Closed Form Ridge Regression - python

I am having trouble understanding the output of my function to implement multiple-ridge regression. I am doing this from scratch in Python for the closed form of the method. This closed form is shown below:
I have a training set X that is 100 rows x 10 columns and a vector y that is 100x1.
My attempt is as follows:
def ridgeRegression(xMatrix, yVector, lambdaRange):
wList = []
for i in range(1, lambdaRange+1):
lambVal = i
# compute the inner values (X.T X + lambda I)
xTranspose = np.transpose(x)
xTx = xTranspose # x
lamb_I = lambVal * np.eye(xTx.shape[0])
# invert inner, e.g. (inner)**(-1)
inner_matInv = np.linalg.inv(xTx + lamb_I)
# compute outer (X.T y)
outer_xTy = np.dot(xTranspose, y)
# multiply together
w = inner_matInv # outer_xTy
wList.append(w)
print(wList)
For testing, I am running it with the first 5 lambda values.
wList becomes 5 numpy.arrays each of length 10 (I'm assuming for the 10 coefficients).
Here is the first of those 5 arrays:
array([ 0.29686755, 1.48420319, 0.36388528, 0.70324668, -0.51604451,
2.39045735, 1.45295857, 2.21437745, 0.98222546, 0.86124358])
My question, and clarification:
Shouldn't there be 11 coefficients, (1 for the y-intercept + 10 slopes)?
How do I get the Minimum Square Error from this computation?
What comes next if I wanted to plot this line?
I think I am just really confused as to what I'm looking at, since I'm still working on my linear-algebra.
Thanks!

First, I would modify your ridge regression to look like the following:
import numpy as np
def ridgeRegression(X, y, lambdaRange):
wList = []
# Get normal form of `X`
A = X.T # X
# Get Identity matrix
I = np.eye(A.shape[0])
# Get right hand side
c = X.T # y
for lambVal in range(1, lambdaRange+1):
# Set up equations Bw = c
lamb_I = lambVal * I
B = A + lamb_I
# Solve for w
w = np.linalg.solve(B,c)
wList.append(w)
return wList
Notice that I replaced your inv call to compute the matrix inverse with an implicit solve. This is much more numerically stable, which is an important consideration for these types of problems especially.
I've also taken the A=X.T#X computation, identity matrix I generation, and right hand side vector c=X.T#y computation out of the loop--these don't change within the loop and are relatively expensive to compute.
As was pointed out by #qwr, the number of columns of X will determine the number of coefficients you have. You have not described your model, so it's not clear how the underlying domain, x, is structured into X.
Traditionally, one might use polynomial regression, in which case X is the Vandermonde Matrix. In that case, the first coefficient would be associated with the y-intercept. However, based on the context of your question, you seem to be interested in multivariate linear regression. In any case, the model needs to be clearly defined. Once it is, then the returned weights may be used to further analyze your data.

Typically to make notation more compact, the matrix X contains a column of ones for an intercept, so if you have p predictors, the matrix is dimensions n by p+1. See Wikipedia article on linear regression for an example.
To compute in-sample MSE, use the definition for MSE: the average of squared residuals. To compute generalization error, you need cross-validation.

Also, you shouldn't take lambVal as an integer. It can be small (close to 0) if the aim is just to avoid numerical error when xTx is ill-conditionned.
I would advise you to use a logarithmic range instead of a linear one, starting from 0.001 and going up to 100 or more if you want to. For instance you can change your code to that:
powerMin = -3
powerMax = 3
for i in range(powerMin, powerMax):
lambVal = 10**i
print(lambVal)
And then you can try a smaller range or a linear range once you figure out what is the correct order of lambVal with your data from cross-validation.

Related

Performance issue with Scipy's solve_bvp and coupled differential equations

I'm facing a problem while trying to implement the coupled differential equation below (also known as single-mode coupling equation) in Python 3.8.3. As for the solver, I am using Scipy's function scipy.integrate.solve_bvp, whose documentation can be read here. I want to solve the equations in the complex domain, for different values of the propagation axis (z) and different values of beta (beta_analysis).
The problem is that it is extremely slow (not manageable) compared with an equivalent implementation in Matlab using the functions bvp4c, bvpinit and bvpset. Evaluating the first few iterations of both executions, they return the same result, except for the resulting mesh which is a lot greater in the case of Scipy. The mesh sometimes even saturates to the maximum value.
The equation to be solved is shown here below, along with the boundary conditions function.
import h5py
import numpy as np
from scipy import integrate
def coupling_equation(z_mesh, a):
ka_z = k # Global
z_a = z # Global
a_p = np.empty_like(a).astype(complex)
for idx, z_i in enumerate(z_mesh):
beta_zf_i = np.interp(z_i, z_a, beta_zf) # Get beta at the desired point of the mesh
ka_z_i = np.interp(z_i, z_a, ka_z) # Get ka at the desired point of the mesh
coupling_matrix = np.empty((2, 2), complex)
coupling_matrix[0] = [-1j * beta_zf_i, ka_z_i]
coupling_matrix[1] = [ka_z_i, 1j * beta_zf_i]
a_p[:, idx] = np.matmul(coupling_matrix, a[:, idx]) # Solve the coupling matrix
return a_p
def boundary_conditions(a_a, a_b):
return np.hstack(((a_a[0]-1), a_b[1]))
Moreover, I couldn't find a way to pass k, z and beta_zf as arguments of the function coupling_equation, given that the fun argument of the solve_bpv function must be a callable with the parameters (x, y). My approach is to define some global variables, but I would appreciate any help on this too if there is a better solution.
The analysis function which I am trying to code is:
def analysis(k, z, beta_analysis, max_mesh):
s11_analysis = np.empty_like(beta_analysis, dtype=complex)
s21_analysis = np.empty_like(beta_analysis, dtype=complex)
initial_mesh = np.linspace(z[0], z[-1], 10) # Initial mesh of 10 samples along L
mesh = initial_mesh
# a_init must be complex in order to solve the problem in a complex domain
a_init = np.vstack((np.ones(np.size(initial_mesh)).astype(complex),
np.zeros(np.size(initial_mesh)).astype(complex)))
for idx, beta in enumerate(beta_analysis):
print(f"Iteration {idx}: beta_analysis = {beta}")
global beta_zf
beta_zf = beta * np.ones(len(z)) # Global variable so as to use it in coupling_equation(x, y)
a = integrate.solve_bvp(fun=coupling_equation,
bc=boundary_conditions,
x=mesh,
y=a_init,
max_nodes=max_mesh,
verbose=1)
# mesh = a.x # Mesh for the next iteration
# a_init = a.y # Initial guess for the next iteration, corresponding to the current solution
s11_analysis[idx] = a.y[1][0]
s21_analysis[idx] = a.y[0][-1]
return s11_analysis, s21_analysis
I suspect that the problem has something to do with the initial guess that is being passed to the different iterations (see commented lines inside the loop in the analysis function). I try to set the solution of an iteration as the initial guess for the following (which must reduce the time needed for the solver), but it is even slower, which I don't understand. Maybe I missed something, because it is my first time trying to solve differential equations.
The parameters used for the execution are the following:
f2 = h5py.File(r'path/to/file', 'r')
k = np.array(f2['k']).squeeze()
z = np.array(f2['z']).squeeze()
f2.close()
analysis_points = 501
max_mesh = 1e6
beta_0 = 3e2;
beta_low = 0; # Lower value of the frequency for the analysis
beta_up = beta_0; # Upper value of the frequency for the analysis
beta_analysis = np.linspace(beta_low, beta_up, analysis_points);
s11_analysis, s21_analysis = analysis(k, z, beta_analysis, max_mesh)
Any ideas on how to improve the performance of these functions? Thank you all in advance, and sorry if the question is not well-formulated, I accept any suggestions about this.
Edit: Added some information about performance and sizing of the problem.
In practice, I can't find a relation that determines de number of times coupling_equation is called. It must be a matter of the internal operation of the solver. I checked the number of callings in one iteration by printing a line, and it happened in 133 ocasions (this was one of the fastests). This must be multiplied by the number of iterations of beta. For the analyzed one, the solver returned this:
Solved in 11 iterations, number of nodes 529.
Maximum relative residual: 9.99e-04
Maximum boundary residual: 0.00e+00
The shapes of a and z_mesh are correlated, since z_mesh is a vector whose length corresponds with the size of the mesh, recalculated by the solver each time it calls coupling_equation. Given that a contains the amplitudes of the progressive and regressive waves at each point of z_mesh, the shape of a is (2, len(z_mesh)).
In terms of computation times, I only managed to achieve 19 iterations in about 2 hours with Python. In this case, the initial iterations were faster, but they start to take more time as their mesh grows, until the point that the mesh saturates to the maximum allowed value. I think this is because of the value of the input coupling coefficients in that point, because it also happens when no loop in beta_analysisis executed (just the solve_bvp function for the intermediate value of beta). Instead, Matlab managed to return a solution for the entire problem in just 6 minutes, aproximately. If I pass the result of the last iteration as initial_guess (commented lines in the analysis function, the mesh overflows even faster and it is impossible to get more than a couple iterations.
Based on semi-random inputs, we can see that max_mesh is sometimes reached. This means that coupling_equation can be called with a quite big z_mesh and a arrays. The problem is that coupling_equation contains a slow pure-Python loop iterating on each column of the arrays. You can speed the computation up a lot using Numpy vectorization. Here is an implementation:
def coupling_equation_fast(z_mesh, a):
ka_z = k # Global
z_a = z # Global
a_p = np.empty(a.shape, dtype=np.complex128)
beta_zf_i = np.interp(z_mesh, z_a, beta_zf) # Get beta at the desired point of the mesh
ka_z_i = np.interp(z_mesh, z_a, ka_z) # Get ka at the desired point of the mesh
# Fast manual matrix multiplication
a_p[0] = (-1j * beta_zf_i) * a[0] + ka_z_i * a[1]
a_p[1] = ka_z_i * a[0] + (1j * beta_zf_i) * a[1]
return a_p
This code provides a similar output with semi-random inputs compared to the original implementation but is roughly 20 times faster on my machine.
Furthermore, I do not know if max_mesh happens to be big with your inputs too and even if this is normal/intended. It may make sense to decrease the value of max_mesh in order to reduce the execution time even more.

Constraining OLS (or WLS) coeffecients using statsmodels

I have a regression of the form model = sm.GLM(y, X, w = weight).
Which ends up being a simple weighted OLS. (note that specificying w as the error weights array actually works in sm.GLM identically to sm.WLS despite it not being in the documentation).
I'm using GLM because this allows me to fit with some additional constraints using fit_constrained(). My X consists of 6 independent variables, 2 of which i want to constrain the resulting coeffecients to be positive. But i can not seem to figure out the syntax to get fit_constrained() to work. The documentation is extremely bare and i can not find any good examples anywhere. All i really need is the correct syntax for imputing these constraints. Thanks!
The function you see is meant for linear constraints, that is a combination of your coefficients fulfill some linear equalities, not meant for defining boundaries.
The closest you can get is using scipy least squares and defining the boundaries, for example, we set up some dataset with 6 coefficients:
from scipy.optimize import least_squares
import numpy as np
np.random.seed(100)
x = np.random.uniform(0,1,(30,6))
y = np.random.normal(0,2,30)
The function to basically matrix multiply and return error:
def fun(b, x, y):
return b[0] + np.matmul(x,b[1:]) - y
The first coefficient is the intercept. Let's say we require the 2nd and 6th to be always positive:
res_lsq = least_squares(fun, [1,1,1,1,1,1,1], args=(x, y),
bounds=([-np.inf,0,-np.inf,-np.inf,-np.inf,-np.inf,0],+np.inf))
And we check the result:
res_lsq.x
array([-1.74342242e-01, 2.09521327e+00, -2.02132481e-01, 2.06247855e+00,
-3.65963504e+00, 6.52264332e-01, 5.33657765e-20])

Output all guesses from scipy.optimize.leastsq()

I'm hoping to make an animation about how the least-squares regression analysis provided by scipy.optimize.leastsq() converges on a specific result. Is there any way to get the function to, say, append to a list a tuple of guess values for each iteration until the function converges to the local minima? Or, is there a different library which includes this feature?
Below is what I have:
# initial guess for gaussian distributions to optimize [height, position, width].
# if more than 2 distributions required, add a new set of [h,p,w] initial parameters to 'initials' for each new distribution.
# new parameters should be of the same format for consistency; i.e. [h,p,w],[h,p,w],[h,p,w]... etc.
# A 'w' guess of 1 is typically a sufficient estimation.
initials = [6.5,13,1],[4.5,19,1]
# determines the number of gaussian functions to compute from the initial guesses
n = len(initials)
# formats initials into a 1D array
var = np.concatenate(initials)
# data matrix
M = np.array(master)
# defines a typical gaussian function, of independent variable x,
# amplitude a, position b, and width parameter c.
def gaussian(x,a,b,c):
return a*np.exp((-(x-b)**2.0)/c**2.0)
# defines the expected resultant as a sum of intrinsic gaussian functions
def GaussSum(x, p):
return sum(gaussian(x, p[3*k], p[3*k+1], p[3*k+2]) for k in range(n))
# defines condition of minimization, reducing the square of the difference between the data (y) and the function 'func(x,p)'
def residuals(p, y, x):
return (y - GaussSum(x,p))**2
# executes least-squares regression analysis to optimize initial parameters
cnsts = leastsq(residuals, var, args=(M[:,1],M[:,0]))[0]
what I'm eventually hoping for is for 'cnsts' to be a list of tuples of every guess from the initial guess to the final guess.
If I'm understanding your question correctly, you want to make a guess at each of the different coefficients while fitting a linear regression line, then have a list of all the coefficents that have been guessed? Similar to how a NN will back-propagate the error to better fit a model?
Linear regression isn't guessing the different coefficents. It's just calculating them... https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/regression-analysis/find-a-linear-regression-equation/#FindaLinear

python - rolling regression + weighted, all without loop?

is it possible to do the following without loop (so it improves the speed)? i have looked sklearn, sm, and pd, unfortunately don't think they have any direct solution.
i have
x = np.array(range(1000)) # ie a standard discrete time series
y = np.append(np.zeros(600),np.random.random(400)) #it has a lot of zeros
y = np.random.permutation(y) #the number of zeros in b/w the non zero is random
z = np.empty(1000) # z will contain predicted values from the reg analysis
rolling_window=20
i wish to obtain z, where z(i) = a(i)+b(i)x(i) for i within range(1000)
and a(i) and b(i) are obtained by regressing Ys vs Xs for the i b/w (i-rolling_window, i), but only uses Ys that are non zero (hence need to assign weight = 0 for Ys that are zero in the regression. preferably use a weighting method rather than getting rid of the zeros together, because i dont wish to loop)
many thanks in advance

How to change parameters of a scikit learn function dynamically i.e. find best parameter

I am trying to do dimensionality reduction using PCA function of sklearn, specifically
from sklearn.decomposition import PCA
def mypca(X,comp):
pca = PCA(n_components=comp)
pca.fit(X)
PCA(copy=True, n_components=comp, whiten=False)
Xpca = pca.fit_transform(X)
return Xpca
for n_comp in range(10,1000,20):
Xpca = mypca(X,n_comp) # X is a 2 dimensional array
print Xpca
I am calling mypca function from a loop with different values for comp. I am doing this in order to find the best value of comp for the problem I am trying to solve. But mypca function always returns the same value i.e. Xpca irrespective of value of comp.
The value it returns is correct for first value of comp I send from the loop i.e. Xpca value which it sends each time is correct for comp = 10 in my case.
What should I do in order to find best value of comp?
You use PCA to reduce the dimension.
From your code:
for n_comp in range(10,1000,20):
Xpca = mypca(X,n_comp) # X is a 2 dimensional array
print Xpca
Your input dataset X is only a 2 dimensional array, the minimum n_comp is 10, so the PCA try to find the 10 best dimension for you. Since 10 > 2, you will always get the same answer. :)
It looks like you're trying to pass different values for number of components, and re-fit with each. A great thing about PCA is that it's actually not necessary to do this. You can fit the full number of components (even as many components as dimensions in your dataset), then simply discard the components you don't want (i.e. those with small variance). This is equivalent to re-fitting the entire model with fewer components. Saves a lot of computation.
How to do it:
# x = input data, size(<points>, <dimensions>)
# fit the full model
max_components = x.shape[1] # as many components as input dimensions
pca = PCA(n_components=max_components)
pca.fit(x)
# transform the data (contains all components)
y_all = pca.transform(x)
# keep only the top k components (with greatest variance)
k = 2
y = y_all[:, 0:k]
In terms of how to select the number of components, it depends what you want to do. One standard way of choosing the number of components k is to look at the fraction of variance explained (R^2) by each choice of k. If your data is distributed near a low-dimensional linear subspace, then when you plot R^2 vs. k, the curve will have an 'elbow' shape. The elbow will be located at the dimensionality of the subspace. It's good practice to look at this curve because it helps understand the data. Even if there's no clean elbow, it's common to choose a threshold value for R^2, e.g. to preserve 95% of the variance.
Here's how to do it (this should be done on the model with max_components components):
# Calculate fraction of variance explained
# for each choice of number of components
r2 = pca.explained_variance_.cumsum() / x.var(0).sum()
Another way you might want to proceed is to take the PCA-transformed data and feed it to a downstream algorithm (e.g. classifier/regression), then select your number of components based on the performance (e.g. using cross validation).
Side note: Maybe just a formatting issue, but your code block in mypca() should be indented, or it won't be interpreted as part of the function.

Categories

Resources