1440):
"""
determines the best correlation for the last maxt minutes based on a
timestep of ti minutes. Creates a dataframe with the shifted variables based on the
best match (strongest correlation).
"""
df_out = deepcopy(dfX)
for xcol in dfX:
bestshift = 0
Rmax = 0
for ishift in range(0, int(maxt / ti)):
xvals = dfX[xcol].iloc[0:(dfX.shape[0] - ishift)].values
yvals = np.array([val[0] for val in dfy.iloc[ishift:dfy.shape[0]].values])
selector = np.array([str(val)!="nan" for val in (xvals*yvals)],dtype=bool)
xvals = xvals[selector]
yvals = yvals[selector]
R = np.corrcoef(xvals,yvals)[0][1]
# plt.figure()
# plt.plot(xvals,yvals,'k.')
# plt.show()
if R ** 2 > Rmax:
Rmax = R ** 2
# print(Rmax)
bestshift = ishift
df_out[xcol] = list(np.zeros(bestshift)) + list(dfX[xcol].iloc[0:dfX.shape[0] - bestshift].values)
df_out = df_out.rename(columns={xcol: ''.join([str(xcol), '_t-', str(bestshift)])})
return df_out
iris = datasets.load_iris()
X = pd.DataFrame(iris.data)
y = pd.DataFrame(iris.target)
df = get_best_shift(X,y)
I have the following code which I am writing as part of a simple movie recommender in python so I can mimic the results I get as part of coursera's Machine Learning Course taught by Andrew NG.
I want to modify the numpy.ndarray that I get after calling as_matrix() on the pandas dataframe and add a column vector to it like we can in MATLAB
Y = [ratings Y]
Following is my python code
dataFile='/filepath/'
userItemRatings = pd.read_csv(dataFile, sep="\t", names=['userId', 'movieId', 'rating','timestamp'])
movieInfoFile = '/filepath/'
movieInfo = pd.read_csv(movieInfoFile, sep="|", names=['movieId','Title','Release Date','Video Release Date','IMDb URL','Unknown','Action','Adventure','Animation','Childrens','Comedy','Crime','Documentary','Drama','Fantasy','Film-Noir','Horror','Musical','Mystery','Romance','Sci-Fi','Thriller','War','Western'], encoding = "ISO-8859-1")
userMovieMatrix=pd.merge(userItemRatings, movieInfo, left_on='movieId', right_on='movieId')
userMovieSubMatrix = userMovieMatrix[['userId', 'movieId', 'rating','timestamp','Title']]
Y = pd.pivot_table(userMovieSubMatrix, values='rating', index=['movieId'], columns=['userId'])
Y.fillna(0,inplace=True)
movies = Y.shape[0]
users = Y.shape[1] +1
ratings = np.zeros((1682, 1))
ratings[0] = 4
ratings[6] = 3
ratings[11] = 5
ratings[53] = 4
ratings[63] = 5
ratings[65] = 3
ratings[68] = 5
ratings[97] = 2
ratings[182] = 4
ratings[225] = 5
ratings[354] = 5
features = 10
theta = pd.DataFrame(np.random.rand(users,features))# users 943*3
X = pd.DataFrame(np.random.rand(movies,features))# movies 1682 * 3
X = X.as_matrix()
theta = theta.as_matrix()
Y = Y.as_matrix()
"""want to insert a column vector into this Y to get a new Y of dimension
1682*944, but only seeing 1682*943 after the following statement
"""
np.insert(Y, 0, ratings, axis=1)
R = Y.copy()
R[R!=0] = 1
Ymean = np.zeros((movies, 1))
Ynorm = np.zeros((movies, users))
for i in range(movies):
idx = np.where(R[i,:] == 1)[0]
Ymean[i] = Y[i,idx].mean()
Ynorm[i,idx] = Y[i,idx] - Ymean[i]
print(type(Ymean), type(Ynorm), type(Y), Y.shape)
Ynorm[np.isnan(Ynorm)] = 0.
Ymean[np.isnan(Ymean)] = 0.
There is an inline comment inserted, but my problem is when I create a new numpy array and call insert, it works just fine. However the numpy array I get after calling as_matrix() on pandas dataframe on which pivot_table() is called doesn't work. Is there any alternative?
insert does not operate in place, you need to assign the output to a variable. Try:
Y = np.insert(Y, 0, ratings, axis=1)
I currently have a dataframe as below:
and wish to add a column, E, that is calculated based on the following function.
def geometric_brownian_motion(T = 1, N = 100, mu = 0.1, sigma = 0.01, S0 = 20):
dt = float(T)/N
t = np.linspace(0, T, N)
W = np.random.standard_normal(size = N)
W = np.cumsum(W)*np.sqrt(dt) ### standard brownian motion ###
X = (mu-0.5*sigma**2)*t + sigma*W
S = S0*np.exp(X) ### geometric brownian motion ###
return S
(originating from here)
How to i create a time-series for all of the dates contained within the data-frame and append it?
The function input parameters are as follows:
T = (#days between df row 1 and df last)/365
N = # rows in data frame
S0 = 100
As i understand the essense of question is how to apply some method to every column, taking into account, the fact that to calculate a new value you need an index from dataframe:
I suggest you to extract index as separate column and use apply as usually.
from functools import partial
df['index'] = df.index
T = # precalculate T here
N = df.shape[0]
applying_method = partial(geometric_brownian_motion,T=T,N=N, S0=100)
df['E'] = df.apply(lambda row: applying_method(*row),axis=1)
Or if you rename columns of dataframe accroding to you function arguments:
df['E'] = df.apply(lambda row: applying_method(**row),axis=1)
Hope that helps.